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Research into the genetic and environmental factors behind complex trait variation has traditionally
been segregated into distinct scientific camps. The reductionist approach aims to decrypt pheno-
typic variability bit by bit, founded on the underlying hypothesis that genome-to-phenome relations
are largely constructed from the additive effects of their molecular players. In contrast, the systems
approach aims to examine large-scale interactions of many components simultaneously, on the
premise that interactions in gene networks can be both linear and non-linear. Both approaches
are complementary, and they are becoming increasingly intertwined due to developments in
gene editing tools, omics technologies, and population resources. Together, these strategies are
beginning to drive the next era in complex trait research, paving the way to improve agriculture
and toward more personalized medicine.
Over the past century, great strides have been made toward

identifying and understanding the genetic and environmental

factors affecting complex traits. This progress has come

from divergent though complementary genetic techniques

that address similar biological hypotheses from different an-

gles: the study of humans and crops versus model organisms,

forward versus reverse genetics, holistic versus additive

models, and so forth. Results from each of these approaches

include the identification of thousands of variants influencing

complex traits (Kingsmore et al., 2007) and the mechanistic

delineation of hundreds of molecular pathways (Kanehisa

et al., 2014). This knowledge has led to numerous practical

benefits, ranging from the development of vaccines for trans-

missible diseases to drug treatments, dietary, and lifestyle

changes for metabolic diseases to the rational modification

of crops and livestock for agricultural needs. However, our

ability to predict when, where, and how genetic, environ-

mental, or gene-by-environment interactions (G 3 E) will lead

to specific phenotypic outcomes is still limited, and few ratio-

nally generated cures or preventative strategies are available

for common diseases such as cancer and diabetes. In large

part, this shortcoming stems from the challenge of identifying

key genetic and environmental regulators that can be targeted

by drugs, lifestyle changes, or genetic modifications. For de-

cades, the identification of new targets and the implementa-

tion of treatments have been hampered by the conceptual

complexity and diversity of genetic mechanisms. This obstacle

is now being overcome by a combination of improvements in

technical capability, new approaches in scientific thought,

and increased resource sharing. With this in mind, how can

we use these developments to find new medical and biological

breakthroughs? To answer this, we must first consider the

current state of research into complex traits and how it has

evolved over time (Figure 1A).
Developments in Complex Trait Analysis
Traditionally, studies on complex traits could be separated into

two distinct categories: those using forward or reverse genetics

(Figure 1B). Both seek to answer fundamental and longstanding

questions on how genes, the environment, and G 3 E factors

influence complex traits. In forward genetics, a variable pheno-

type is measured and the upstream causal genetic variants are

identified, whereas reverse genetics starts at the gene level

and searches for the downstream phenotypic impact. Pioneer-

ing genetics studies relied on the forward-genetics paradigm:

natural populations and later, randomly mutagenized stocks

were screened for variant phenotypes and were then succes-

sively backcrossed to identify the causal locus. In the 1970s,

research platforms began to shift toward reverse genetics as

the first targeted mutagenesis techniques were developed, and

by the 1990s, this concept had come to the forefront in the study

of complex traits. This capability of performing gain- or loss-of-

function (G/LOF) studies on target genes allowed the rational

and mechanistic examination of genetic hypotheses gene by

gene and potentially even the reverse engineering of complex

traits. Consequently, many researchers began to advocate

for—and generate—comprehensive genetic libraries of G/LOF

tools in a variety of organisms, including yeast (Winzeler et al.,

1999), Arabidopsis (Alonso et al., 2003), Drosophila (Ryder

et al., 2007), C. elegans (Kamath et al., 2003; Rual et al., 2004),

and mice (Auwerx et al., 2004; Skarnes et al., 2011). Unfortu-

nately, the reality of using these resources to efficiently and

comprehensively identify novel variants behind complex traits

has been undermined by two major factors. First, we now

know that much natural trait variation is driven by both the addi-

tive and non-additive interaction of dozens or more variants

(Bogardus et al., 2002; Clark, 2000) (Figure 1C). Second, major

genetic alterations, such as those typically induced in G/LOF

studies, are a poor model for the common variants influencing
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Figure 1. Broad Summary of Concepts and

