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Abstract

Aging is a complex and highly variable process. Heritability of longevity among humans and other 

species is low, and this has given rise to the idea that it may be futile to search for gene variants 

that control rates of aging. We argue that the problem is mainly due to low power and the genetic 

and environmental complexity of longevity. In this review we highlight progress made in mapping 

genes and molecular networks associated with longevity, paying special attention to work in mice 

and humans. We summarize 40 years of linkage studies using murine cohorts and 15 years of 

studies in human populations that have exploited candidate gene and genome-wide association 

methods. A small but growing number of gene variants contribute to known longevity 

mechanisms, but a much larger set have unknown functions. We outline these and other challenges 

and suggest some possible solutions, including more intense collaboration between research 

communities that use model organisms and human cohorts. Once hundreds of gene variants have 

been linked to differences in longevity in mammals, it will become feasible to systematically 

explore gene-by-environmental interactions, dissect mechanisms with more assurance, and 

evaluate the roles of epistasis and epigenetics in aging. A deeper understanding of complex 

networks—genetic, cellular, physiological, and social—should position us well to improve 

healthspan.
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Introduction

Over the past two centuries longevity has increased at an impressive rate, driven by 

innovations in sanitation, healthcare, nutrition, and social support [1–5]. The proportion of 

individuals who reach 95 has doubled in the past 25 years, and the peak age of death is now 

close to 85 worldwide [6]. In some populations there has also been a matched but more 

gradual increase in age of menopause by one year per decade since 1910 [7–8]. Further 

improvements in health care and social structure may push lifespan upward, but it is also 

possible that we are reaching fundamental biological constraints with diminishing prospects 

of healthy living beyond 100 years [9–10]. The same trends are replicated in laboratory mice

—60 years ago, mean lifespan of inbred strains averaged 488 days [11–12]. Genetically 

identical descendants of these strains now consistently live about 50% longer. This upward 

shift is almost certainly related to improved husbandry and low rates of infection.

As lifespan increases, causes of death shift from accidents and pathogens to late-onset 

chronic conditions such as cardiovascular, respiratory, and metabolic diseases, cancer, 

neurodegeneration, and adverse consequences of pneumonias [6, their Figure 3; 13]. In 

humans and other species this shift is a result of much weaker selection against heritable 

factors that reduce post-reproductive longevity—an insight dating back to 1881 [14]. George 

Williams refined this idea and argued that gene variants may have positive effects on fitness 

early in life but negative effects later in life: so-called antagonistic pleiotropy [15]. Humans 

and killer whales seem to defy antagonistic pleiotropy for two decades or more after 

reproductive senescence [16]. Even the roundworm, C. elegans, manages to extend lifespan 

at least twofold beyond the age of reproductive senescence [17]. There is countervailing 

evidence that post-reproductive vigor and lifespan in some species, including humans, is 

under positive selection and contributes significantly to fitness by enhancing the success of 

progeny [18–21]. This provides motivation to find factors that modulate the length of post-

reproductive healthspan. While we must continue to fight a rearguard action against age-

related chronic diseases, we need to focus much more attention on the deeper genetic, 

molecular, and cellular processes that modulate longevity, the main topics of this review 

[22–24].

Variation in longevity among species is pronounced and linked to life history and style of 

reproduction [18, 22, 25–27]. Weismann proposed that heritable differences driven by 

millions of years of natural selection are the root cause of this variation [14, 28]. He also 

pointed out that it was not possible for him “to indicate the molecular and chemical 
properties of the cell upon which the duration of its power of reproduction depends: to ask 
this is to demand an explanation of the nature of heredity—a problem the solution of which 
may still occupy many generations of scientists.” And so it has proved. We are still 

struggling to find and define genetic and molecular causes of aging [29–31]. Since the early 

1920s [32], we have known that gene variants influence longevity within species, just as 
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they must between species. But in humans and other mammals, discovering DNA 

polymorphisms (also known as chromosomal loci or gene variants) responsible for 

differences in lifespan has resisted standard mapping methods [early work reviewed by 28, 

33–34]. One pessimistic view has been that aging is a consequence of nearly random and 

irremediable process of stochastic decay driven by somatic mutations in both nuclear and 

mitochondrial genomes [35]. A more optimistic alternative is that differences in aging rates 

within species are modulated by genetic variants linked to metabolic states, accuracy of 

DNA repair, protein processing efficiencies, immune surveillance, and life history—what we 

and others call the deep causes of aging.

The difference is vital. If aging is fundamentally caused by stochastic molecular decay, there 

may not be good reasons to look beyond the most prevalent diseases to increase lifespan. In 

contrast, if longevity is largely a tunable genetic process, as the comparative biology of 

longevity indicates, then there should be room to push lifespan of humans well into a second 

century, not just by overcoming chronic disease but by more fundamental interventions that 

improve general health and vigor. Whether longevity is an integrated hazard function of 

many diseases or the result of deeper causes, it is not unreasonable to have a goal of good 

quality life to age 100 [36]—the age at which Jeanne Louise Calment finally put aside her 

bicycle [37]. She lived another 22.5 years.

