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Abstract 

Introduction 

Brain organoids are highly complex multi-cellular tissue proxies, which have recently risen as novel tools 

to study neurodegenerative diseases such as Parkinson’s disease (PD). However, with increasing 

complexity of the system, usage of quantitative tools becomes challenging. 

Objectives 

The primary objective of this study was to develop a neurotoxin-induced PD organoid model and to 

assess the neurotoxic effect on dopaminergic neurons using microscopy-based phenotyping in a high-

content fashion.  

Methods 

We describe a pipeline for a machine learning-based analytical method, allowing for detailed image-based 

cell profiling and toxicity prediction in brain organoids treated with the neurotoxic compound 6-

hydroxydopamine (6-OHDA). 

Results 

We quantified features such as dopaminergic neuron count and neuronal complexity and built a machine 

learning classifier with the data to optimize data processing strategies and to discriminate between 

different treatment conditions. We validated the approach with high content imaging data from PD patient 

derived midbrain organoids.  

Conclusions 

The here described model is a valuable tool for advanced in vitro PD modeling and to test putative 

neurotoxic compounds. 
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Introduction 

Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by the loss of 

midbrain dopaminergic neurons (DANs). The etiology of PD is multifactorial, with endogenous (genetic) 

and exogenous (environmental) contributors. Accumulating evidence suggests that in the majority of the 

cases, the combination and interaction of genetic risk variants, ageing, and environment leads to the 

development of PD [1,2]. This highlights the necessity to expand research to identify potential neurotoxic 

compounds and their harmful effects on the human brain. One of the major challenges is the development 

of disease models that can capture the complexity of the human brain. In recent years, stem cell-derived 

brain organoids have risen as promising disease models. These complex in vitro systems mimic the organ 

architecture and function, and have been shown to model neurological disorders (reviewed in [3]). With 

increasing complexity of the system, the availability of experimental tools is limited. So far, high-

throughput techniques have limited relevance in the highly laborious organoid system. Due to the 

complex organization, comprehensive image analysis in organoids is challenging. Building on this, we 

developed methods to automatically acquire and process high-content imaging (HCI) data in organoids, 

which has been successfully demonstrated in brain organoids [4] and 3D microfluidic cultures [5]. In this 

study, we further refined this pipeline with optimized HCI data analysis in a neurotoxin-induced PD 

organoid model. Human midbrain organoids (hMOs) were exposed to 6-OHDA to specifically damage 

the dopaminergic system [6,7]. We used machine learning (ML) tools to analyze this in vitro toxicity 

assay. Using random forest (RF) classification, we assessed the neurotoxic effect of 6-OHDA on hMOs 

based on cellular features. This pipeline, from treatment to prediction, is valuable for the exploration of 

potential neurotoxic compounds in complex human brain organoids.  

Methods 

Organoids were generated as described in [8] from hiPSCs (Table S1). In order to identify, which 6-

OHDA concentration leads to a significant reduction in the amount of dopaminergic neurons, organoids 

were treated for 48h with 50 μM, 100 μM, 175 μM, 250 μM and 500 μM 6OHDA (Sigma) after five 

weeks of organoid culture, followed by six days of normal culture conditions (Fig S1). Organoids were 

fixed for immunofluorescence staining, snapfrozen for protein extraction, or dissociated into single cells 

for flow cytometry. Fixed organoids were sectioned and stained for neuronal markers. Images were 

acquired using an automated confocal microscope and further processed and cellular features were 

analyzed in MATLAB. In the R software environment (R version 3.5.1 -- "Feather Spray") we used 
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principal variance component analysis [9] to explore the contribution of experimental factors to the 

variance in the dataset and subsequently based data processing approaches on the output. Next, we built a 

ML model using random forest classification [10,11] to predict the treatment condition of the high content 

image analysis dataset. The dataset was split into five random subsets; four subsets (training datasets) 

were used to build the model and the remaining subset (test dataset) served to validate the model 

performance. This process was iterated ten times (i.e. 10x 5-fold cross validation) and the average 

classification accuracy was calculated. A detailed description of the experiments can be found in the 

supplementary information.  

