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Abstract

Introduction

Brain organoids are highly complex multi-cellulestie proxies, which have recently risen as naabt

to study neurodegenerative diseases such as Ranldndlisease (PD). However, with increasing
complexity of the system, usage of quantitativdsds@comes challenging.

Objectives

The primary objective of this study was to develomeurotoxin-induced PD organoid model and to
assess the neurotoxic effect on dopaminergic neuusing microscopy-based phenotyping in a high-
content fashion.

M ethods

We describe a pipeline for a machine learning-baseditical method, allowing for detailed image-dxhs
cell profiling and toxicity prediction in brain omgoids treated with the neurotoxic compound 6-
hydroxydopamine (6-OHDA).

Results

We quantified features such as dopaminergic necoomt and neuronal complexity and built a machine
learning classifier with the data to optimize datacessing strategies and to discriminate between
different treatment conditions. We validated thprapch with high content imaging data from PD ptie
derived midbrain organoids.

Conclusions

The here described model is a valuable tool foraadedin vitro PD modeling and to test putative

neurotoxic compounds.



I ntroduction

Parkinson’s disease (PD) is a progressive neurodegtve disorder characterized by the loss of
midbrain dopaminergic neurons (DANSs). The etiolagyD is multifactorial, with endogenous (genetic)
and exogenous (environmental) contributors. Accating evidence suggests that in the majority of the
cases, the combination and interaction of genésic variants, ageing, and environment leads to the
development of PD [1,2]. This highlights the neidgd® expand research to identify potential neoxat
compounds and their harmful effects on the humaimbfOne of the major challenges is the development
of disease models that can capture the complekitigeohuman brain. In recent years, stem cell-@ekiv
brain organoids have risen as promising diseaselsiotihese compléex vitro systems mimic the organ
architecture and function, and have been shownadetmeurological disorders (reviewed in [3]). With
increasing complexity of the system, the availabittf experimental tools is limited. So far, high-
throughput techniques have limited relevance in highly laborious organoid system. Due to the
complex organization, comprehensive image analysizrganoids is challenging. Building on this, we
developed methods to automatically acquire andga®digh-content imaging (HCI) data in organoids,
which has been successfully demonstrated in brgianoids [4] and 3D microfluidic cultures [5]. Ihi$
study, we further refined this pipeline with optaed HCI data analysis in a neurotoxin-induced PD
organoid model. Human midbrain organoids (hMOs)enexposed to 6-OHDA to specifically damage
the dopaminergic system [6,7]. We used machinaniegr(ML) tools to analyze thim vitro toxicity
assay. Using random forest (RF) classification,assessed the neurotoxic effect of 6-OHDA on hMOs
based on cellular features. This pipeline, fronattreent to prediction, is valuable for the explaratof

potential neurotoxic compounds in complex humainbsaganoids.

M ethods

Organoids were generated as described in [8] frdP®@s (Table S1). In order to identify, which 6-
OHDA concentration leads to a significant reductiorihe amount of dopaminergic neurons, organoids
were treated for 48h with 50M, 100 uM, 175 uM, 250 uM and 500uM 60OHDA (Sigma) after five
weeks of organoid culture, followed by six daysnofmal culture conditions (Fig S1). Organoids were
fixed for immunofluorescence staining, snapfrozeingrotein extraction, or dissociated into singhdsc

for flow cytometry. Fixed organoids were sectioread stained for neuronal markers. Images were
acquired using an automated confocal microscope fariler processed and cellular features were

analyzed in MATLAB. In the R software environmem yersion 3.5.1 -- "Feather Spray") we used



principal variance component analysis [9] to explthe contribution of experimental factors to the
variance in the dataset and subsequently basegatassing approaches on the output. Next, we douil
ML model using random forest classification [10,1d pbredict the treatment condition of the highteom
image analysis dataset. The dataset was splitfiveorandom subsets; four subsets (training dasaset
were used to build the model and the remaining eduftest dataset) served to validate the model
performance. This process was iterated ten times {Ox 5-fold cross validation) and the average
classification accuracy was calculated. A detadiedcription of the experiments can be found in the

supplementary information.

Ethical approval

Informed consent was obtained from all individuddsating samples to this study prior to the domatio
using a written form and protocol. The describedkweith human induced pluripotent stem cells has
been approved by the Ethics Review Panel (ERPh®fUniversity of Luxembourg and the national
Luxembourgish research ethics committee (CNER, @oiKational d'Ethique de Recherchh).vitro

experiments were carried out with existing celéfirobtained from previous studies.

Data Availability

The data is openly available at https://webdavkr3iai.lu/public/data/machine-learning-assisted-

neurotoxicity-prediction-in-human-midbrain-organoid

Code Availability

The Matlab and R scripts for image and data aralys well as for RF classification are availabie o
GitHub at_https://github.com/LCSB-DVB/ML_Tox.