Getting at the genetic basis of aging has been hard. We have succeeded in defining a small 

set of rare mutations in several genes such as LMNA, WRN, and SERPINE1 that model 

some aspects of aging and senescence [38–42], but these variants do not account for normal 

variability in longevity. Our main aim now is to uncover common sequence variants that 

influence the kinetics of aging. Many candidate genes have been nominated and tested based 

on their known roles in DNA repair and cell cycle control, mitochondrial function and 

metabolism, oxidative stress and proteostasis, and numerous other age-related processes 

[43–44]. These candidate gene studies often test for enrichment of specific alleles in old 

cohorts [27, 33]. While this approach may eventually fulfill its promise, hypothesis-driven 

tests of longevity linked gene variants have generally failed to replicate [45–46]. For 

example, a large and careful retest of three aged Danish cohorts came up empty-handed after 

surveying variants in 125 well known genes implicated in aging based on known molecular 

functions [47]. The conventional excuse for failures of this type is that longevity is a 

complex, multifactorial phenotype influenced by small contributions from many DNA 

variants (and of course, many environmental factors), making any one sequence variant 

exceedingly difficult to validate using simple association studies of this type [48–49]. 

Compounding this problem, methods are designed to detect only simple additive genetic 

effects. But there are good reasons to suspect that longevity is modulated by non-linear 

epistatic interactions, antagonistic pleiotropy [50], and gene-by-environmental interactions 

(GXE) among multiple loci and gene variants.

Insufficient statistical power is certainly one core problem [51–52], but thanks to rapid 

growth of elderly populations this should not be a problem much longer. Stepler estimates 

that there are now ~500,000 centenarians worldwide among a population of ~7.6 billion, and 

the expectation is that there will be ~3.5 million centenarians by 2050 [53–54]. Eighty-five 
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percent will be female [55]. We will soon have the access to the very large sample sizes 

needed to understand genetic and environmental control of longevity [56–58].

What is perhaps surprising is that many other traits that are arguably just as complex as 

longevity—in particular, metabolic and psychiatric diseases and traits such as body weight 

and height—have been mapped to numerous genes and loci. In these cases, however, 

mapping did not rely on the evaluation of small numbers of nominated candidate genes, but 

rather used unbiased genome-wide association studies (GWAS). As shown in Figure 1, these 

GWAS require unusually large sample sizes. For example, the analysis of height in humans 

did not relent to genome-wide analysis until cohorts exceeded 10,000 subjects. 

Schizophrenia is another good case study and a useful contrast to longevity. While the 

heritability of schizophrenia is high [59], the idea arose that spontaneous copy number 

variants were the primary cause [60]. The conundrum was solved by a very large GWAS 

[61]: with 37,000 subjects, a total of 108 single nucleotide polymorphisms (SNPs) were 

uncovered. While these SNPs have small effects, they have a significant combinatorial 

impact. The outcome has been a wealth of leads and unexpected mechanistic insight into the 

etiology of this complex disease [62].

With aging and lifespan studies, there is the added challenge of defining the most relevant 

phenotype. There are marked differences in methodology among studies [63], heterogeneity 

among populations [64–65], and unique genetic effects that may emerge only in extreme age 

[24, 36, 66]. In some cases, the approach has been to construct a phenotype amalgam based 

on different health and disease traits such as number of years free of major disease, or 

psychosocial and emotional functioning [49, 67]. The alternative of using lifespan (i.e., time 

to all-cause mortality) results in a heterogeneous and noisy phenotype. A complementary 

approach is to use multisystems measures of frailty [68] or molecular biomarkers. One 

example is the epigenetic status of specific regions of the genome that can be used as metrics 

of age in single tissues or cells [69]. Telomere length [42, 70–73], changes in metal isotopes 

[42, 74], and metabolites such as NAD+ [75–76] are other examples of molecular 

phenotypes of aging being validated in model systems and humans. These and other 

complementary assays are yielding interesting GWAS hits on what may be considered 

genetic roots of aging [77], but as has been emphasized by Birney and colleagues [78] it is 

sometimes difficulty to sort out genetic and environmental causes of aging from epigenetic, 

molecular, and cellular consequences.

In this status report on the genetics of longevity, we focus almost exclusively on forward 

genetic studies in mouse and human extending back to the dark ages of quantitative trait 

locus (QTL) mapping [79] and up to the first waves of GWAS in humans [24, 31, 80]. Our 

review revisits themes covered well by Yuan and colleagues [81]. A side-to-side comparison 

of our review with theirs is noteworthy and humbling. To give away the main conclusion, 

there has been painfully slow progress in defining and validating common or rare variants 

that modulate longevity in mouse or human. We weigh in favor of the simple explanation: 

that the paucity of longevity hits is primarily the result of inadequate sample size rather than 

a fundamental problem related to genetic control (or lack thereof) of lifespan. As shown in 

Figure 1, samples of hundreds of thousands of cases may be mandatory for high yield 

analysis of the genetics of longevity in humans. As we will see below, the size of mouse 
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cohorts can be much smaller since almost all studies make use of families of closely related 

cases or even sets of isogenic strains. GWAS have high mapping precision but low power 

(hence the need for large sample sizes), while studies using rodents generally have modest 

mapping precision (1 to 10 Mb) but relatively high power. By combining results from both, 

we can gain both power and precision to detect gene variants associated with longevity—an 

approach that has been highly effective in other areas of research [82–84].