Ethical approval 

Informed consent was obtained from all individuals donating samples to this study prior to the donation 

using a written form and protocol. The described work with human induced pluripotent stem cells has 

been approved by the Ethics Review Panel (ERP) of the University of Luxembourg and the national 

Luxembourgish research ethics committee (CNER, Comité National d'Ethique de Recherche). In vitro 

experiments were carried out with existing cell lines obtained from previous studies.  

 

Data Availability 

The data is openly available at https://webdav-r3lab.uni.lu/public/data/machine-learning-assisted-

neurotoxicity-prediction-in-human-midbrain-organoid/. 

Code Availability 

The Matlab and R scripts for image and data analysis, as well as for RF classification are available on 

GitHub at https://github.com/LCSB-DVB/ML_Tox. 
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Results 

6-OHDA induces concentration-dependent cell death in hMOs 

We treated organoids derived from three independent human iPSC lines (Supplementary Table 1) with 6-

OHDA concentrations ranging from 50µM to 500µM (Fig. S1). Cell quantification by flow cytometry 

revealed that exposure to 6-OHDA caused a concentration-dependent reduction in the amount of living 

DANs, identified by the rate-limiting enzyme of the dopamine synthesis, Tyrosine hydroxylase (TH) (Fig. 

S2). We fitted a non-linear regression curve for each line and determined a mean LD50 at 147µM 6-

OHDA (Fig. 1a). In further experiments, we used a concentration of 175µM, which led to a significant 

reduction of DANs in all three lines (Fig. 1b). Consistent with this, we observed a concentration-

dependent reduction of TH in Western Blots, resulting in an average 2.3-fold decrease of the protein after 

175µM 6-OHDA treatment (Fig. 1c, d). Furthermore, immunofluorescence staining reveals that 6-OHDA 

treatment leads to a decrease in the amount of TH+ cells (Fig. 1e) and to neurite fragmentation (Fig. 1f).  

DANs within hMOs show typical signs of degeneration 

We examined the effect of 6-OHDA on the neuronal network within hMOs using image-based cell 

profiling. Organoid sections were stained for neuron-specific-Class-III-β-tubulin (TUJ1), microtubule-

associated-protein-2 (MAP2) and TH. We subdivided sections into center (5-6 80µm sections of the 

organoid core) and border sections (Fig. S3a, Fig. S4a) to correct for spatial asymmetry in hMOs. Images 

were acquired using an automated confocal microscope, processed in MATLAB and the amount of DANs 

was quantified. Due to their significant differences we analyzed border and center sections separately or 

corrected for the variation of the section by normalization (Fig. S4b-c). Upon 6-OHDA treatment, the 

amount of TUJ1+ neurons remained unaltered (Fig. 1g), while the amount of TH+ DANs decreased 

significantly (Fig. 1h). We computed a 3D mask for TH+ cells and generated a 3D skeleton of the DAN 

network to extract features such as nodes (dendritic and axonal points of branching) and links (total 

number of branches), as well as neurite fragmentation (Fig. S3c-d, Table S2). 6- OHDA treatment led to a 

decrease in the complexity of DANs and increase of fragmented neurites (Fig. 1i-j, Fig. S5-7).  