Developments in Genetic Analysis
(A) Relative timeline of complex trait analysis,
listing some key landmarks and their approximate
dates.
(B) (Left) The forward-genetics approach relies
on identifying divergent phenotypes and then
searching for the causative genetic factors,
generally through QTL analysis or GWAS. (Right)
The reverse-genetics approach relies onmodifying
a gene (or genes) of interest and then scanning for
impact on downstream traits, often by G/LOF
modifications.
(C) Single genes can fully regulate a phenotype
(e.g., sickle-cell trait), or they can play a role in
more complex phenotypes for part of the popula-
tion (e.g., PPARg and metabolic disease; Deeb
et al., 1998). However, complex trait variation also
comes from epistasis (e.g., mutations in p53 and
other genes together are necessary to develop
cancer; Soussi et al., 1994). To fully explain heri-
tability and complex trait variation for an entire
population (e.g., diabetes), it is likely that we will
need the ability to model and test arbitrarily com-
plex interaction of dozens or more variants simul-
taneously. In this cartoon, examples are given in
which one, two, ormany genesmust bemodified in
order to change the observed phenotype (color,
monogenic; spots, oligogenic; or size, polygenic).
trait variation in natural populations, which are generally more

subtle (Chakravarti et al., 2013; MacArthur et al., 2012). Minor

variants, gene 3 gene, and G 3 E interactions can be examined

mechanistically using modern G/LOF tools, yet the exponential

increase in the number of such possibilities as complexity ex-

pands necessitates the use of prior hypotheses instead of

unbiased screens, particularly for vertebrate research. Finally,

mechanisms that are uncovered in G/LOF models may not

necessarily be generalizable to natural populations, whether in

humans or in agriculture. These limitations of G/LOF models

were recognized from the outset (Capecchi, 2005), but potential

alternatives—particularly, population genetics—suffered from

strong deficits as well.

In parallel to the developments in forward- and reverse-ge-

netics techniques, progress continued steadily on molecular

measurement technologies that expanded the scope and depth

of genetic analysis. The debut of what has become the ‘‘omics

revolution’’ began with massive investments in large-scale

nucleotide sequencing (Smith and Hood, 1987), biological appli-

cations of mass spectrometry (Fenn et al., 1989; Wasinger et al.,

1995), and array technology (Schena et al., 1995). By the late

1990s, the genomic and transcriptomic tools were sufficiently

refined and affordable that small collaborative groups had the

capability to generate and test hypotheses that required full

pathway analysis by using comprehensive genomic and tran-
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scriptomic datasets. While the resulting

and unprecedentedly thorough data sets

aided both population and G/LOF re-

search, they particularly boosted the

population approach. In theory, omics

coverage could provide the capacity to

identify causal gene networks wholesale
through data-driven approaches—even directly in humans.

Indeed, initial results using this approach to study common com-

plex disorders were promising, as exemplified by the identifica-

tion of variants in two genes, PPARg (Deeb et al., 1998) and

MC4R (Yeo et al., 1998), causal for metabolic disease. However,

human population studies examining such genome-to-phenome

links (e.g., genome-wide association studies [GWAS]) ran into

several major barriers, among them the issues of linkage disequi-

librium, commonly detected SNPs having small effect sizes,

poor long-term environmental control, and the perennial issue

of ‘‘missing heritability’’ (Goldstein, 2009; Lander, 2011). Further-

more, while genotype information is fairly consistent across time

and tissue, the ephemeral nature of transcripts, proteins, and

metabolites hindered detailed mechanistic analyses in human

populations due to the difficulty or impossibility—depending on

tissue—of obtaining biopsies. In retrospect, we have now seen

that human GWAS led only to a slow trickle of discoveries be-

tween novel gene variants and complex traits (McCarthy et al.,

2008).

