
M. Cramer and J. Dauphin / Argumentation Label Functions

Argumentation Label Functions -
Technical Report

Marcos Cramer a and Jérémie Dauphin b

a TU Dresden
b University of Luxembourg

Abstract. An important approach to abstract argumentation is the labeling-based
approach, in which one makes use of labelings that assign to each argument one
of three labels: in, out or und. In this paper, we address the question, which of
the twenty-seven functions from the set of labels to the set of labels can be repre-
sented by an argumentation framework. We prove that in preferred, complete and
grounded semantics, eleven labeling functions can be represented in this way while
sixteen labeling functions cannot be represented by any argumentation framework.
We show how this analysis of labeling functions can be applied to prove an im-
possibility result: Argumentation frameworks extended with a certain kind of weak
attack relation cannot be flattened to the standard Dung argumentation frameworks.

Keywords. knowledge representation, abstract argumentation, argumentation
semantics, labelings, flattening

1. Introduction

Abstract argumentation frameworks (AFs) [13] are reasoning structures where one aims
at extracting sets of jointly acceptable arguments. One of the central methods to do so
is the labeling-based approach [2], in which one derives labeling functions which assign
to each argument one of three labels: in, out or und. The arguments that are labeled
in represent the arguments that are jointly acceptable, while the arguments that are out
represent the ones that are defeated by those. The last label, und (undecided), represents
the cases where one cannot, or decides with proper justification, not to assign either of
these two labels. One advantage of the labeling approach is that to verify that an argument
is correctly labeled, one only needs to check the labels of its direct ancestors. This allows
for a more local evaluation, which is still equivalent to other global approaches such as
the extension-based approach.

Many enrichments of abstract argumentation frameworks have been studied, e.g.
with bipolar argumentation frameworks which add a second relation of support [9], or
with argumentation frameworks with recursive attacks (AFRA) [3] in which attacks may
also target other attacks. One methodology for evaluating such enriched frameworks
while staying coherent with the basic framework is the flattening approach [6], where
the enrichments added to the abstract argumentation frameworks are expressed in terms
of extra arguments and attacks, allowing one to evaluate them as abstract argumenta-
tion frameworks. An essential concern in the flattening approach is whether the extra

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/322864007?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

M. Cramer and J. Dauphin / Argumentation Label Functions

arguments and attacks produce the same behavior as the one intended by the enrichment
they flatten. This raises a question: Which relations connecting two arguments can be
expressed in terms of arguments and attacks alone?

In this paper we propose to address this research question by studying the repre-
sentability of label functions, i.e. of functions which map each of the three labels to one
of these labels. We prove that in preferred, complete and grounded semantics, eleven
labeling functions can be represented by an AF while sixteen labeling functions cannot
be represented by any AF. We show how this analysis of labeling functions can be ap-
plied to prove an impossibility result: Argumentation frameworks extended with a cer-
tain kind of weak attack relation cannot be flattened to the standard Dung argumentation
frameworks. Furthermore we also briefly discuss representability of label functions with
respect to the stable and semi-stable semantics.

The structure of the paper is as follows: in Section 2, we provide an overview of
existing definitions from the literature that we make use of later on. In Section 3 we
formally define the notion of labeling function and what it means to represent them as
abstract argumentation frameworks. In Section 4 we show which of the twenty-seven
labeling functions are representable and which ones are unrepresentable in the context
of the complete, grounded and preferred semantics, and briefly mention the case of the
stable semantics. In Section 5 we discuss the implications of these impossibility results
for the flattening of a particular relation: a weak attack relation that does not propagate
the undecided label. We then discuss related work in Section 6 and future work in Section
7, where we also briefly discuss the case of the semi-stable semantics. We provide a short
conclusion in Section 8.

Due to space limitations, the proofs of some of the results of this paper are presented
in a technical report [11].

2. Preliminaries

In this section we introduce the basic notions of abstract argumentation. We define argu-
mentation semantics using the labeling-based approach [2].

We start by defining the fundamental notion of argumentation frameworks.

Definition 1. An argumentation framework (AF) F = (A ,R) is a (finite or infinite) di-
rected graph in which the set A of vertices is considered to represent arguments and the
set R ⊆ A ×A of edges is considered to represent the attack relation between argu-
ments, i.e. the relation between a counterargument and the argument that it counters.

Given an argumentation framework, we want to make a coherent judgment about
which arguments we accept, which arguments we reject and for which arguments we
refrain from accepting or rejecting them. For this purpose three labels are used: in, out
and und. The set {in,out,und} of these three labelings is denoted Labs.

Definition 2. Let F = (A ,R) be an AF. A labeling of F is a function Lab : A → Labs.

Intuitively a labeling is a judgment about all arguments in an argumentation frame-
work. So far we have not imposed any constraints on the coherence of these judgments.
These will be specified later.

M. Cramer and J. Dauphin / Argumentation Label Functions

Sometimes there may be a choice between multiple coherent points of view. So what
we want in the general case is a mapping from argumentation frameworks to sets of
labelings. Such a mapping is called an argumentation semantics:

Definition 3. An argumentation semantics is a function σ that maps any AF F = (A ,R)
to a set σ(F) of labelings of F. The elements of σ(F) are called σ -labelings of F.

Note 1. We usually define an argumentation semantics σ by specifying criteria which a
labeling of F has to satisfy in order to be a σ -labeling of F.

Multiple argumentation semantics have been defined in the literature. In this paper
we consider the complete, stable, grounded, preferred, and semi-stable semantics:

Definition 4. Let F = (A ,R) be an AF, and let Lab be a labeling of F.

• An argument a ∈A is called legally in w.r.t. Lab iff every argument that attacks
a is labeled out by Lab (in other words: for every b ∈A such that (b,a) ∈R, we
have Lab(b) = out).

• An argument a ∈A is called legally out w.r.t. Lab iff some argument that attacks
a is labeled in by Lab.

• An argument a ∈A is called legally und w.r.t. Lab iff no argument that attacks a
is labeled in by Lab and some argument that attacks a is labeled und by Lab.

Definition 5. Let F = (A ,R) be an AF, and let Lab be a labeling of F.

• Lab is a complete labeling of F iff every arguments that Lab labels in is legally
in w.r.t. Lab, every arguments that Lab labels out is legally out w.r.t. Lab, and
every arguments that Lab labels und is legally und w.r.t. Lab.

• Lab is a stable labeling of F iff Lab is a complete labeling of F and no argument
is labeled und by Lab.

• Lab is the grounded labeling of F iff Lab is the complete labeling of F in which
the set of in-labeled arguments is minimal w.r.t. set inclusion.