Two studies published in 2017 provide an empirical basis for optimism. Both took unusual 

approaches to the problem: McDaid and colleagues [31] used statistical methods to remove 

confounds associated with age-related diseases and used very large samples sizes via the UK 

Biobank; Sebastiani and colleagues [24] accomplished the same goal by studying extremely 

long-lived humans—so-called supercentenarians—using more modest sample size. Both 

studies nominated candidate genes and loci that may get at the deep metrics and mechanisms 

of aging in mammals, and certainly in humans. These variants, in turn, should provide 

reagents and motivation to dissect molecular controllers and biomarkers of aging, ultimately 

explaining some of the intrinsic sources of variation in longevity. Genomic methods of 

mapping and validating DNA variants are becoming so powerful and efficient, and sample 

sizes so large, that we should soon be able to resolve large numbers of longevity modulators. 

We should then also be able to move to the opening of Act 2—the analysis of GXE.

Heritability of longevity

Estimates of the heritability of longevity are generally low. Values average about 20% but 

range widely—from close to 0% to as high as 50% in most natural populations of yeast, 

nematodes, butterflies, fruit flies, deer, bighorn sheep, and humans [17, 28, 85–89]. 

Estimates from human cohorts typically hover around 20–30% with heritability increasing 

among families with exceptional longevity [36, 90–91]. Age at menopause, the best metric 

of reproductive aging in humans, has a heritability that is significantly higher—about 60–

65% [92]. Heritability of traits is often an inverse function of their importance to survival 

and fitness—the more important a trait, the more it will be scrutinized by natural selection, 

and the lower its heritability [87; but see counterpoints by 89]. There is an unfortunate 

tendency to equate heritability with tight genetic control, and to equate genetic control with 

molecular control. Neither is correct. Traits that are key to survival and fitness are obviously 

under genetic, molecular, and cellular control—numbers of arms and legs being a silly but 

useful case in point. But for many key life history traits, the statistical definition of genetic 
control measured by heritability can be exceedingly low. This finding implies that DNA 

variants have been sanded smooth by selection and that residual sources of variability in 

longevity are mainly caused by environmental factors or cellular stochastics. There are 

exceptions to this rule, mainly in the form of balancing selection, but the low heritability of 

longevity should probably be interpreted as a sign that selection is actively filtering DNA 

differences that change rates of growth, reproduction, parental investment, and aging. Again, 

the dramatic variation in longevity among closely related species leaves little room for 

argument [22, 25, 93].

Heritability of longevity is not a fixed parameter even within a single species or age cohort. 

Estimates are sensitive to GXE, sex, and even—almost paradoxically—the age of the cohort. 
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Harsh or volatile environments that increase the range of variation in lifespan will tend to 

increase heritability estimates. The range of ages over which heritability of longevity or 

hazard ratios are computed is also an important parameter. Studies of twins demonstrate that 

the likelihood of survival (or conversely, the risk of death) increases with the age of the 

cohort, as does the heritability. This makes sense if we consider two extremes. On the one 

hand, young individuals who have just become sexually mature should have a risk of death 

that is determined largely by environmental factors or bad luck, not by gene variants. At this 

stage of maturation, human monozygotic and dizygotic twins do not differ much in their risk 

or survival concordance [94]. On the other hand, individuals older than 60 will have a risk of 

death that is determined to a progressively greater degree by genetic influences on rates of 

senescence and risks of chronic disease. Above 60 years-of-age, hazard ratios of 

monozygotic twins are much more similar to each other than those of dizygotic twins [94].

Nor is heritability necessarily fixed even with a given set of genomes and environment. 

Heritability can be boosted by using large families of inbred or isogenic lines and can easily 

be raised to 30–50% by resampling the same genome many times [79, 95–96]. We have used 

data from two recent longevity studies of mice—that of Yuan, Bogue, and colleagues [12, 

97] and our own ongoing study of the BXD strains [98]—to compute heritabilities of 

longevity based on strain means. Estimates range from 25 to 45%, extending up to 55% in 

the case of BXD females placed on a high fat diet. Goodrick [99] and Rikke and colleagues 

[96] provide an even higher estimate—up to 85% for the effective heritability of strain 

means [100].

Collectively, these estimates of heritability of longevity in panels of inbred strains of mice 

are much higher than those for other species—from yeast to human—for three reasons: (1) 

tight control of the environment and food sources, and negligible pathogen exposure; (2) 

longevity is computed as a mean, median, or hazard function based on large numbers of 

genetically identical cases (usually 5 to 20 samples/genome); and (3) families of fully inbred 

strains collectively incorporate twice the genetic variance of outcrossed populations because 

they lack heterozygous loci [101]. With sufficiently deep resampling of isogenic cohorts, the 

effective heritability of longevity can be pushed surprisingly close to 1.0 in a well-controlled 

environment. The ability to boost heritability in these ways makes families of inbred strains 

a welcome complement to studies of more complex outcrossed natural populations, 

including humans. It also means that relatively small sample sizes may be effective in 

mapping longevity loci.