Results

6-OHDA induces concentration-dependent cell death in hM Os

We treated organoids derived from three indepenkiemtan iPSC lines (Supplementary Table 1) with 6-
OHDA concentrations ranging from 50uM to 500uM (F81). Cell quantification by flow cytometry
revealed that exposure to 6-OHDA caused a condemtrdependent reduction in the amount of living
DANSs, identified by the rate-limiting enzyme of tHepamine synthesis, Tyrosine hydroxylase (TH).(Fig
S2). We fitted a non-linear regression curve fatheline and determined a mean Jy[at 147uM 6-
OHDA (Fig. 1a). In further experiments, we usedoaaentration of 175uM, which led to a significant
reduction of DANs in all three lines (Fig. 1b). Gistent with this, we observed a concentration-
dependent reduction of TH in Western Blots, resglin an average 2.3-fold decrease of the protitén a
175uM 6-OHDA treatment (Fig. 1c, d). Furthermormaiunofluorescence staining reveals that 6-OHDA

treatment leads to a decrease in the amount of cEHls- (Fig. 1€) and to neurite fragmentation (Hif).

DANswithin hM Os show typical signs of degeneration

We examined the effect of 6-OHDA on the neuronaiwonek within hMOs using image-based cell
profiling. Organoid sections were stained for newspecific-Class-IliB-tubulin (TUJ1), microtubule-
associated-protein-2 (MAP2) and TH. We subdividedtiens into center (5-6 80um sections of the
organoid core) and border sections (Fig. S3a,$4g) to correct for spatial asymmetry in hMOs. letag
were acquired using an automated confocal micrasqmocessed in MATLAB and the amount of DANs
was quantified. Due to their significant differeaoge analyzed border and center sections separately
corrected for the variation of the section by ndipagion (Fig. S4b-c). Upon 6-OHDA treatment, the
amount of TUJ1+ neurons remained unaltered (Fig, While the amount of TH+ DANs decreased
significantly (Fig. 1h). We computed a 3D mask Tot+ cells and generated a 3D skeleton of the DAN
network to extract features such as nodes (denditd axonal points of branching) and links (total
number of branches), as well as neurite fragmemtdfig. S3c-d, Table S2). 6- OHDA treatment led to
decrease in the complexity of DANs and increaseagfmented neurites (Fig. 1i-j, Fig. S5-7).

Random Forest prediction of neurotoxicity

We used ML to build a classifier able to discrintinbetween CTRL and 6-OHDA-treated organoids; and
consequently identify the measurements that deschie largest difference. We trained a RF algorithm
with 10x 5-fold cross-validation in order to ensareunbiased estimation of the model performance. W

applied our strategy to the raw/unprocessed ddita.génerated model achieved a classification acgura



of 75%. The prediction was influenced by dopamimefgatures (Table S3, Figure $8a). Since the
prediction power of ML models highly depends onadamality, we attempted to remove highly variable
and for the biological effect irrelevant experimarfactors. We first assessed the contributionhoké
factors to the variability observed in the data. Wged principal variance component analysis (PV[GR)
and observed significant contribution of experinagfictors (Fig. 2 Building on this, we investigated
whether we could improve classification accuracyrnmymalizing the data. We performed a z-score
transformation across the entire dataset for eaaotbination of experiment (four independent batches)
cell line (hMO1, hMO2, hMO3) and section (bordegnter). Normalization strongly improved the
classification accuracy of the RF model to 86%,levkdwering the variance described by experimental
conditions (Fig. 2a Table S3, Fig. S8&y;). Consistent with this, a clear separation betwden
treatments using hierarchical clustering (Fig. 2ts)well as principal component analysis (Fig. \2a¥
achieved, suggesting that by ML-assisted optinopatf data processing strategies, we can predict

neurotoxicity using HCI data from human brain orgjds.

Random Forest prediction of disease statein PD patient-derived midbrain organoids

To evaluate if RF classification of high contentamimg data can be used to identify cellular
manifestations in PD patient specific organoidsused a dataset based on a previous publicatiomn[4].
this study, midbrain organoids, from PD patienttshwva LRRK2-G2019S mutation and controls were
stained for the midbrain dopaminergic neuron markefFOXA2. The amount of TH+, FOXA2+,
TH+FOXA2+ and TH-/FOXA2+ cells, as well as dopasnigic neuron complexity, were quantified at
three different time points (10, 35, 70 days) usingimilar custom image-analysis algorithm. Forheac
time point, we trained a machine learning classifidel to predict the disease state and to identif
which features are most important in determining finediction. This model achieved a classification
accuracy of 89% (day10), 92% (day 35), and 93% {8y Notably, in line with the previous result3,[4
each time point showed a different set of top femtuhat determined the prediction outcome, with
FOXA2+ cells as top feature at early time pointsg @amount/complexity of dopaminergic neurons at
later time points (Table S4). This demonstratesaghyicability of this workflow to monitor phenotigp
traits in PD organoids.

Clustering the data obtained from PD patient specifganoids together with the data from the here
described toxin model in a single computational ehadhs not leading to meaningful results. Thishis t
case because the two utilized midbrain organoitbpods differ in some important details (e.g. usafe
matrix and identity of the stem cells used as isignpopulation) and different markers were analyzed



(FOXA2 was an important marker in the patient sfie@rganoids but was not analyzed in the toxin
model) [4, 8].