In principal, some of these issues could be bypassed by

analyzing diverse populations of model organisms, the genera-

tion and application of which are relatively similar cross-species

(Flint and Mackay, 2009) (Figure 2A). Such populations fall

broadly into two groups: those of genetically unique individuals

such as F2s and outbreds and those in specific and reproducible



Figure 2. Model Population Development

and Analysis
(A) A summary and basic breeding schema for
major population types. F2s are generated ad hoc,
which can be studied or crossed and inbred for
20+ generations to generate recombinant inbred
lines (RIL). F2s can be backcrossed to generate
congenic, consomic, or conplastic strains.
(B) Heritability should be considered as a function
of gene-environment interactions, especially for
complex traits influenced by environmental fac-
tors. (Upper-left) Across a diverse GRP, the
observed trait is significantly elevated in ‘‘Envi-
ronment B.’’ (Lower-left) Despite the difference in
trait expression across environments, the herita-
bility is similar when groups are segregated,
though it plummets when the groups are com-
bined. If the environmental difference can be
controlled and groups separated, as here, the
environment and G 3 E factors can be calculated
by two-way ANOVA. (Right) When the same data
are displayed as strain averages, the heritability
drop can be visualized. Within either environment,
variability due to genotype (y axis) is far lower
than the error within a genotype (error bars).
When these data are compressed without respect
to environment, the cross-genotype variance
compared to within-genotype variance decreases,
hence the drop in observed heritability.
(C) A broad overview of relative species particu-
larities and strengths for the most common model
organisms in population genetics. The suitability
of any model also depends substantially on the
question to be addressed and specific experi-
mental design.
genetic reference populations (GRPs). However, the imple-

mentation of these concepts during the early years of high-

throughput sequencing and microarray transcriptomics was

hindered by small cohort sizes and the limited selection of

ready-made GRPs (Williams et al., 2001). The earliest GRPs,

such as the BXD mice (Taylor et al., 1973), had been developed

and utilized decades previously, primarily for forward-genetics

analyses. However, such early studies often linked phenotypic

variants to broad quantitative trait loci (QTLs) containing dozens

to hundreds of candidate genes; thus, the specific causative

genes were rarely identified (Flint et al., 2005). This shortcoming

could be largely solved by analyzing larger populations and by

improving recombination density (Darvasi and Soller, 1995), yet

the development of GRPs is expensive and can take many years

to generate, particularly in vertebrates. Thus, little development

was done on expanding model organism populations—even in

invertebrates—until technological advances in omics and the

shortcomings (and benefits) of human population research had

been well-recognized. Since then, a diverse collection of GRPs
C

has been developed across many model

organisms that can simulate many as-

pects of the genetic complexity of natural

populations (human, animal, or plant) but

in controlled settings (Churchill et al.,

2004; Kover et al., 2009; Mackay et al.,

2012) (Table 1).

In addition to solving some of the key is-

sues of human cohort studies, including

sample collection and long-term environmental control, model

populations can also be used to address longstanding genetics

questions. For instance, complex traits that are strongly influ-

enced byG3 E factors may lead to incorrect calculations stating

that these traits are not highly heritable, when in fact the herita-

bility may be influenced by genes modulated by variable but un-

known environmental factors (Figure 2B). When selecting which

model organism (or model organisms) to examine, many trade-

offs must also be considered, including: (1) speed, expense,

efficiency, and technical concerns such as recombination events

and self-fertilization or inbreeding depression; (2) ability to per-

form tissue and time-specific molecular phenotyping; (3) avail-

ability of gene-editing tools/libraries; (4) availability of population

resources; (5) similarity to humans, agriculture, or livestock; and

(6) the resource community surrounding the model (Figure 2C).