In addition to achieving high heritability and high power with relatively modest sample 

sizes, it is also possible to use families of inbred strains or isogenic lines to study biomarkers 

of aging under many different, but tightly controlled diets, treatments, and stressors [96, 98, 

102]. But there are also disadvantages of using inbred strains in longevity studies, the 

foremost being that individuals are homozygous across their entire genome. While this 

increases the genetic variance, it may also increase the burden of diseases influenced 

strongly by recessive alleles. This could in principle compromise average longevity 

compared to either outbred populations [103] or four-parent F2 intercross progeny of the 

type used in the Interventions Testing Program [104–107]. However, at least in the case of 

the LXS family of mice that has been so well characterized in several different environments 
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[96, 102], the family of inbred strains manages to live to an average age of 825 days (44 

strains), and some strains live to an average of 1200 days even on a conventional unrestricted 

diet (e.g., LXS46). This lifespan rivals that of dwarf mice on caloric restriction [108], and is 

exceeded only by a handful (literally) of Ghr knockout mice [109] and outbred mice. For the 

record, the current record age reached by any mouse is an individual from the Diversity 

Outbred population that reached 1730 days (Dr. Steven Munger, personal communication).

What happens to the heritability of longevity after the reproductive phase of life? 

Antagonistic pleiotropy [15] posits that alleles that have positive effects on growth and 

reproductive success early in life may accelerate senescence after reproduction [110]. In 

contrast, alleles that slow growth and reproduction may increase lifespan as well as 

sensitivity [111] or resilience to stress [112]. Following in the footsteps of Weismann, there 

is also evidence of direct competition between the germline and somatic tissues that can 

shorten or extend life [113–115]. In contrast, there is not much direct evidence for 

antagonistic pleiotropy in humans, although the APOE gene is a reasonable candidate [116–

117], and sex hormone genes also may fall into this category—essential for reproductive 

performance but with deleterious effects when expressed later in life [118]. There may be 

countervailing pressure that has to do with persistent parental and grandparental investment 

in the fitness of progeny [18–19, 21]. There are also good reasons to suspect that plasticity 

of life history traits, such as age of reproduction and peak parental investment, will be under 

strong balancing selection in a normally volatile world with many ecological niches for 

single species [119]. Even in the absence of antagonistic pleiotropy, selection will inevitably 

be relaxed after the main phase of reproduction, and this will contribute to the steep increase 

in incidence of chronic diseases and the steep rise in mortality described by Gompertz nearly 

200 years ago [120]. The good news is that this steep rise in mortality should be 

accompanied by a steep rise in heritability, implying that conscious attention to both alleles 

and environments should enable significant enhancement of healthspan.

In conclusion, the heritability of longevity is low compared to that of most chronic diseases, 

and even traits such as height, body weight, and schizophrenia. This low heritability goes a 

long way to explaining the comparative difficult of mapping longevity, a finding highlighted 

well by the longevity points we have added in Figure 1. In humans, very large sample sizes 

will generally be required (hundreds of thousands of centenarians would be ideal). But as we 

show in the next section, when working with families of isogenic strains, cohorts of as few 

of 30–40 have proved effective [79, 96, 102, 121–122] because heritability can be 

maximized.

Mapping longevity loci in mouse

Mice are the preeminent mammalian model of aging. Reasons are simple—an impressive 

wealth of genetic and genomic resources and tools [97, 123–124], coupled with small size, 

fast reproduction, short lifespan, high tolerance for inbreeding, and of course, an impressive 

set of methods to modify genomes [125–127]. These many advantages enable extensive and 

detailed investigation into both the genetics and the molecular biology of aging—from the 

first studies of lifespan by Roderick and Storer [11] to the latest studies from the 

Interventions Testing Program (ITP) [128]. Mice, like other mammals, share ~95% of 
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protein-coding genes with humans [129], but their much shorter lifespan makes longevity 

studies practical [e.g., 96, 102]. This latter factor is critical in efficiently mapping loci, and 

even DNA variants, influencing lifespan and aging as a function of experimental 

manipulations [81, 104, 107, 130].

A range of murine resource types have been used to map variation in longevity. The first 

study by Smith and Walford used a panel of congenic strains on a C57BL/10 background 

that harbored different versions of the major histocompatibility (MHC or H2) locus on 

chromosome (Chr) 17 [130]. Yunis and colleagues analyzed longevity in a conventional 

backcross [79] and then followed up with an analysis of longevity across 20 BXD 

recombinant inbred strains [121]. More recently, an expanded panel of BXD strains (n ~ 75) 

has been used in a second phase of longevity studies investigating two diets—6% versus 

60% calories from fat [131]. Rikke and colleagues have also used the LXS recombinant 

inbred strains, in their case derived from a cross between ILS and ISS parental strains [96]. 

They also used matched sets on two diets—a conventional ad libitum diet or an intense 

dietary restriction. Surprisingly, few studies have used standard F2 intercrosses to map 

longevity in mice [132–133], the main challenge being able to achieve sufficient power 

using an intercross in which every case is genetically unique. But sample sizes of more than 

1000 intercross progeny, heterogeneous stock, or outbred mice should soon yield results.