Random Forest prediction of neurotoxicity 

We used ML to build a classifier able to discriminate between CTRL and 6-OHDA-treated organoids; and 

consequently identify the measurements that describe the largest difference. We trained a RF algorithm 

with 10x 5-fold cross-validation in order to ensure an unbiased estimation of the model performance. We 

applied our strategy to the raw/unprocessed data. The generated model achieved a classification accuracy 
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of 75%. The prediction was influenced by dopaminergic features (Table S3, Figure S8ai,-bi). Since the 

prediction power of ML models highly depends on data quality, we attempted to remove highly variable 

and for the biological effect irrelevant experimental factors. We first assessed the contribution of those 

factors to the variability observed in the data. We used principal variance component analysis (PVCA) [9] 

and observed significant contribution of experimental factors (Fig. 2ai). Building on this, we investigated 

whether we could improve classification accuracy by normalizing the data. We performed a z-score 

transformation across the entire dataset for each combination of experiment (four independent batches), 

cell line (hMO1, hMO2, hMO3) and section (border, center). Normalization strongly improved the 

classification accuracy of the RF model to 86%, while lowering the variance described by experimental 

conditions (Fig. 2aii, Table S3, Fig. S8aii-bii). Consistent with this, a clear separation between the 

treatments using hierarchical clustering (Fig. 2b), as well as principal component analysis (Fig. 2c) was 

achieved, suggesting that by ML-assisted optimization of data processing strategies, we can predict 

neurotoxicity using HCI data from human brain organoids.  

Random Forest prediction of disease state in PD patient-derived midbrain organoids 

To evaluate if RF classification of high content imaging data can be used to identify cellular 

manifestations in PD patient specific organoids we used a dataset based on a previous publication [4]. In 

this study, midbrain organoids, from PD patients with a LRRK2-G2019S mutation and controls were 

stained for the midbrain dopaminergic neuron marker TH/FOXA2. The amount of TH+, FOXA2+, 

TH+/FOXA2+ and TH-/FOXA2+ cells, as well as dopaminergic neuron complexity, were quantified at 

three different time points (10, 35, 70 days) using a similar custom image-analysis algorithm. For each 

time point, we trained a machine learning classifier model to predict the disease state and to identify 

which features are most important in determining the prediction. This model achieved a classification 

accuracy of 89% (day10), 92% (day 35), and 93% (day 70). Notably, in line with the previous results [4], 

each time point showed a different set of top features that determined the prediction outcome, with 

FOXA2+ cells as top feature at early time points, and amount/complexity of dopaminergic neurons at 

later time points (Table S4). This demonstrates the applicability of this workflow to monitor phenotypic 

traits in PD organoids.  

Clustering the data obtained from PD patient specific organoids together with the data from the here 

described toxin model in a single computational model was not leading to meaningful results. This is the 

case because the two utilized midbrain organoid protocols differ in some important details (e.g. usage of 

matrix and identity of the stem cells used as starting population) and different markers were analyzed 
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(FOXA2 was an important marker in the patient specific organoids but was not analyzed in the toxin 

model) [4, 8]. 

Discussion 

In this study, we have used the neurotoxin 6-OHDA to target specifically the dopaminergic system in 

organoids. To assess neuronal damage in the hMO system, among other methods we used microscopy-

based phenotyping. However, organoids exhibit an architecturally complex heterotypic organization. 

Typically, multiple cell types including stem cells, glia cells, and neurons are arranged in close proximity 

in the 3D space, the latter one expanding long neurites in the surrogate matrix. This complexity makes it 

utterly difficult to measure and quantify neuronal features. The use of image processing algorithms is 

fundamental to extract features on the single cell level. Technological advances of high imaging 

throughput, precise analytical frameworks with high-performance computation opens new avenues for 

phenotypic profiling in brain organoids. In combination with ML approaches, we predicted neurotoxin-

induced perturbations in hMOs. RF is by design a useful technique for reducing predictive variability, 

preventing overfitting and achieving high classification accuracy [12]. Importantly, RF gives estimates of 

which variables are most important in the classification [10]. Using PVCA, we identified the contribution 

of experimental factors to the total variance and designed optimized data normalization approaches to 

improve predictability. We further validated this approach and monitored phenotypic traits by a new 

analysis of previously published data in PD patient specific organoids with the LRRK2-G2019S mutation. 