Additionally, certain model organisms can provide unique ca-

pacity for study designs that would be infeasible or even impos-

sible in other species. For example, one recent study exploited

genetically diverse yeast to create sets of millions of individuals
ell 162, July 2, 2015 ª2015 Elsevier Inc. 25



Table 1. Landmark Dates and Papers in the Generation of Model Populations, along with Key Populations or First Populations in a

Variety of Species

Date Resource Organism Reference

Wild-Type (All)

�1866 F2 intercross Pea G.J. Mendel

�1909 Inbred lines Mouse C.C. Little

1959 Recombinant inbred (CXB) Mouse (Bailey, 1981)

1971 Recombinant inbred (BXD) Mouse (Taylor et al., 1973)

1982 Recombinant inbred (BXH/HXB) Rat (Pravenec et al., 1989)

1984 Diversity panel (N/Nih) Rat (Li and Lumeng, 1984)

1988 Recombinant inbred (WSxM13) Corn (Burr et al., 1988)

1996 Recombinant inbred (WSxM13) Arabidopsis (Liu et al., 1996)

1997 Recombinant inbred (Rx2b) Drosophila (Nuzhdin et al., 1997)

2000 Chromosome substitution Mice (Nadeau et al., 2000)

2001 Recombinant inbred (BOxRC301) Caenorhabditis (Ayyadevara et al., 2001)

2002 Recombinant inbred Soybean (Yuan et al., 2002)

2003 Recombinant inbred Barley (Arru et al., 2003)

2004 Advanced recombinant inbred (BXD) Mouse (Peirce et al., 2004)

2004 Recombinant inbred (LXS) Mouse (Williams et al., 2004)

2004 Advanced recombinant inbred (collaborative cross) Mouse (Churchill et al., 2004)

2005 Diversity panel (heterogeneous stock) Caenorhabditis (Sivasundar and Hey, 2005)

2006 Diversity panel (heterogeneous stock) Mouse (Valdar et al., 2006)

2008 Diversity panel (1001 Genomes Project) Arabidopsis (Ossowski et al., 2008)

2009 Advanced recombinant inbred (MAGIC) Arabidopsis (Kover et al., 2009)

2009 Advanced recombinant inbred (N2xCB4856) Caenorhabditis (Rockman and Kruglyak, 2009)

2010 Chromosome substitution Rice (Xu et al., 2010)

2010 Diversity panel (hybrid mouse diversity panel) Mouse (Bennett et al., 2010)

2011 Recombinant inbred (four-way cross) Yeast (Cubillos et al., 2011)

2012 Diversity panel (DGRP) Drosophila (Mackay et al., 2012)

2012 Advanced recombinant inbred (DSPR) Drosophila (King et al., 2012)

While the technical ability to generate most of these systems has existed for decades, it is only within the last �15 years that they have gained prom-

inence, due primarily to developments in omics technologies. All dates are approximate, given that it can take many years between initial population

conceptualization and their first publication.
that in turn display gene expression from very low (akin to

‘‘knockouts’’) to average (akin to ‘‘wildtype’’) to very high (akin

to ‘‘transgenic overexpression’’)—and everywhere in between

(Albert et al., 2014). In such extensive populations, nearly all

genes display very strong levels of variability. Moreover, the po-

wer to detect QTLs depends largely on the variance of the traits

of interest. Thus, this approach (dubbed extreme QTL, or

‘‘X-QTL,’’ mapping) increases both the scale and scope of find-

ings as compared using smaller cohorts. However, two reasons

limit the generation of X-QTLs in more complex organisms. The

first is due to scale, as analyzing millions of individuals remains

logistically and economically prohibitive in most organisms,

and the second due to technique, as the expression of any

gene can be examined visually in yeast (and C. elegans) by

tagging target genes with green fluorescent protein (GFP). As

such, gene expression may be assessed across millions of indi-

viduals visually, groups may be separated into a few clusters

based on expression, and omics analysis can be performed

only on these subsets. For more complex organisms, such as
26 Cell 162, July 2, 2015 ª2015 Elsevier Inc.
mice, omics analyses would be necessary for all millions of indi-

viduals to capture the full spectrum of variance.