• Lab is a preferred labeling of F iff Lab is a complete labeling of F in which the set
of in-labeled arguments is maximal w.r.t. set inclusion.

• Lab is a semi-stable labeling of F iff Lab is a complete labeling of F in which the
set of und-labeled arguments is minimal w.r.t. set inclusion.

We now present a well-known characterization of the grounded labeling as the least
fixpoint of a certain operator FF (see [2]):

Definition 6. Let F = (A ,R) be an AF and let Lab be a labeling of F. Then FF(Lab)
is a labeling of F defined as follows:

FF(Lab)(a) =


in if every attacker of a is labeled outby Lab

out if some attacker of a is labeled inby Lab

und otherwise

M. Cramer and J. Dauphin / Argumentation Label Functions

Definition 7. Let F1 = (A1,R1) and F2 = (A2,R2) be two AFs with A1 ⊆ A2, and
let Lab1 and Lab2 be labelings of F1 and F2 respectively. We say Lab1 ≤ Lab2 iff for
every argument a ∈A , Lab1(a) = in implies Lab2(a) = in, and Lab1(a) = out implies
Lab2(a) = out.

Proposition 1. Let F = (A ,R) be an AF. Then the unique grounded labeling of F is the
≤-least fixpoint of FF .

This least fixpoint of FF can be reached by iteratively applying FF to the ≤-least
labeling (i.e. to the labeling that maps every argument to und). In case A is an infinite
set, this might require transfinitely many iterations of FF , which are defined as follows:

Definition 8. Let Labund be the labeling that maps every argument to und. For every
ordinal α , we define F α

F (Labund) as follows:

F α
F (Labund) =


Labund if α = 0
FF(F

β

F (Labund)) if α = β +1
the ≤-least labeling Lab of F such that
F β

F (Labund)≤ Lab for all β ≤ α if α is a limit ordinal

Proposition 2. Let F = (A ,R) be an AF. Then there exists an ordinal α such that the
least fixpoint of FF is F α

F (Labund).

The original definition of argumentation semantics proposed by Dung [13] and still
widely used to this day is based on extensions rather than labelings. While we do not
make use of the extension-based definitions of argumentation semantics in this paper, we
do require the notion of admissibility that is used in the extension-based approach:

Definition 9. Let F = (A ,R) be an AF, and let S⊆A . The set S is called conflict-free
iff there are no arguments b,c ∈ S such that b attacks c. Argument a ∈A is defended by
S iff for every b ∈A such that b attacks a there exists c ∈ S such that c attacks b. We say
that S is admissible iff S is conflict-free and every argument in S is defended by S.

The following two facts directly follow from the correspondence between the
labeling-based approach and the extension-based approach as presented in [2]:

Proposition 3. Let F = (A ,R) be an AF and let E ⊆A be admissible. Then there is a
preferred labeling of F in which all arguments in E are labeled in.

Proposition 4. Let F = (A ,R) be an AF and let Lab be a preferred labeling of F. Then
the set of arguments that are labeled in by Lab is admissible.

In this paper we will make use of the fact that grounded, complete and preferred
semantics satisfy the Directionality and SCC-recursivity principles (see [18]).

The intuitive idea behind Directionality is that an argument a can only effect the
status of another argument b if there is an R-path from a to b. For formalizing this, we
first need some auxiliary notions:

M. Cramer and J. Dauphin / Argumentation Label Functions

Definition 10. Let F = (A ,R) be an AF, let S ⊆A and let Lab be a labeling of F. We
write F |S for the restricted AF (S,R ∩ (S× S)), and we write Lab|S for the labeling of
F |S that is identical with Lab on all arguments in S.

Definition 11. Let F = 〈A ,R〉 be an AF. A set U ⊆A is unattacked iff there exists no
a ∈A \U such that a attacks some b ∈U.

Definition 12. A semantics σ satisfies the Directionality principle iff for every AF F and
every unattacked set U, it holds that σ(F |U) = {Lab|U | Lab ∈ σ(F)}.

The intuitive idea behind SCC-recursiveness is that for computing the semantics, we
can divide the AF into strongly connected components (SCCs) and compute the labelings
by recursively applying the semantics to each SCC, taking into account attacks coming in
from previously considered SCCs. For making this precise, we first need some auxiliary
notions.

Definition 13. Let F = (A ,R) be an AF. An R-path in F is a sequence 〈a0, . . . ,an〉
of arguments where (ai,ai+1) ∈R for 0 ≤ i < n and where a j 6= ak for 0 ≤ j < k ≤ n.
Let a,b ∈ A . We define a ∼ b iff either a = b or there is an R-path from a to b and
there is an R-path from b to a. The equivalence classes under the equivalence relation
∼ are called strongly connected components (SCCs) of F. We denote the set of SCCs of
F by SCCs(F). Given a labeling Lab of F, we define DF(Lab) := {b ∈ A | ∃a ∈ A :
(a,b)∈R,Lab(a) = in and a 6∼ b}. We define UF(S,Lab) := {a∈ S |6 ∃b : (b,a)∈R,b 6∼
a and Lab(b) 6= out}. We define LaboutF to be the labeling of F that assigns out to every
argument in A .

Definition 14. A binary function BF is called a base function iff for every AF F =
(A ,R) such that |SCCs(F)|= 1 and every C ⊆A , BF(F,C) is a set of labelings of F.

Definition 15. Given a base function BF, an AF F = (A ,R) and a set C ⊆ A , we
recursively define the set GF(BF,F,C) of labelings of F as follows: for every labeling
Lab of F, Lab ∈ GF(BF,F,C) iff

• in case |SCCs(F)|= 1, Lab ∈ BF(F,C),
• otherwise, for all S∈ SCCs(F), there is a Lab′ ∈GF(BF,F |S\DF (Lab),UF(S,Lab)∩

C) such that Lab|S = Lab′∪LaboutF |S∩DF (Lab)
.

Definition 16. A semantics σ satisfies the SCC-recursiveness principle iff there is a base
function BF such that for every AF F = (A ,R) we have σ(F) = GF(BF,F,A).

3. Label Functions

In this section we define the basic notions of a labeling function, an input-output argu-
mentation framework and the representability of a labeling function.

Definition 17. A labeling function LF is a function from Labs to Labs.

Definition 18. Let LF1 and LF2 be two labeling functions. Then LF1 ◦ LF2 denotes
the composition of these two labeling functions that is defined as LF1 ◦ LF2(L) =
LF1(LF2(L)).

M. Cramer and J. Dauphin / Argumentation Label Functions

i o

I/O AF

input = in

ib o

I/O AF

input = out

ib o

I/O AF

input = und

Figure 1. The three standard AFs for the I/O AF that cgp-represents the labeling function (out,in,und).