By far the largest and most systematic study of lifespan variation in mice is the ITP, a 

resource that is ideal for mapping QTLs for longevity. The ITP was initiated in 2004 [104, 

134–135] and has made use of an intercross between C57BL/6J x BALB/cByJ F1 females 

and C3H/HeJ x DBA/2J F1 males [136]. Each of the F2 progeny is genetically unique, and 

this does impose design limitations, but the benefit is excellent consilience with human 

populations. The F2 mice generated by the ITP have been used primarily for non-genetic 

studies of the impact of dietary interventions on lifespan [107, 128, 137–138]. For example, 

smaller F2 progeny tend to live longer than larger siblings, and have lower levels of thyroid 

hormone T4, growth hormone mediator IGF1, and leptin [139]. A small cohort of these F2 

animals was used in an early mapping study of longevity [132], but in an era when marker 

resources were modest. The ITP cohort is now so large (n ~15,000 cases) that it is now well 

powered to detect longevity QTLs [98].

How replicable are results from longevity studies using mouse models? Longevity estimates 

generated by Roderick and Storer [11] correlate well with data generated 48 years later by 

Yuan and colleagues (r = 0.88), although lifespan increased from 520 to 754 days. Gelman 

and colleagues [121] studied longevity in 15 strains in common with Lang et al. [140], and 

again the correlation is high (r = 0.77). In this case, longevity values also replicate (Gelman 

et al.: 711 days, n = 23 strains, all females; Lang et al.: 704 days, n = 23 strains, all females). 

Differences in longevity between sexes can be large [141]. The correlation of male-female 

lifespan in Lang’s study of the BXD strains is 0.40, and males actually outlived females by 

two months. The ITP has shown that longevity of males is particularly sensitive to housing 

despite best efforts to standardize husbandry [106, 137–138]. Finally, dietary interventions 

can completely disrupt patterns of longevity. Correlations across the LXS strains on 

restricted or unrestricted diet are merely –0.02 and 0.15 for females and males, respectively 
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(n = 41 strains, median longevity). In sum, we should be prepared for potentially strong 

environmental and sex effects on longevity.

Over the past four decades, 16 studies have been carried out to define QTLs for longevity in 

mice—a surprisingly modest number given the importance and inherent interest of this topic 

[79, 96, 121–122, 130, 132–133, 140–148]. The first genetic analysis by Smith and Walford 

[130] exploited congenic strains and very large sample sizes (n = 120 per congenic strain) to 

test whether longevity is modulated by sequence variants in the major histocompatibility 

complex (MHC, H2) on Chr 17. The answer in this study was yes, but as the authors point 

out, longevity linkage results will depend strongly on the environment. Genotypes in this 

critical region controlling the adaptive immune response after infection should be a 

determinant of longevity when pathogen levels are high. Standards of animal care have 

changed greatly over the past 40 years—in particular, the introduction of specific-pathogen-

free colonies. To the best of our knowledge, none of the more recent studies have detected a 

longevity locus on Chr 17.

In several cases, different cohorts made using the same parental strains have been used 

repeatedly to refine longevity QTL maps. The best example of a progressive improvement in 

power and precision is work that has been carried out since 1979 using C57BL/6J (B6) and 

DBA/2J (D2) parental strains and their progeny. The first analysis of longevity by Yunis and 

colleagues [79 1984] preceded the introduction of modern genetic mapping resources, and 

the authors were able to test only three markers in a backcross of 388 cases (Figure 2). 

Remarkably, two of their markers were highlighted as predictors of differences in longevity. 

Only one of these would now be considered significant after corrections for multiple tests—

that linked to the brown locus, Tyrp1, on Chr 4. Gelman and colleagues [121] replicated this 

longevity analysis within the same laboratory, but now using BXD recombinant inbred 

strains also made by crossing B6J to D2. With a more comprehensive set of 101 markers, 

they linked variation in lifespan to loci on Chrs 1, 2, 7, and 12, but did not confirm linkage 

to Tyrp1 (Figure 2). de Haan and colleagues [143] revisited Gelman’s data after noticing a 

curious distribution in the range of lifespan within isogenic strains: high variation in age of 

death in nine strains, moderate variation in seven strains, and low variation in eight strains. 

Using this new phenotype they were able to map a locus on Chr 11 that may control 

variability of longevity within strain (Figure 2). These traits can now be remapped in 

GeneNetwork (www.genenetwork.org) simply by linking to the appropriate BXD phenotype 

trait identifier. For example, the longevity variability data is listed in GeneNetwork as BXD 

phenotype trait 19422, and it is easy to validate the Chr 11 locus. Using the latest genotypes, 

this trait has a linkage peak with a logarithm of odds (LOD) score of 4.8 between Meis1 
(unc-62) to the exportin 1 gene, Xpo1. Both genes are strong biological candidates [149–

150]. One caveat: the statistic that they used—range of lifespan within strain—is an unusual 

and noisier trait than conventional longevity statistics, such as the mean or median lifespan. 

It will soon be possible to test whether this trait can be replicated in much larger BXD aging 

cohorts.

Lang and colleagues [140] also generated independent longevity data for 23 BXD strains—

17 common to Gelman—and they report a QTL on Chr 7, as well as a locus on Chr 11 for 

median lifespan (Figure 2). We have not been able to replicate their results at a genome-wide 
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significance level using much higher densities marker maps (see GeneNetwork BXD 

phenotype traits 12563 and 12564). We suspect that the map method that they used—

composite interval mapping—explains this failure. This method is generally not 

recommended with such small sample size, because it is easy to test too many alternative 

models.