Model populations can also address many of the shortcomings

of studies using G/LOF models or single inbred lines. For in-

stance, early drug trials in model organisms are predominantly

performed as experiments with a genotypic n = 1. The reality of

complex trait genetics, however, means that even a reproducible

finding in one individual may not apply in another. For example,

had researchers exclusively used the DBA/2J mouse strain in

place of the prototypical C57BL/6J, they would have concluded

that morphine is a non-addictive and inefficient painkiller (Elmer

et al., 2010). Examples like this have led to a recognition that

genetic diversity must be considered at all steps from target iden-

tification to final outcome, an approach that is beginning to be

implemented medically (Barretina et al., 2012) and that is starting

to assist in the design of compounds that are highly effective in

particular, defined subsets of patients (e.g.,CFTR variant-specific

drug treatments for cystic fibrosis; Ledford, 2012). However,

simplified models remain essential: early drug screens of dozens



Figure 3. A Summary of a Few Study De-

signs Using Cross-Model and/or Cross-

Species Approaches
(A) Conceptual schematic of G/LOF screenings
performed in simpler model organisms (e.g.,
Drosophila), which may be used to generate tar-
geted hypotheses for G/LOF studies in more
complex (e.g., mammalian) models. These results
may then provide targeted hypotheses for valida-
tion in human GWAS.
(B) Cross-model example of population studies
benefitting from one-another. QTL results do not
indicate a specific gene, and equivalent GWAS
results, displayed as a Manhattan plot, would not
approach significance on a genome-wide scan.
Furthermore, candidate SNPs in GWAS may be in
linkage disequilibrium. The complementarity of
independent population studies can often be
applied across species by comparing syntenic
regions.
(C) Conceptual approach of gene transfer. Natural
genetic pathways that allow certain plants to resist
stresses such as drought or disease may poten-
tially be translated into other species via trans-
genesis.
of novel compounds to treat an illness cannot be efficiently per-

formed if they are each thoroughly tested in extensive GRPs.

These tradeoffs between comprehensive genetic models (which

may be excessively complex) and simplified models (which may

be oversimplified) must be considered at each stage of the

research process. This realization is beginning to lead to the com-

plementary implementation of these approaches throughout the

pipeline of complex trait analysis.

Complementary Approaches in Complex Trait Genetics
The parallel expansion of gene editing capabilities, omics tech-

nologies, and population resources has created the capability

to implement experiments incorporating mechanistic in vitro

experiments, comprehensive studies in G/LOF organisms and

model populations, and research in natural populations. This

complementarity is multidirectional. In one way, in vitro mecha-

nistic studies can provide detailed hypotheses for in vivo verifi-

cation using reductionist models, then tested in diverse genetic

backgrounds for potential interaction effects of the variant, and

finally examined outside of the laboratory setting. Conversely,

population studies—often beset by false discovery—may use

G/LOF models to distinguish several potential causal factors or

to obtain detailed mechanistic understanding. In general, study

design can also be streamlined by considering complementary

cross-species techniques. For instance, the de novo identifica-

tion of gene-phenotype links can be readily established using un-
C

biased screens in invertebrates, thus

providing specific hypotheses for G/LOF

work in mammals—and eventually for

the clinic (Figure 3A). Population studies

as well may benefit from cross-species

analysis—from GRP to GWAS or vice

versa—such as in assisting the identifica-

tion of causal genes under a QTL or within

linkage disequilibrium (Figure 3B). Finally,
it is not fundamentally necessary for the target genes, or even

mechanisms, to be conserved across species to derive utility

from a cross-species or cross-model approach. Discovery of

unique aspects of an organism can be as informative as the

commonalities, such as the key differences in atherosclerosis

development between mice and humans (Jiang et al., 1992).

Furthermore, particularly for agriculture, the identification of

species-specific genes andmechanisms can also assist in trans-

genic development of crops, which are resistant to particular

diseases or environmental conditions (Figure 3C).