We use the triplet (LF(in),LF(out),LF(und)) to refer to LF in a concise way. For
example, the triplet (out,und,in) denotes the labeling function that maps in to out,
out to und and und to in.

Definition 19. An input-output argumentation framework (I/O AF) is a tuple (A ,R, i,o),
where (A ,R) is an argumentation framework and i,o ∈A .

Definition 20. Given an input-output argumentation framework G = (A ,R, i,o), with
an argument b /∈ A and a label L ∈ Labs, the standard argumentation framework w.r.t.
G and L – denoted Fst(G,L) – is the argumentation framework (A ′,R ′), where A ′ and
R ′ are defined through the following case distinction:

• If L = in, then A ′ = A and R ′ = R.
• If L = out, then A ′ = A ∪{b} and R ′ = R ∪{(b, i)}.
• If L = und, then A ′ = A ∪{b} and R ′ = R ∪{(b,b),(b, i)}.

Definition 21. Let σ be an argumentation semantics. An input-output argumenta-
tion framework G represents a labeling function LF w.r.t. σ iff for every L ∈ Labs,
σ(Fst(G,L)) 6= /0 and for every labeling Lab ∈ σ(Fst(G,L)), Lab(i) = L and Lab(o) =
LF(L).

Definition 22. Let σ be an argumentation semantics. A labeling function LF is called σ -
representable iff there is some input-output argumentation framework G that represents
LF w.r.t. σ .

In this work, we shall focus on three of the most well-known semantics, namely
complete, grounded and preferred. The principles that these semantics satisfy make them
the most appropriate to start with.

Definition 23. We define cgp to be the set of semantics {complete, grounded, preferred}.
If a labeling function can be σ -represented for every σ ∈ cgp, we say that the function
is cgp-representable. Similarly, if a labeling function cannot be σ -represented for any
σ ∈ cgp, we say that the function is cgp-unrepresentable.

Example 1. Consider the labeling function (out,in,und) which maps in to out and
vice-versa, leaving und as it is. This function can be cgp-represented as depicted in
Fig. 1. By having the input directly attack the output, when the input is in, it forces the
output to be out. Conversely, when the input is out, there is no attacker of the output
left, so it must be in. And finally when the input is und, the undecided label propagates
to the output.

M. Cramer and J. Dauphin / Argumentation Label Functions

i = o

I/O AF

(in,out,und)

i a o

I/O AF

(out,out,und)

i a o

I/O AF

(in,und,und)

Figure 2. cgp-representation of three labeling functions.

Example 2. Fig. 2 depicts three I/O AFs that cgp-represent the labeling functions
(in,out,und), (out,out,und) and (in,und,und) respectively. Note that the I/O AF that
represents the identity function (in,out,und) consists only of a single argument, so that
the input argument i and the output argument o are the same argument.

We now define how two input-output argumentation frameworks can be composed
into a single one. The intuitive idea is that the output of the first I/O AF is used as input
for the second I/O AF.

Definition 24. Let G1 = (A1,R1, i1,o1) and G2 = (A2,R2, i2,o2) be two input-output
argumentation frameworks with A1 ∩A2 = /0, and let c /∈ A1 ∪A2. Then we define
G1⊕G2 to be the input-output argumentation framework (A1 ∪A2 ∪ {c},R1 ∪R2 ∪
{(o1,c)}∪{(c, i2)}, i1,o2).

The following theorem establishes that composed AFs represent composed label
functions with respect to the complete, grounded and preferred semantics.

Theorem 1. Let LF1 and LF2 be representable labeling functions, and let G1 =
(A1,R1, i1,o1) and G2 =(A2,R2, i2,o2) be input-output argumentation frameworks that
represent LF1 and LF2 respectively. Then G1⊕G2 cgp-represents LF2 ◦LF1.

Proof. Let σ ∈ cgp. Let L ∈ Labs. Then every σ -labeling of Fst(G1,L) assigns the label
LF1(L) to o1, and every σ -labeling of Fst(G2,LF1(L)) assigns the label LF2◦LF1(L) to o2.
We need to show that every σ -labeling of Fst(G1⊕G2,L) assigns the label LF2 ◦LF1(L)
to o2. So let Lab be a σ -labeling of Fst(G1⊕G2,L). By the Directionality principle for
σ , Lab|Fst(G1,L) ∈ σ(Fst(G1,L)), so Lab(o1) = LF1(L).

We write F∗ = (A ∗,R∗) for Fst(G2,LF1(L)), and we write F ′ = (A ′,R ′) for
Fst(G1⊕G2,L). Recall that by Definition 20, A ∗ =A2∪{b} if LF1(L) = out and A ∗ =
A2 otherwise. Let Labb be the unique σ -labeling of F∗|A ∗\A2 , i.e. Labb = {(b,in)} if
LF1(L) = out, and Labb = /0 otherwise.

By the SCC-recursiveness principle for σ , there is a base function BFσ such that for
every AF F =(A ,R), σ(F)=GF(BFσ ,F,A). In particular, σ(F ′)=GF(BFσ ,F ′,A ′),
i.e. Lab ∈ GF(BFσ ,F ′,A ′). Clearly |SCCs(F ′)|> 1, so by the SCC-recursiveness prin-
ciple for σ , for all S ∈ SCCs(F ′), we have:

There is a Lab′ ∈ GF(BFσ ,F ′|S\DF ′ (Lab)
,UF ′(S,Lab))

such that Lab|S = Lab′∪LaboutF ′|S∩DF ′ (Lab)
.

(1)

When applying this equation in Case 3 below, we will need to make use of the fact that if
S⊆A2, then S\DF ′(Lab) = S\DF∗(Labb∪ (Lab|A2)) and UF ′(S,Lab) =UF∗(S,Labb∪

M. Cramer and J. Dauphin / Argumentation Label Functions

(Lab|A2)). In the following we show that UF ′(S,Lab) ⊆UF∗(S,Labb ∪ (Lab|A2)). The
facts that UF∗(S,Labb ∪ (Lab|A2)) ⊆ UF ′(S,Lab), that S \DF ′(Lab) ⊆ S \DF∗(Labb ∪
(Lab|A2)) and that S \DF∗(Labb ∪ (Lab|A2)) ⊆ S \DF ′(Lab) can be established in a
similar way.