Discussion

In this study, we have used the neurotoxin 6-OHDAarget specifically the dopaminergic system in
organoids. To assess neuronal damage in the hM@nsyamong other methods we used microscopy-
based phenotyping. However, organoids exhibit aritcturally complex heterotypic organization.
Typically, multiple cell types including stem celtglia cells, and neurons are arranged in closriipity

in the 3D space, the latter one expanding longitesuin the surrogate matrix. This complexity makes
utterly difficult to measure and quantify neurofiehtures. The use of image processing algorithms is
fundamental to extract features on the single tmikl. Technological advances of high imaging
throughput, precise analytical frameworks with Rpgrformance computation opens new avenues for
phenotypic profiling in brain organoids. In comiioa with ML approaches, we predicted neurotoxin-
induced perturbations in hMOs. RF is by design efuigechnique for reducing predictive variability,
preventing overfitting and achieving high classifion accuracy [12]. Importantly, RF gives estinsaté
which variables are most important in the clasatfan [10]. Using PVCA, we identified the contribr

of experimental factors to the total variance aedighed optimized data normalization approaches to
improve predictability. We further validated thipproach and monitored phenotypic traits by a new
analysis of previously published data in PD patsg®cific organoids with the LRRK2-G2019S mutation.
This supports the concept of using image-basedlipgtudies in organoids to identify environmdnta
or genetic factors that modulate phenotypes. Howelie fact that we were not able to compare tha da
from the toxin model with the data from the LRRK2@9S model within the same computational
model, highlights that for future meta-analysisdatta coming from different studies, it is extremely
important to use the same cell culture protocold analysis strategies. Importantly, this RF model
approach is highly sensitive to unbalanced datatfolitreated ratio), which can be monitored by
calculating sensitivity and specificity of the mod@able S3, S4). Hence, large and class-balanced
sample sizes are beneficial. There might be siinativhere this is easier and less expensive t@aehi
with other cellular models like iIPSC-derived dopaemgic neurons or LUHMES cells cultured in
classical 2D conditions. Our model achieved an all/accuracy of 85%, which is acceptable. However,
in order to further increase accuracy, it wouldneeessary to integrate more features beyond cathde

and complexity/amount of DANs, which we could destoate with the validation dataset (Table S4).



Yet, despite the limitations, we suggest that ooids1have the potential to be used as a platfoom fr

target identification to toxicity prediction usifdlL-assisted HCI-based cell profiling.
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Figure Captions

Fig. 1: 6-OHDA-induced concentration-dependent degeneration of DANSs.

a) 6-OHDA dose-response curves fitted to the flgtometry data showing a 6-OHDA-concentration-
dependent decrease in the amount of TH+ live deli$éa obtained for each cell line and conditionfré
pooled organoids of two independent organoid bateimel 6-OHDA treatments.

b) Barplot showing a robust decrease in the amotifitH+ live cells at a 6-OHDA concentration of
175uM. Data obtained for each cell line and cooditirom six pooled organoids of seven independent
organoid batches and 6-OHDA treatments. Error @pgesent mean + SEM. *p< 0.05

c) Representative western blot revealing a conaBaoftr-dependent decrease of TH protein upon 6-
OHDA treatment.

d) Quantification of ¢, normalized to the mean lué untreated controls of nine organoids derivechfro
three independent lines. Error bars represent mezaM. *p< 0.05, **p<0.005

e) Immunofluorescence staining for dopaminergicroeal marker TH and TUJ1 in untreated and 6-
OHDA treated organoids reveals dopaminergic negederation upon treatment with 18 6-OHDA.

f) Example of a fragmented TH+ neurite after 6-OHD&atment.

g) HCI analysis reveals that the overall amountldf1+ neurons is unaffected from the treatmentt: Lef
border sections, right: center sections

h) HCI analysis of TH+ cells shows that DANs degate after 6-OHDA treatment. %TH: Total count of
TH+ cells. Left: border sections, right: centertemts

i-)) 6-OHDA treatment leads to impaired neuronalmpiexity as indicated by increased neurite

fragmentation and decreased number of nodes (bi@igin and end-point). Left: border sections, tigh

11



center sections. Data of g-k obtained from fourepehdent organoid batches and 6-OHDA treatments

from three cell lines. Wilcoxon rank sum test, *p8%®), **p<0.01, ***p<0.001

Fig. 2. ML -assisted optimization of HCI data analysis

a) Principal variance component analysis showiegréative contribution of each experimental fadtor
the total variance observed in the data i) befargl ii) after normalization. Resid. = residual viéy
average proportion variance. Contribution of unuedi residual effects to variation in the dataset.

b) Hierarchical clustering using Ward’'s minimum iemce method without (i) and with data
normalization (ii).

¢) Principal component analysis of the scaled Hafare (i) and after data normalization (ii).

12
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Highlights

» We describe an interdisciplinary approach to assess the effect of 6-OHDA on dopaminergic
neurons in midbrain organoids

» 3D high-content screening of organoids was used to extract morphometric features of
dopaminergic neurons in 6-OHDA -treated and untreated organoids

» A machine learning classifier was applied on the high-content data to predict neurotoxin-induced
perturbations and to optimize data processing strategies