The power of these combined approaches to complex trait

analysis can be illustrated by a few recent studies. For instance,

population research in any organism can be used to identify

gene-phenotype relationships en masse. However, while only a

few gene candidates may be practically assessed in vertebrate

G/LOF studies, hundreds of genes can be analyzed in yeast,

worms, or flies (related to Figure 3A). In one specific recent

example, a study screened and phenotyped 11,594 transgenic

lines of Drosophila for adiposity-related phenotypes (Pospisilik

et al., 2010). For the �500 positive hits, the authors performed

mechanistic analyses to define the links between each candidate

and adiposity and to inform upon the strongest candidates for G/

LOF experiments in mice. Subsequently, fat-specific knockout

mice were generated for the top candidate gene Sufu, which dis-

played robust changes in fat mass. Such large screens can also

be used to inform directly upon human GWAS, as shown in a
ell 162, July 2, 2015 ª2015 Elsevier Inc. 27



separate recent example comparing results from a genetic loss-

of-function screen in Drosophila to rare diseases in human

exome data (Yamamoto et al., 2014). The complementarity of

these cross-species exchanges can be quite surprising; for

instance, genes linked to neurological diseases in humans can

be effectively analyzed in reductive plant models (Xu and Møller,

2011).

In other cases, both hypothesis generation and validation may

be performed using population studies, including for humans

and mice (related to Figure 3B). For instance, a recent extensive

metabolic study of the BXD mouse GRP identified more than a

dozen novel and significant phenotype QTLs (Andreux et al.,

2012). The QTL for systolic blood pressure, with five candidate

genes, was prioritized for validation due to the small number of

possibilities and, moreover, the ready availability of independent

population studies that measured blood pressure (Koutnikova

et al., 2009). In the subsequent analysis of three independent hu-

man GWAS, SNPs in a single gene, Ubp1, were associated

consistently and significantly with elevated blood pressure.

Although these SNPs were nominally significant in the original

data, the correction for multiple testing across hundreds of thou-

sands of SNPs across thewhole genome drowned out the signal.

Details about cellular mechanisms can also be confidently attrib-

uted solely using population data. In a separate BXD study, it

was observed that diabetic mice have significantly lower levels

of the metabolite 2-aminoadipate, independently from the ef-

fects of low- or high-fat diet feeding (Wu et al., 2014). In turn,

the levels of this metabolite mapped significantly to the gene lo-

cus containing Dhtkd1, a known enzyme in 2-aminoadipate

metabolism (Danhauser et al., 2012). Thus, a mechanistic link

was identified between Dhtkd1 and diabetes via the regulation

of 2-aminoadipate. Furthermore, two independent populations

(one mouse, one human) were examined using this hypothesis,

and again the same links with diabetes were observed. As

before, multiple testing correction had prevented the identifica-

tion of this connection in the original data sets (Wu et al., 2014).

Finally, human medical application is not the only goal: dis-

eases uniquely affecting animals (e.g., rinderpest, foot-and-

mouth disease) and plants (e.g., coffee rust, black rot) are equally

important. Additionally, genetic engineering in agriculture in

response to environmental needs or changes (e.g., drought

resistance, improved yield) is a critical research goal, as we

must contend with expanding populations and general climatic

variation. For instance, gene-phenotype links identified in Arabi-

dopsis—itself not a crop—are often applied to agriculture. Muta-

genesis screens in Arabidopsis have identified genetic variants

influencing flowering promotion (e.g., SFT) and flowering repres-

sion (e.g., SP), which can be subsequently applied cross-spe-

cies (related to Figure 3C). In tomato, the orthologs of these

genes were rationally modified, leading to a striking 130% varia-

tion in tomato yield between the suppressed and promoted

plants (Park et al., 2014). Similar cross-species plant studies

have improved cold tolerance in tobacco (Zhao et al., 2009),

drought resistance in rice (Datta et al., 2012), and salt resistance

in barley (Schilling et al., 2014). Research for agricultural genetics

is often parallel to medical genetics, yet this divergence is not

fundamental, and the two can benefit equally from sharing tech-

nologies, methodologies, and findings.
28 Cell 162, July 2, 2015 ª2015 Elsevier Inc.
Big Data
Moving across species and between or among populations and