Suppose x∈UF ′(S,Lab), i.e. x∈ S and there is no y such that (y,x)∈R ′, y 6∼ x and
Lab(y) 6= out. Now suppose for a contradiction that x /∈UF∗(S,Labb∪ (Lab|A2)),
i.e. there is a z such that (z,x) ∈ R∗, z 6∼ x and Labb ∪ (Lab|A2)(z) 6= out. We
distinguish two cases:

Case (i): z ∈A2. Choose y := z. Note that since z 6∼ x, (z,x) 6= (i, i). So (y,x) =
(z,x) ∈ R ′, y 6∼ x and Lab(y) = Lab(z) = Labb ∪ (Lab|A2)(z) 6= out. This
contradicts the assumption that there is no such y.

Case (ii): z = b. In this case LF1(L) = out. Choose y := c. Then (b,x) ∈R∗, i.e.
x = i. Therefore (y,x) = (c, i) ∈R ′. Additionally y 6∼ x. Furthermore, since
Lab(o1) = LF1(L) = out and o1 is the only attacker of c, Lab(c) = in, i.e.
Lab(y) 6= out. This contradicts the assumption that there is no such y.

Thus UF ′(S,Lab)⊆UF∗(S,Labb∪ (Lab|A2)), as required.

Recall that every σ -labeling of F∗ assigns the label LF2 ◦ LF1(L) to o2. We now
establish the required result that Lab(o2) = LF2 ◦ LF1(L) by showing that Labb ∪
(Lab|A2) ∈ σ(F∗). By the SCC-recursivity of σ , it is enough to show that Labb ∪
(Lab|A2) ∈ GF(BFσ ,F∗,A ∗). Clearly |SCCs(F∗)| > 1, so by the SCC-recursiveness
principle for σ it is enough to show that for all S ∈ SCCs(F∗), there is a Lab′ ∈
GF(BFσ ,F∗|S\DF∗ (Labb∪(Lab|A2))

,UF∗(S,Labb∪(Lab|A2))) such that (Labb∪(Lab|A2))|S =
Lab′∪LaboutF∗|S∩DF∗ (Lab)

. So let S ∈ SCCs(F∗). We distinguish two cases:

Case 1: S = {b} and LF1(L) = out. In this case, (Labb ∪ (Lab|A2))|S is {(b,in)},
i.e. the unique σ -labeling of the AF F∗|S = ({b}, /0). By the SCC-recursivity
of σ , GF(BFσ ,F∗|S,S) = σ(F∗|S), so {(b,in)} ∈ GF(BFσ ,F∗|S,S). Note that
S is unattacked, i.e. F ′|S∩DF ′ (Lab)

is the empty AF and LaboutF ′|S∩DF ′ (Lab)
is the

empty labeling. So we can choose Lab′ = (Labb ∪ (Lab|A2))|S = {(b,in)}. Fur-
thermore, F∗|S\DF∗ (Labb∪(Lab|A2))

= F∗|S and UF∗(S,Labb ∪ (Lab|A2)) = S. Thus
GF(BFσ ,F∗|S\DF∗ (Labb∪(Lab|A2))

, UF∗(S,Labb ∪ (Lab|A2))) = GF(BFσ ,F∗|S,S),
which contains Lab′ = {(b,in)}, as required.

Case 2: S = {b} and LF1(L) = und. In this case, (Labb ∪ (Lab|A2))|S is {(b,und)},
i.e. the unique σ -labeling of the AF F∗|S = ({b},{b,b)}). By the SCC-recursivity
of σ , GF(BFσ ,F∗|S,S) = σ(F∗|S), so {(b,und)} ∈ GF(BFσ ,F∗|S,S). Note that
S is unattacked, i.e. F ′|S∩DF ′ (Lab)

is the empty AF and LaboutF ′|S∩DF ′ (Lab)
is the

empty labeling. So we can choose Lab′ = (Labb∪ (Lab|A2))|S = {(b,und)}. Fur-
thermore, F∗|S\DF∗ (Labb∪(Lab|A2))

= F∗|S and UF∗(S,Labb ∪ (Lab|A2)) = S. Thus
GF(BFσ ,F∗|S\DF∗ (Labb∪(Lab|A2))

, UF∗(S,Labb ∪ (Lab|A2))) = GF(BFσ ,F∗|S,S),
which contains Lab′ = {(b,und)}, as required.

Case 3: S ⊆ A2. Then (Labb ∪ (Lab|A2))|S = Lab|S. Furthermore, S ∈ SCCs(F ′), so
by equation (1), there is a Lab′ ∈ GF(BFσ ,F ′|S\DF ′ (Lab)

,UF ′(S,Lab)) such that
Lab|S = Lab′∪LaboutF ′|S∩DF ′ (Lab)

. Thus (Labb∪(Lab|A2))|S = Lab′∪LaboutF ′|S∩DF ′ (Lab)
,

M. Cramer and J. Dauphin / Argumentation Label Functions

i o

I/O AF

(in,in,in)

i a o

I/O AF

(out,out,out)

i o

I/O AF

(und,und,und)

Figure 3. cgp-representation of the three constant labeling functions.

as required. Furthermore, as shown above, S \ DF ′(Lab) = S \ DF∗(Labb ∪
(Lab|A2)) and UF ′(S,Lab) = UF∗(S,Labb ∪ (Lab|A2)), so Lab′ ∈
GF(BFσ , F∗|S\DF∗ (Labb∪(Lab|A2))

,UF∗(S,Labb∪ (Lab|A2))), as required.

The following corollary directly follows from Theorem 1

Corollary 1. If LF1 and LF2 are cgp-representable, then LF1 ◦LF2 is cgp-representable.

4. Representability of Label Functions

In this section, we will categorize the twenty seven label functions into eleven functions
that are cgp-representable and sixteen functions that are not cgp-representable.

As we will show below, a label function is cgp-representable iff it is either a constant
function or maps und to und. This motivates the following definition:

Definition 25. We define the set Rep as the following set of labeling functions:

Rep= {(in,in,in),(out,out,out)}∪{(l, l′,und) | l, l′ ∈ Labs}

Theorem 2. Every function in Rep is cgp-representable.

Proof. We have already given the cgp-representations for four of those functions in the
Examples 1 and 2. We additionally have representations for the three constant functions
(in,in,in), (out,out,out) and (und,und,und) in Figure 3. The missing four functions
can be represented by combinations of these seven as follows:

• (in,in,und) = (out,in,und)◦ (out,out,und);
• (und,in,und) = (in,und,und)◦ (out,in,und);
• (out,und,und) = (out,in,und)◦ (in,und,und);
• (und,out,und) = (out,in,und)◦ (und,in,und).
Aside from the widely used semantics included in the set cgp, the stable semantics

is another well-known semantics which is also complete-based. Notice however that the
stable semantics does not allow for any und arguments, and thus no framework could
stable-represent a labeling function as defined in Def. 21, since having und as input
would automatically mean there is no extension in the corresponding standard AF, so no
output could be given. We can however define a similar notion over 2-valued labelings,
i.e. restricting the functions to only two possible inputs and outputs: in and out.