Finally, Houtkooper and colleagues [122] remapped the Gelman BXD longevity data 

(GeneNetwork BXD phenotypes 17475, 10148, 10112) but now using 3800 markers and 

treating outlier data appropriately for mapping. They were able to refine the initial Chr 2 

locus to a comparatively short interval of about 5 Mb (see GeneNetwork BXD group trait 

17475). Validation studies of genes in this interval using C. elegans and mouse aging 

transcriptome data sets highlighted the mitochondrial ribosomal protein S5 (Mrps5) as the 

single best candidate. Inactivating this gene in worm extended lifespan significantly and also 

triggered a mitochondrial unfolded protein response (UPRmt). While linkage between a 

specific sequence variant in mouse and direct control of lifespan is still not yet established, 

our working hypothesis is that sequence differences near Mrps5 influence the UPRmt and 

thereby longevity. The role of this family of mitochondrial genes in human longevity is an 

open question, but there is evidence that the mitochondrial ribosome—consisting of about 

74 protein coding genes in all—is associated with differences in neurocognitive aging in 

older women [151].

The LXS panel of recombinant inbred strains has also been used effectively and 

collaboratively to map longevity QTLs. Liao [102] and Rikke and colleagues [96] aged mice 

at two sites and collectively have defined loci on Chrs 7, 9, and 15 affecting lifespan, 

fertility, and metabolic efficiency in response to dietary restriction. None of these loci has 

yet been linked to genes or mechanisms, but the Chr 15 locus has been fine-mapped to a 

small interval using congenic strains [152]. One concluding note on current mouse longevity 

QTL data: it is now practical to remap and reanalyze many of the older data sets using 

GeneNetwork [124]. For example, while the first wave mapping studies used up to 1000 

markers [96, 140], it is now possible to remap both BXD and LXS longevity data using far 

denser and more reliable maps. Remapping was the first step that led to the discovery of 

Mrps5 by Houtkooper and colleagues [122]. As part of this review, we remapped all 

longevity traits in Rikke et al. [96] and now detect an apparently new female longevity locus 

(normal ad libitum diet) on Chr 1 at about 80 Mb (Figure 2, and see GeneNetwork LXS 

group, trait 10156).

Mapping longevity gene variants in humans

While interest in genetic determinants of longevity in humans has grown significantly as 

gene mapping methods have become more powerful, there are still comparatively few 

robustly mapped, replicated natural variants that modulate longevity. Only the TOMM40/
APOE/APOC1 gene cluster (19q13.11–19q13.32) and the FOXO3 gene (6q21) can make 

this claim [46, 91, 153–154]. Apolipoprotein E (APOE) has two isoforms known to 

influence longevity through their association with disease, APOE ε2 and APOE ε4 [48]. 
APOE ε2 promotes longevity largely by decreasing risk of cardiovascular disease and 

Alzheimer disease whereas APOE ε4 does the opposite, limiting longevity [155–158]. 
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Similarly, the ε2 allele is enriched in centenarians whereas the ε4 allele is diminished [159–

160]. Inheriting two copies of the APOE ε4 allele reduces the odds of achieving exceptional 

longevity by 45–65% [161]. The effects of these isoforms are robust and have attained 

genome-wide significance in at least 10 human GWAS studies of longevity and age-related 

disease (Table 1). Interestingly, recent work has shown the ε4 isoform may be beneficial in 

non-industrialized settings [116–117]. The forkhead box O3 (FOXO3) gene has a more 

modest association with longevity but has also crossed the significance threshold in a recent 

GWAS [153]. FOXO3 is linked to insulin/insulin-like growth factor 1 signaling [162–163] 

and is a compelling true longevity gene. Other than APOE and FOXO3, there are also a 

number of candidates that are statistically significant, but not yet validated (Table 1). These 

include GRIK2 [153], RAD50/IL3 [164], and MINPP1 [80].

A recent study by McDaid and colleagues [31] developed a new approach to discover 

longevity loci. They took advantage of the many SNPs linked to age-related disease and 

adjusted for these effects to detect underlying polymorphisms that modulate lifespan. The 

team was able to use an exceptionally large general population cohort rather than focusing 

on only the oldest of the old. Sixteen SNPs were highlighted as genome-wide significant and 

11 were replicated in five independent cohorts. This study is also one of the first to bridge 

between mouse and human longevity data. Gene expression in the LXS mice was analyzed 

to evaluate the three strongest human candidate genes—RMB6, SULT1A1, and CHRNA5. 

Increased lifespan was associated with lower mRNA levels of RMB6 in mouse prefrontal 

cortex. A caloric restricted diet known to extend lifespan in mice was associated with 

increased SULT1A1 expression. These joint approaches using data from several species has 

promise to define new loci.