G/LOFmodels can provide a greater understanding of biological

mechanisms underlying complex traits. However, the in vivo

application of such resources still requires extensive experience

and potentially time and expense. To this end, it is essential to

consider and exploit the wealth of results available in public

‘‘big data’’ resources, which can allow hypothesis examination

in silico. Over the last 10 years, the generation of full genomic

and transcriptomic data sets has become commonplace. The

full DNA sequence of more than 100 species on the UCSC

Genome Browser (Kent et al., 2002), more than 1.2 million com-

plete transcript data sets on the Gene Expression Omnibus

(GEO) (Barrett et al., 2013), and dozens of other smaller reposi-

tories have sprung up as well, often organized per species or

per topic (Bastian et al., 2008; Chesler et al., 2004; Harris

et al., 2010). Conjointly, a wide array of software and web re-

sources have been developed to aid in the analysis and interpre-

tation of large systems data sets (Barrett et al., 2013; Subrama-

nian et al., 2005;Wang et al., 2003). These resources can provide

secondary study validation, study power, and founding hypoth-

eses and can inform decisions on study design. These possibil-

ities are rapidly expanding, as studies increasingly generate

more data than can be analyzed under the scope of a single pro-

gram. When made public, this ‘‘excess’’ information adds to a

treasure trove for secondary analysis and independent valida-

tion. Consequently, primary research projects are increasingly

taking advantage of independent research beyond the introduc-

tion and verbatim citations—whether for hypothesis generation,

validation, or complete meta-analysis (Khan et al., 2014; Shin

et al., 2014).

Historical data can also grow in value over time as additional,

diverse data sets are collated. For example, early QTL studies

often identified strong gene-phenotype links but were unable

to establish the causal genes. These ‘‘unfinished stories’’ now

serve as pre-made hypotheses, such as for detailed longevity

data recorded in the BXD GRP well before the common imple-

mentation of omics technologies (De Haan and Van Zant,

1999; Gelman et al., 1988). These two early studies observed a

common, significant QTL on chromosome 2 that contributed

about 30% to the overall variation in lifespan, but the causal

gene(s) were not defined, and the QTL went unproven. More

than a decade later, using modern genetic maps, transcriptomic

data, and information on sequence variants, specific candidate

genes were found under the QTL. Subsequently, two of these

genes (mrps-5 and nkcc-1) were validated in C. elegans using

G/LOF technologies that, again, did not exist at the time of the

initial study—even if candidate genes had been identified

(Houtkooper et al., 2013). Further mechanistic studies on

mrps-5 in C. elegans and in an independent set of BXDs were

used to uncover that the longevity effects stemmed from the

dysregulation of mitochondrial protein translation. The resulting

stoichiometric imbalance between mitochondrial and nuclear-

encoded proteins, dubbed mitonuclear imbalance, induces the

mitochondrial unfolded protein response (known as UPRmt), a

known adaptive stress response protecting against aging (Jovai-

saite et al., 2014). In other cases, rather than taking old data sets

piecemeal, results may be taken together and collated. Decades



of detailed electronic medical records at hospitals now serve as

the backbone for a recent approach called phenome-wide asso-

ciation studies (PheWAS)—essentially, the reverse-genetics

analog of GWAS (Denny et al., 2013). In GWAS, a phenotype is

queried against genotypes to determine the causative gene(s),

whereas in PheWAS, a gene or SNP of interest is queried against

phenotypes to determine associated traits. This is conceptually

straightforward, yet to be effective, this approach requires

extensive and comprehensive sets of phenotype data—a far

more expensive and time-consuming task to generate than for

genotype data. Some successes have already been reported

with this approach, e.g., FTO—traditionally an obesity gene—

was recently linked to fibrocystic breast disease by PheWAS

(Cronin et al., 2014).

The increasing richness of omics data from both populations

and G/LOF models also allows meta-analytical studies to detect

and validate novel findings completely in silico (Horvath, 2013;

Lee et al., 2012). In one recent high-profile example of meta-

analysis, thousands of human methylation arrays spanning 51

tissues were cross-referenced with a single basic phenotype—

the age of the patient (Horvath, 2013). A statistical model was

then developed to accurately calculate the ages of the patients

using only tissue samples and a set of DNA methylation sites.