This restriction leaves us with only four different possible labeling functions, and an
interesting small result is that all of these are stable-representable. (out,in) is stable-
represented by the I/O AF in Figure 1 and (in,out) by the I/O AF on the left in Figure 2.

M. Cramer and J. Dauphin / Argumentation Label Functions

(in,in) and (out,out) are stable-represented by the I/O AFs in Figure 3, respectively
on the left and in the middle.

Proposition 5. The four 2-valued labeling functions (in,out),(out,in),(in,in) and
(out,out) are all stable-representable.

4.1. Unrepresentable Label Functions

In this subsection we establish that the sixteen labeling functions not included in Rep are
actually cgp-unrepresentable. We first consider the labeling functions (und,und,out)
and (out,und,out) with respect to the preferred and grounded semantics.

Lemma 1. The labeling functions (und,und,out) and (out,und,out) are cgp-
unrepresentable.

Proof. We show this using a proof by contradiction. Assume G = (A ,R, i,o) is an
input-output argumentation framework that cgp-represents either (und,und,out) or
(out,und,out). This means that in every complete, grounded and preferred labeling of
Fst(G,und), the output argument o is labeled out. We first show how to derive a con-
tradiction in the case of preferred. Let Lab be a preferred labeling of Fst(G,und), and
let E be the set of arguments labeled in by Lab. By Proposition 4 E is admissible w.r.t.
Fst(G,und). This implies that E is admissible w.r.t. Fst(G,out):

• Conflict-freeness of E w.r.t. Fst(G,out) follows from the fact that the only attack in
Fst(G,out) that is not present in Fst(G,und) is the attack from the special argument
b to the input argument i, but clearly b /∈ E.

• Self-defence of E w.r.t. Fst(G,out) follows from the fact that the only attack in
Fst(G,und) that is not present in Fst(G,out) is the self-attack on the input argu-
ment i, but clearly i /∈ E.

Now by Proposition 3, there exists a preferred labeling Lab′ of Fst(G,out) in which
every argument in E is labeled in. Since Lab(o) = out, some argument c labeled in by
Lab attacks o. But then c ∈ E, so Lab′(c) = in, so Lab′(o) = out. But this contradicts
the assumption that G represents (und,und,out) or (out,und,out) w.r.t. the preferred
semantics, because this would mean that every preferred labeling of Fst(G,out) labels o
as und.

Now we consider the case of the grounded semantics. By a simple transfinite in-
dution one can show that for every ordinal α , F α

Fst(G,und)(Labund)(i) = und (since i at-
tacks itself in Fst(G,und)). By Propositions 1 and 2, there exists an ordinal α such that
the grounded labeling of Fst(G,und) is F α

Fst(G,und)(Labund). We now show by transfinite

induction that for every ordinal β , F β

Fst(G,und)
(Labund)≤F β

Fst(G,out)
(Labund):

• β = 0: Trivial.

• β = 1: In this case F β

Fst(G,und)
(Labund) labels as in all arguments in A that are

unattacked, and F β

Fst(G,out)
(Labund) also labels all these arguments as in, and ad-

ditionally labels the special argument b as in. So clearly F β

Fst(G,und)
(Labund) ≤

F β

Fst(G,out)
(Labund).

M. Cramer and J. Dauphin / Argumentation Label Functions

• β = 2: In this case the in-labeled arguments are the same as in the case

β = 1 for both F β

Fst(G,und)
(Labund) and F β

Fst(G,out)
(Labund). Additionally, ev-

ery argument attacked by an unattacked argument from A is labeled out by
both F β

Fst(G,und)
(Labund) and F β

Fst(G,out)
(Labund), and F β

Fst(G,out)
(Labund) addi-

tionally labels the special argument i as out. So clearly F β

Fst(G,und)
(Labund) ≤

F β

Fst(G,out)
(Labund).

• β = γ +1 for γ ≥ 2: By the inductive hypothesis, we may assume that
F γ

Fst(G,und)
(Labund) ≤ F γ

Fst(G,out)
(Labund). By the definition of ≤, every argu-

ment labeled in by F γ

Fst(G,und)
(Labund) is also labeled in by F γ

Fst(G,out)
(Labund).

The fact that every argument in A has the same attackers in Fst(G,out) as in
Fst(G,und) together with the definition of F imply that every argument in A that
is labeled out by F γ+1

Fst(G,und)
(Labund) is also labeled out by F γ+1

Fst(G,out)
(Labund).

Since F γ+1
Fst(G,und)

(Labund)(i) = und, this implies that every argument that is labeled

out by F γ+1
Fst(G,und)

(Labund) is also labeled out by F γ+1
Fst(G,out)

(Labund). Similarly

one can show that every argument that is labeled in by F γ+1
Fst(G,und)

(Labund) is also

labeled in by F γ+1
Fst(G,out)

(Labund). Thus F β

Fst(G,und)
(Labund)≤F β

Fst(G,out)
(Labund).

• β is a limit ordinal: Suppose c is an argument such that F β

Fst(G,und)
(Labund)(c) =

in. This means that there is some γ < β such that F γ

Fst(G,und)
(Labund)(i) = in.

By induction hypothesis, F γ

Fst(G,out)
(Labund) = in, so F β

Fst(G,out)
(Labund) =

in. Thus every argument that is labeled in by F β

Fst(G,und)
(Labund) is also

labeled in by F β

Fst(G,out)
(Labund). Similarly every argument that is labeled

out by F β

Fst(G,und)
(Labund) is also labeled out by F β

Fst(G,out)
(Labund). Thus

F β

Fst(G,und)
(Labund)≤F β

Fst(G,out)
(Labund).

Since G represents either (und,und,out) or (out,und,out) w.r.t. the grounded seman-
tics, the output argument o is labeled out by the grounded labeling of Fst(G,und). So
F α

Fst(G,und)(Labund)(o) = out. But since F α

Fst(G,und)(Labund) ≤F α

Fst(G,out)(Labund), this
means that F α

Fst(G,out)(Labund)(o) = out. So the grounded labeling of Fst(G,out) la-
bels o as out, in contradiction to the assumption that G represents (und,und,out) or
(out,und,out) w.r.t. the grounded semantics.

Finally we consider the case of the complete semantics. Every prefered labeling is
a complete labeling and every AF has at least one prefered labeling. These two facts
together imply that whenever an input-output argumentation framework G represents
an labeling function LF w.r.t. the complete semantics, G also represents LF w.r.t. the
prefered semantics. So since the labeling functions (und,und,out) and (out,und,out)
are not prefered-representable, they are not complete-representable either.