This supports the concept of using image-based profiling studies in organoids to identify environmental 

or genetic factors that modulate phenotypes. However, the fact that we were not able to compare the data 

from the toxin model with the data from the LRRK2-G2019S model within the same computational 

model, highlights that for future meta-analysis of data coming from different studies, it is extremely 

important to use the same cell culture protocols and analysis strategies. Importantly, this RF model 

approach is highly sensitive to unbalanced data (control/treated ratio), which can be monitored by 

calculating sensitivity and specificity of the model (Table S3, S4). Hence, large and class-balanced 

sample sizes are beneficial. There might be situations where this is easier and less expensive to achieve 

with other cellular models like iPSC-derived dopaminergic neurons or LUHMES cells cultured in 

classical 2D conditions. Our model achieved an overall accuracy of 85%, which is acceptable. However, 

in order to further increase accuracy, it would be necessary to integrate more features beyond cell death 

and complexity/amount of DANs, which we could demonstrate with the validation dataset (Table S4). 
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Yet, despite the limitations, we suggest that organoids have the potential to be used as a platform from 

target identification to toxicity prediction using ML-assisted HCI-based cell profiling.  
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Figure Captions 

Fig. 1: 6-OHDA-induced concentration-dependent degeneration of DANs. 

a) 6-OHDA dose-response curves fitted to the flow cytometry data showing a 6-OHDA-concentration-

dependent decrease in the amount of TH+ live cells. Data obtained for each cell line and condition from 6 

pooled organoids of two independent organoid batches and 6-OHDA treatments. 

b) Barplot showing a robust decrease in the amount of TH+ live cells at a 6-OHDA concentration of 

175µM. Data obtained for each cell line and condition from six pooled organoids of seven independent 

organoid batches and 6-OHDA treatments. Error bars represent mean + SEM. *p< 0.05 

c) Representative western blot revealing a concentration-dependent decrease of TH protein upon 6-

OHDA treatment.  

d) Quantification of c, normalized to the mean of the untreated controls of nine organoids derived from 

three independent lines. Error bars represent mean + SEM. *p< 0.05, **p<0.005 

e) Immunofluorescence staining for dopaminergic neuronal marker TH and TUJ1 in untreated and 6-

OHDA treated organoids reveals dopaminergic neurodegeneration upon treatment with 175 μM 6-OHDA. 

f) Example of a fragmented TH+ neurite after 6-OHDA treatment. 

g) HCI analysis reveals that the overall amount of TUJ1+ neurons is unaffected from the treatment. Left: 

border sections, right: center sections 

h) HCI analysis of TH+ cells shows that DANs degenerate after 6-OHDA treatment. %TH: Total count of 

TH+ cells. Left: border sections, right: center sections 

i-j) 6-OHDA treatment leads to impaired neuronal complexity as indicated by increased neurite 

fragmentation and decreased number of nodes (branch origin and end-point). Left: border sections, right: 
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center sections. Data of g-k obtained from four independent organoid batches and 6-OHDA treatments 

from three cell lines. Wilcoxon rank sum test, *p<0.05, **p<0.01, ***p<0.001 

 

Fig. 2: ML-assisted optimization of HCI data analysis 

a) Principal variance component analysis showing the relative contribution of each experimental factor to 

the total variance observed in the data i) before, and ii) after normalization. Resid. = residual weighted 

average proportion variance. Contribution of undefined residual effects to variation in the dataset.  

b) Hierarchical clustering using Ward’s minimum variance method without (i) and with data 

normalization (ii).  

c) Principal component analysis of the scaled data before (i) and after data normalization (ii).  







Highlights 

• We describe an interdisciplinary approach to assess the effect of 6-OHDA on dopaminergic 

neurons in midbrain organoids 

• 3D high-content screening of organoids was used to extract morphometric features of 

dopaminergic neurons in 6-OHDA-treated and untreated organoids 

• A machine learning classifier was applied on the high-content data to predict neurotoxin-induced 

perturbations and to optimize data processing strategies 