Using this model, it was observed that cancers have ‘‘older’’

methylation patterns than healthy cells; for instance, calculating

the age of a 30-year-old breast cancer patient using a blood

sample would yield an age of 27–33 years, while the same calcu-

lation using a breast tumor biopsy would yield an age of �75

years. The confidence in the study results was made possible

by the wealth of independently generated methylation data

sets: half of the studies were used to generate hypotheses and

the other half to test hypotheses, thus providing experimental

validation without a need for ‘‘new’’ data. The crossover and

‘‘re-use’’ of data is not new, yet the viability of this approach

has rapidly improved due to the remarkable increase in the qual-

ity and scope of omics data sets. However, the informatic diffi-

culty in large-scale manipulation of this approach has thus far

largely restricted its application to computational biology

(Marx, 2013). Correspondingly, there has been a disconnect be-

tween bioinformatics groups working in silico and generating

non-validated networks of profound complexity and traditional

in vivo and in vitro biologists elucidating biochemical processes

that may be only applicable in the specific circumstances of a

single experiment. As with the converging applications of popu-

lation genetics and G/LOF models, computational and wet lab

biologists are now beginning to find common ground; bioinfor-

matics platforms are becoming more widely established both

institutionally and in individual wet labs.

Future Perspectives
The recent fundamental shifts we have discussed are beginning

to drive the next era in complex trait analysis, yet it is only the

next step of many in our push to understand genetics. We

have mastered the ability to model and analyze monogenic-

gene-to-phenotype interactions, both through their identification

by forward genetics and by using precise reverse-genetics

modifications to elucidate their mechanisms. Now, we are devel-

oping the capabilities to comprehensively identify and understand
more expansive oligogenic gene-to-phenotype and G 3 E-to-

phenotype interactions (see Figure 1C). Despite these advances,

a complete holistic understanding of systems biology is still beset

by a number of challenges ahead: (1) there remains a need for

higher-quality and more dynamic omics measurements; (2)

epistatic genemodeling requires exponentially increasing sample

sizes; (3) even the best statistical assurances of causality do not

preclude a necessity for experimental validation, at least so far;

and (4) there is no ‘‘ideal’’ experimental setup for the study of

complex traits. For the first challenge, the next stage is already

in sight, with single-cell dynamic profiling (Cai et al., 2006), quan-

titative and unbiased metabolite analysis (Fuhrer et al., 2011),

larger-scale untargeted SWATH proteomics (Röst et al., 2014),

and other such approaches breaking new ground. To the second

point, model populations are becoming larger and more refined

(Churchill et al., 2004), and G/LOF tools are becoming increas-

ingly multiplexed (Chen et al., 2015; Sander and Joung, 2014)—

together allowing identification and validation of moderate-scale

epistatic interactions. The third obstacle may perhaps be ad-

dressed in time, but there remains little indication that accurate

mathematical models are on the horizon, except for a few specific

biomolecular processes such as protein folding. The last point is

more fundamental: a new experiment will always be necessary for

testing a new drug or treatment, regardless of the improvements

in predictive models or genomics resources.

Finally, further changes in mindset are required. As hypothe-

ses become larger and more complex, data and experimental

methods must be more readily communicated within and

outside of the standard publication cycle. In academic research,

this need is now regularly accepted, yet a great deal of data

and methods are not made available with publications, either

due to privacy concerns (e.g., human data), a lack of a standard

database (e.g., raw mass spectrometry data), or even active

obfuscation (e.g., in patents, agricultural [Zamir, 2014], or phar-

maceutical [Prayle et al., 2012] research). However, given the

tremendous progress in resource sharing within the last decade,

we expect many of these concerns to diminish in the coming

years. There is a revolution in complex trait analysis well under-

way, and together the combined applications of systems biology

and reductionist approaches are beginning to turn the trickle of

genetic discoveries into a steady stream that will usher in a

new era for personalized medicine and for environmentally safe

genetically modified crops.
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