Now we extend these results to cover all labeling functions not in Rep.

Theorem 3. The sixteen labeling functions not in Rep are cgp-unrepresentable.

M. Cramer and J. Dauphin / Argumentation Label Functions

Proof. In Lemma 1 we have already established that the labeling functions (und,und,out)
and (out,und,out) are cgp-unrepresentable. For the other fourteen labeling functions
not in Rep we show this result by showing that if one of them was representable, then
one of (und,und,out) or (out,und,out) would be representable too, which would be a
contradiction. For this purpose we show in the table below how each of these fourteen la-
beling functions not in Rep or mentioned in Lemma 1 can be composed with some of the
eleven cgp-representable labeling functions from Rep to define either (und,und,out) or
(out,und,out).

The second column of the following table presents for each label function mentioned
in the first column a proof in concize notation that shows why the label function in
question is cgp-unrepresentable. We explain how these proofs in concize notation should
be read through the example of the first proof presented in the table: If (in,in,out) were
cgp-representable, then the fact that (und,und,out) = (und,out,und) ◦ (in,in,out)
and that (und,out,und) is cgp-representable would imply that (und,und,out) is cgp-
representable by Corollary 1, which would contradict Lemma 1. So we can conclude that
(in,in,out) is cgp-unrepresentable.

Labeling function Reason for this labeling function being cgp-unrepresentable
(in,in,out) (und,und,out) = (und,out,und)◦ (in,in,out)
(in,out,in) (out,und,out) = (out,und,und)◦ (in,out,in)
(in,out,out) (out,und,out) = (und,out,und)◦ (in,out,out)◦ (out,in,und)
(in,und,in) (out,und,out) = (out,in,und)◦ (in,und,in)
(in,und,out) (out,und,out) = (out,out,und)◦ (in,und,out)
(out,in,in) (out,und,out) = (out,und,und)◦ (out,in,in)◦ (out,in,und)
(out,in,out) (out,und,out) = (und,out,und)◦ (out,in,out)
(out,out,in) (und,und,out) = (out,und,und)◦ (out,out,in)
(out,und,in) (out,und,out) = (out,out,und)◦ (out,und,in)
(und,in,in) (out,und,out) = (out,in,und)◦ (und,in,in)◦ (out,in,und)
(und,in,out) (und,und,out) = (und,out,und)◦ (und,in,out)
(und,out,in) (out,und,out) = (out,out,und)◦ (und,out,in)◦ (out,in,und)
(und,out,out) (out,und,out) = (und,out,out)◦ (out,in,und)
(und,und,in) (und,und,out) = (out,in,und)◦ (und,und,in)

5. Impossibility of Flattening Weak Attacks

Various extensions of argumentation frameworks have been studied in the literature. One
fruitful approach to studying such extensions is the flattening methodology, in which
extensions of argumentation frameworks are mapped to standard argumentation frame-
works through a flattening function that is faithful with respect to the semantics of the ex-
tended argumentation frameworks. In this section we show how the theory of label func-
tions can be used prove impossibility results concerning flattenings of certain extensions
of argumentation frameworks.

Multiple authors have considered extending argumentation frameworks with a sup-
port relation in addition to an attack relation. Frameworks with both an attack and a
support relation are called bipolar argumentation frameworks (BAFs), and multiple ap-

M. Cramer and J. Dauphin / Argumentation Label Functions

proaches to formalizing their semantics have been studied in the literature, for example
deductive support [10], necessary support [15] and evidential support [16]. We briefly
sketch the deductive support approach. The intuitive meaning of a deductive support
from argument a to argument b is that whenever a is accepted, b must be accepted too.
The definition of argumentation semantics for AFs has been adapted to a definition of
semantics of BAFs that formalize this intuitive interpretation of deductive support [10].
Later it was shown that the flattening function that replaces every deductive support from
a to b by a pair of attacks, namely from b to an auxiliary argument Z(a,b,) and from Z(a,b,)
to a, is faithful with respect to these semantics, i.e. that flattening a BAF to an AF and
then applying a standard argumentation semantics to the resulting AF gives the same
result as directly applying the corresponding deductive support semantics to the BAF [7].

In this section we will study an extension of argumentation frameworks with a weak
attack relation. Note that for the formal definition of an extended framework, it is ir-
relevant whether the second relation that gets added to the standard attack relation is a
relation of support or a second attack relation. This motivates the following definitions:

Definition 26. A two-relation framework is a triple (A ,R,T) such that R ⊆A ×A
and T ⊆A ×A .

Definition 27. A two-relation semantics is a function σ that maps any two-relation
framework B = (A ,R,T) to a set σ(B) of labelings of B. The elements of σ(B) are
called σ -labelings of B.

Definition 28. Let σ be an argumentation semantics and let σ ′ be a two-relation seman-
tics. We say that σ ′ extends σ iff for every two-relation framework B = (A ,R,T) with
T = /0, σ ′(B) = σ((A ,R)).

The semantics that have been defined for BAFs with a deductive support relation
(and also the semantics for a necessary support relation) extend the corresponding se-
mantics of standard AFs. This fact directly follows from the fact that BAFs can be flat-
tened to AFs in a way that is faithful with respect to these BAF semantics.

An important feature of the flattening of the deductive support relation that we in-
formally sketched above is that every support between two arguments is flattened in an
analogous way and the support relation does not have any additional (potentially non-
local) effect on the attack relation of the resulting AF. This feature can be formalized as
follows:

Definition 29. Let B=(A ,R,T) be a two-relation framework, and let G=(A ′,R ′, i,o)
be an I/O AF. The G-flattening of B is the AF flatG(B) = (A ∗,R∗), where A ∗ :=
A ∪ {(a,b,c) | (a,b) ∈ T and c ∈ A ′ \ {i,o}} and R∗ := R ∪ {((a,b,c),(a,b,c′) |
(a,b) ∈ T ,(c,c′) ∈R ′ and c,c′ /∈ {i,o}}∪{(a,(a,b,c)) | (a,b) ∈ T and (i,c) ∈R ′}∪
{((a,b,c),a) | (a,b)∈T and (c, i)∈R ′}∪{(b,(a,b,c)) | (a,b)∈T and (o,c)∈R ′}∪
{((a,b,c),b) | (a,b) ∈T and (c,o) ∈R ′}.

Definition 30. Let σ be an argumentation semantics and let σ ′ be a two-relation se-
mantics that extends σ . We say that σ ′ admits a uniform local flattening w.r.t. σ iff
there exists an I/O AF G such that for every two-relation argumentation framework B,
σ ′(B) = σ(flatG(B)).