The point of mapping gene variants that control longevity is to use them as validated entry 

points to defining mechanisms of aging—the topic of next section. While mapping is not a 

necessary prelude to studying mechanism, it has the advantage of being relatively unbiased, 

and can help find common gene variants that are modulators of lifespan and healthspan. A 

complementary and powerful approach is to systematically inactivate genes one at a time 

across the genome [165]. This approach has been most effective in small organisms such as 

yeast, nematode, and fruit fly. For example, Magwire and colleagues [111] used transposon 

mutagenesis to define 58 loci that increase longevity (on average about 12%) in Canton-S 

derived isogenic lines. They defined many non-linear interactions among mutations and 

significant differences between sexes. There are two minor downsides to this approach. First, 

most experiments of this type test mutations on one genetic background, which will limit 

generality of specific gene effects. Second, induced mutations can inactivate genes 

effectively, but they are unlikely to replicate the effects of natural variants for longevity that 

are likely to be under intense selection.

From mapping to mechanisms

One of the major goals of aging research is to understand mechanisms well enough to reduce 

age-related disease burden, improve vigor, and extend healthspan and lifespan. As 

mentioned above, mapping does not get us there; it just points— we hope—in the right 

direction. We know a great deal about the molecular and cellular biology of longevity from 
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classical experimental approaches in model organisms that we outline below. But the point 

of this section is to encourage thought about how to effectively bridge between two major 

approaches to longevity—the highly effective reductionist paradigm and the more holistic 

and unbiased systems genetics approach. The reductionist approach looks for large effects of 

mutations and perturbations using constrained experimental designs (usually one genotype); 

the systems approach uses a more open-ended discovery design and large genetically 

complex cohorts. We need to bridge between these approaches, their communities, and most 

importantly, their key discoveries [166]. QTLs and GWAS hits for longevity need to be 

combined with everything we know about mechanisms of longevity. Mapping longevity 

should ideally not be unbiased, but should take advantage of all of the prior information we 

have on disease process and normal aging in all organisms.

Model organisms have been vital to this goal of identifying and understanding the molecular, 

cellular, and environmental factors affecting longevity and thereby improving lifespan. 

Studies in S. cerevisiae [167], C. elegans [168–169], D. melanogaster [111, 170], and most 

recently killifish [171] have all made major contributions toward understanding mechanisms 

that modulate longevity. An in-depth discussion of all these evolutionarily conserved 

biological processes and factors is beyond our scope; instead we refer readers to 

comprehensive overviews by Kenyon [172], Houtkooper and colleagues [173], López-Otín 

and colleagues [174], and Riera and colleagues [175].

In the following short sections, we enumerate some of the major intertwined mechanisms of 

senescence and longevity along with sets of gene variants highlighted in genetic studies.

1. Nutrient-sensing pathways that regulate aging

Insulin/IGF-1 and FOXO pathway—The first and possibly best characterized pathway 

to influence aging in organisms ranging from yeast to mammals is the insulin/IGF-1pathway 

[172, 176]. Extensive research has shown that cumulative regulation of many genes through 

DAF-16, a FOXO transcription factor; HSF-1, the heat-shock transcription factor; and 

SKN-1, a Nrf-like xenobiotic response factor in the insulin/IGF1 signaling pathway prolongs 

the lifespan of C. elegans and Drosophila melanogaster by as much as two-fold [reviewed by 

172]. In mammals, the relation between insulin/IGF1 signaling and longevity becomes more 

complex owing to the involvement of multiple insulin and IGF receptors, and because of the 

crucial role for insulin in regulation of glucose homeostasis. The insulin/IGF-1 pathway is a 

good candidate for mediating longevity through dietary restriction in worms, flies, and mice 

under specific conditions [177].

While polymorphisms in many core genes in these extended networks have been tested 

repeatedly [e.g., 47], most do not control normal variation in longevity in human 

populations. In humans, only variants in the FOXO3 gene have been consistently replicated 

as associated with longevity across multiple populations, with the minor allele AA genotype 

being associated with increased lifespan [153, 178].

TOR signaling—The mechanistic target of rapamycin (mTOR) is a serine/threonine 

protein kinase that functions in two distinct complexes regulating different downstream 

processes—mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) [179]. Under 
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conditions favorable for growth, TOR signaling modulates protein translation, protein 

homeostasis, and cellular growth and has been implicated as a controller of longevity in 

diverse species. Interest in understanding the physiological role and molecular targets of the 

TOR pathway has surged since the discovery that rapamycin treatment extends life in yeast, 

nematodes, flies, and mice via mTOR inhibition [180]. The TOR network has also been 

consistently linked to dietary restriction that reduces mTORC activity, which in turn 

increases lifespan in many organisms ranging from yeast to mice [172]. Sataranatarajan and 

colleagues report that rapamycin shortened the lifespan of the leptin receptor db mutant 

mouse—a reminder that genes and the networks they influence are unlikely to be universally 

beneficial [181]. Selman and colleagues showed increased lifespan in a mouse model of 

decreased mTOR signaling —ribosomal S6 kinase 1 knockout mice (S6k1−/−) [182]. 

Similarly, mTOR knockout strains (Mtor+/− and Mlst8+/−) and hypomorphic homozygous 

MtorΔ/Δ mice have increased lifespans [183–184]. mTORC1 promotes mRNA translation 

and protein synthesis by activating ribosomal protein S6 kinases (RPS6KA1) and inhibiting 

eukaryotic translation initiation factor 4E-binding protein 1 (EIF4EBP1) [179]. However, no 

associations have been detected yet for mTOR complex gene variants (MTOR, RPTOR, 

RICTOR, and RPS6KA1) with extreme human longevity [185].