M. Cramer and J. Dauphin / Argumentation Label Functions

We now consider a way of interpreting two-relation frameworks in which the second
relation is not a support relation, but rather a weak attack relation. The intention behind
our notion of a weak attack is that when an argument a is weakly attacked by an argu-
ment b, one can accept a without being able to defend a against the weak attack from
b, but that in all other respects (such as conflict-freeness), weak attacks behave like the
standard attacks of abstract argumentation, which we from now on call strong attacks to
distinguish them clearly from weak attacks. In the labeling-based approach this means
that the local effect that weak attacks from arguments with certain labels have on other
arguments is generally analogous to the local effect of strong attacks, with the only ex-
ception that an argument can be labeled in even though it is weakly attacked by an argu-
ment labeled und. So we need the following adaptation of Definition 4 (the abbreviation
“s/w” stands for “strong/weak”):

Definition 31. Let B = (A ,R,T) be a two-relation framework, and let Lab be a label-
ing of B.

• An argument a ∈ A is called s/w-legally in w.r.t. Lab iff every argument that
strongly attacks a is labeled out by Lab and every argument that weakly attacks a
is labeled either out or und.

• An argument a ∈ A is called s/w-legally out w.r.t. Lab iff some argument that
strongly or weakly attacks a is labeled in by Lab.

• An argument a ∈ A is called s/w-legally und w.r.t. Lab iff no argument that
strongly or weakly attacks a is labeled in by Lab and some argument that strongly
attacks a is labeled und by Lab.

Now we define the semantics for two-relation frameworks with strong and weak
attacks analogously as for standard AFs:

Definition 32. Let B = (A ,R,T) be a two-relation framework, and let Lab be a label-
ing of B.

• Lab is an s/w-complete labeling of B iff every argument that Lab labels in is s/w-
legally in w.r.t. Lab, every argument that Lab labels out is s/w-legally out w.r.t.
Lab, and every argument that Lab labels und is s/w-legally und w.r.t. Lab.

• Lab is an s/w-grounded labeling of B iff Lab is an s/w-complete labeling of B in
which the set of in-labeled arguments is minimal w.r.t. set inclusion.

• Lab is an s/w-preferred labeling of B iff Lab is an s/w-complete labeling of B in
which the set of in-labeled arguments is maximal w.r.t. set inclusion.

One can easily see that these three semantics extend the corresponding semantics of
standard AFs.

The following theorem establishes that the weak attack relation cannot be flattened
to the strong attack relation in a uniform local way:

Theorem 4. Let σ ∈ cgp. Then s/w-σ does not admit a uniform local flattening w.r.t. σ .

Proof. Suppose for a contradiction that s/w-σ does admit a uniform local flattening w.r.t.
σ , i.e. there is an I/O AF G such that for every two-relation argumentation framework B,
s/w-σ(B) = σ(flatG(B)).

M. Cramer and J. Dauphin / Argumentation Label Functions

Consider the following three two-relation frameworks:

Bin := ({i,o}, /0,{(i,o)})

Bout := ({i,o,b},{(b, i)},{(i,o)})

Bund := ({i,o},{(b,b),(b, i)},{(i,o)})

From Definition 20, one can easily see that for L ∈ Labs, Fst(G,L) = flatG(BL) (up
to isomorphism; auxiliary arguments may have different names in the two frameworks).
Now from Definition 32, one can easily see that

σ(Fst(G,in)) = s/w-σ(Bin) = {{(i,in),(o,out)}},

σ(Fst(G,out)) = s/w-σ(Bout) = {{(i,out),(o,in),(b,in)}}, and

σ(Fst(G,und)) = s/w-σ(Bund) = {{(i,und),(o,in),(b,und)}}.

So G represents (out,in,in) w.r.t. σ , contradicting Theorem 3.

6. Related Work

In the work of Baroni et al. [1], a similar methodology is introduced, where argumenta-
tion frameworks are partitioned, allowing for partitions to be evaluated locally. This local
evaluation function needs to condition on the potential statuses of attackers from outside
the partition, but does not need to consider the whole rest of the framework. From their
results on decomposability of semantics, one could derive a result similar to our Theo-
rem 1 but restricted to finite argumentation frameworks. We however chose to consider
infinite argumentation frameworks as well in our work, as it grants more weight to the
unrepresentability result derived in Section 4.

The work of Rienstra et al. [17] considers the partitioning of argumentation frame-
works such that different semantics are applied to different partitions. In these cases,
when evaluating the acceptance status of arguments within a partition, only the outside
arguments which are the source of an attack targeting an argument inside that partition
need to be considered, using a similar input/output methodology.

Enrichments of argumentation frameworks, such as the AFRA [3] and the BAF [9]
have been interpreted in some cases using a flattening approach [7,6] which expresses
higher-level relations in terms of auxiliary arguments and attacks, which can replace
the original relation in a local fashion. Our results would prove useful when devising
flattenings for existing or future enrichments, or showing no such flattening is possible.

7. Future Work

In future work, one could generalize the concept of a label function by dropping the re-
quirement that the output argument always has the same label; these generalized label
functions would therefore have a set of possible labels as their output value. Additionally
one could drop the distinction between input argument and output argument, thus allow-

M. Cramer and J. Dauphin / Argumentation Label Functions

i1 o1
a

d

I/O AF

Figure 4. A semi-stable representation of the cgp-unrepresentable function (out,in,out).

i2 e o2

I/O AF

(und,out,und)

i1b o1
a

c
d

i2 e o2

I/O AF

Composed I/O AF with out as input.

Figure 5. Failure of composition with semi-stable semantics. When the I/O AF from Figure 4 is composed
with the I/O AF on the left, we obtained the I/O AF depicted on the right, which however does not produce a
consistent label for o2 when the input is out.

ing an external effect on both arguments and looking at the set of label pairs that these
two arguments may take over the different extensions. This would yield to a generalized
theory of binary relations between arguments that have a local effect expressible in the
3-label approach. While there are only 27 label functions, the number of such different
relations between arguments is 236, so the classification according to their representabil-
ity is likely to be much more complex. Such a classification would allow one to extend
the impossibility result from Section 5 to other enrichments of abstract argumentation
frameworks, or provide insights on how to flatten new enrichments.

Another line of future work would be to investigate the representability with respect
to other semantics such as semi-stable [8], stage [19], stage2 [14], CF2 [4], and the more
recent SCF2 [12] and weakly complete [5]. We briefly briefly present some preliminary
findings for representability with respect to the semi-stable semantics.

The semi-stable semantics [8] has been often criticized for not satisfying a number of
standard principles such as directionality [18]. There is however the interesting fact that
some functions which are cgp-unrepresentable turn out to be semi-stable-representable.

Example 3. Consider the I/O AF depicted in Figure 4. When the input argument i1 is
labeled in, the output argument o1 is forced to be out, since it is directly attacked by i1.
In the case of und input, o1 cannot be in, and by the nature of the semi-stable semantics
which minimizes the und labeling, the only option is to have a being in and thus o1
is again out. Lastly we consider the case that the input is out: While in this case the
preferred semantics would give us two labelings with either o1 or a being in, the semi-
stable semantics will produce a single labeling with the o1 labeled in, because this way
the label und can be avoided completely, even for the self-attacking argument d. So this
I/O AF represents the (out,in,out) function, which is cgp-unrepresentable.

While the semi-stable semantics might be able to represent more functions, the fact
that the semi-stable semantics does not satisfy the directionality principle (see [18])

M. Cramer and J. Dauphin / Argumentation Label Functions

brings about other issues, notably a lack of compositionality, as illustrated by a counter-
example in Figure 5. On the left, we have an I/O AF which semi-stable-represents the
function (und,out,und). When composed with the I/O AF from Figure 4, we obtain the
framework on the right. In that composed framework, when the input is out, we now
obtain two extensions, namely one where o1 is in, and one where a is in. This second
extension is now possible, because when o1 is in, we have o2 labeled und, while when
a is in, we have d labeled und, so both of these options minimize the set of und-labeled
arguments. Since these two labelings have different labels for o2, this composed I/O AF
does not represent any labeling function.

Since our methodology of characterising labeling functions via composition would
not work in the case of semi-stable, we leave such an analysis for future work.

8. Conclusion

In this paper, we formally introduce labeling functions, and address the question of which
functions are representable with an argumentation framework, focusing on the complete,
grounded and preferred semantics, for which the labeling approach has been widely stud-
ied. We provide a proof that two representations of labeling functions can be composed
to yield the composed labeling function, and use this finding to categorize the twenty
seven label functions into eleven label functions that are representable and sixteen that
are unrepresentable with respect to these three semantics. We also briefly investigate the
case of the stable semantics, which is quite straightforward since it only allows for two
different labels. We then discuss how the label function approach can be used to prove
an impossibility result about the flattening approach for enrichments of abstract argu-
mentation frameworks. We briefly investigate the case of the semi-stable semantics, as
it allows for the representation of some functions which are not representable with re-
spect to the other semantics. However due to the non-directional nature of the semantics,
the composability result does not hold, hindering generalizations as done for the other
semantics.

References

[1] Pietro Baroni, Guido Boella, Federico Cerutti, Massimiliano Giacomin, Leendert Van Der Torre, and
Serena Villata. On the input/output behavior of argumentation frameworks. Artificial Intelligence,
217:144–197, 2014.

[2] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. An introduction to argumentation se-
mantics. The Knowledge Engineering Review, 26(4):365–410, 2011.

[3] Pietro Baroni, Federico Cerutti, Massimiliano Giacomin, and Giovanni Guida. Afra: Argumentation
framework with recursive attacks. International Journal of Approximate Reasoning, 52(1):19–37, 2011.

[4] Pietro Baroni, Massimiliano Giacomin, and Giovanni Guida. SCC-recursiveness: a general schema for
argumentation semantics. Artificial Intelligence, 168(1):162–210, 2005.

[5] Ringo Baumann, Gerhard Brewka, and Markus Ulbricht. Revisiting the foundations of abstract
argumentation–semantics based on weak admissibility and weak defense. Proceedings of the Thirty-
Fourth AAAI Conference on Artificial Intelligence (2020), 2020.

[6] Guido Boella, Dov M Gabbay, Leendert van der Torre, and Serena Villata. Meta-argumentation mod-
elling I: Methodology and techniques. Studia Logica, 93(2-3):297–355, 2009.

[7] Guido Boella, Dov M Gabbay, Leendert WN van der Torre, and Serena Villata. Support in Abstract
Argumentation. COMMA, 216:111–122, 2010.

M. Cramer and J. Dauphin / Argumentation Label Functions

[8] Martin Caminada. Semi-stable semantics. In Proceedings of the 2006 conference on Computational
Models of Argument: Proceedings of COMMA 2006, pages 121–130. IOS Press, 2006.

[9] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. On the acceptability of arguments in bipo-
lar argumentation frameworks. In European Conference on Symbolic and Quantitative Approaches to
Reasoning and Uncertainty, pages 378–389. Springer, 2005.

[10] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. Coalitions of arguments: A tool for handling
bipolar argumentation frameworks. International Journal of Intelligent Systems, 25(1):83–109, 2010.

[11] Marcos Cramer and Jérémie Dauphin. Argumentation Label Functions - Technical Report.
https://orbilu.uni.lu/bitstream/10993/43078/1/report.pdf. University of Luxembourg, 2020.

[12] Marcos Cramer and Leendert van der Torre. SCF2 – an argumentation semantics for rational human
judgments on argument acceptability. Proceedings of the 8th Workshop on Dynamics of Knowledge and
Belief (DKB-2019) and the 7th Workshop KI and Kognition (KIK-2019), 2019.

[13] Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reason-
ing, logic programming and n-person games. Artificial Intelligence, 77(2):321–357, 1995.

[14] Wolfgang Dvořák and Sarah Alice Gaggl. Stage semantics and the scc-recursive schema for argumen-
tation semantics. Journal of Logic and Computation, 26(4):1149–1202, 2014.

[15] Farid Nouioua and Vincent Risch. Argumentation frameworks with necessities. In International Con-
ference on Scalable Uncertainty Management, pages 163–176. Springer, 2011.

[16] Nir Oren and Timothy J Norman. Semantics for evidence-based argumentation. Computational Models
of Argument, 2008.

[17] Tjitze Rienstra, Alan Perotti, Serena Villata, Dov M Gabbay, and Leendert van der Torre. Multi-sorted
argumentation. In International Workshop on Theorie and Applications of Formal Argumentation, pages
215–231. Springer, 2011.

[18] Leendert van der Torre and Srdjan Vesic. The principle-based approach to abstract argumentation se-
mantics. In Pietro Baroni, Dov Gabbay, Massimiliano Giacomin, and Leendert van der Torre, editors,
Handbook of Formal Argumentation. College Publications, 2018.

[19] Bart Verheij. Two Approaches to Dialectical Argumentation: Admissible Sets and Argumentation
Stages. In In Proceedings of the biannual International Conference on Formal and Applied Practical
Reasoning (FAPR) workshop, pages 357–368. Universiteit, 1996.