Sirtuins—Sirtuins, a protein family of metabolic sensors, have gained recognition over the 

last two decades as crucial regulators of evolutionary conserved pathways related to aging in 

a wide variety of organisms ranging from yeast to mammals [186]. The role of sirtuins in 

aging was first identified in yeast [187]. Since then, several research groups have showed 

that Sir2 overexpression in C. elegans [188] and Drosophila [189] results in extending 

lifespan in a dose-dependent manner. Mammals have seven homologs of the yeast Sir2 gene 

(SIRT1 to SIRT7). All homologs contain the highly conserved NAD-dependent sirtuin core 

domain. This domain targets multiple cellular substrates and influences a broad range of 

cellular functions, including multiple metabolic and neuronal pathways. Experiments in 

mouse have shown that sirtuins are modulated by diet; thus, sirtuins could be therapeutic 

targets to enhance healthspan [190]. SIRT1, the best-characterized mammalian sirtuin, 

controls mitochondrial function by deacetylation of targets like TRP53, PPARGC1A, and 

FOXO [191]. There is compelling evidence that enhancing sirtuin activity leads to decreased 

cancer risk and is protective against metabolic dysfunction associated with aging [191–192]. 

SIRT3, which localizes to mitochondria, appears to be required for dietary restriction–

mediated longevity through deacetylation of mitochondrial proteins [193]. SIRT6 is a key 

modulator of healthy aging, and mice deficient in SIRT6 have a reduced lifespan. 

Overexpression promotes genomic stability [194], promotes DNA repair, and suppresses 

genomic instability [195]. Deficiencies in mice lead to age-associated degenerative 

abnormalities and early death.

Lack of lifespan extension in Sirt1−/− mice on caloric restriction, as well as the paucity of 

associations between polymorphisms in SIRT1 and human lifespan, has cast doubts on the 

relevance of SIRT1 as a key longevity gene [196]. Association studies of of lifespan and 

SIRT3 are inconsistent [197–199]. In the Iowa cohort of the Established Population for 

Epidemiologic Studies of the Elderly, homozygous minor allele TT genotypes for SIRT5 and 
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SIRT6 were associated with a shorter lifespan, after controlling for age-related risk factors 

[200].

AMP kinase signaling—SIRT1 and AMPK are co-regulated; they interact and share 

many common target molecules. AMPK (adenosine monophosphate-activated protein 

kinase) is a highly conserved cellular energy sensor that is activated when cellular energy 

reserves are low, and also maintains metabolic energy balance [201]. AMPK is a key 

mediator of several signaling networks linked to aging and is activated by a wide array of 

small molecules, making it a potential therapeutic target for pro-longevity drugs such as 

metformin, resveratrol, rapamycin, aspirin, as well as a key mediator of several signaling 

pathways linked to aging [202–203]. However, many of these effects are indirect and are yet 

to be fully elucidated by work in model organisms. AMPK activity may be an important 

contributing factor in networks linking autophagy [204], dysregulated intracellular lipid 

metabolism, and reduced mitochondrial function associated with aging [205]. AMPK 

activity controls the function of several signaling networks associated with aging: FOXO/

daf-16 [172, 206], SIRT1 [207], TOR [179], and CRTCs [208]. AMPK-induced 

deacetylation by SIRT1 modulates the activity of downstream targets, including the 

peroxisome proliferator-activated receptor-γ coactivator 1α (PPARGC1A) and the forkhead 

transcription factors, FOXO1 and FOXO3. Treatment of mice with resveratrol, famously 

linked to cardiovascular benefits and cancer preventive properties of red wine, activates the 

NAD+–SIRT1 network and induces genes impacting oxidative phosphorylation and 

mitochondrial biogenesis [209]. The beneficial effect of S6K1 deficiency on lifespan might 

involve AMPK activation [182].

2. Mitochondrial function and reactive oxygen species effects

A decline in mitochondrial function contributes to normal aging through multiple distinct 

processes, including oxidative damage, inflammation, and senescence [210]. Reactive 

oxygen species (ROS), generated as a by-product of the mitochondrial respiratory system 

and intracellular metabolism in peroxisomes, were initially implicated as one of the 

causative factors of aging. Increased ROS levels may be detrimental and lead to cell death 

and acceleration in aging and age-related diseases; genetic studies in C. elegans, Drosophila, 
and mice have implicated enhanced stress resistance or reduced free radical production with 

increased lifespan [211]. Senescent cells are associated with high levels of intracellular ROS 

and accumulated oxidative damage to DNA and proteins [212]. However, that theory has 

been largely refuted, and several studies have shown that mitochondria can cope with 

physiological levels of oxidative damage [213–216]. Such ROS levels are most likely 

essential for regulation of cell cycle progression, cell signaling, and apoptosis, while 

increased ROS production over a certain level has a detrimental effect on cell physiology 

[217–218]. Lifespan extension by mild inhibition of mitochondrial respiration is 

evolutionarily conserved. Some key factors required to mediate this longevity response 

include dietary restriction, increased HIF1 activity, induction of homeobox protein CEH-23, 

and mitochondrial unfolded protein response (UPR) [219]. Impairment of the mitochondrial 

translation by a drop in mitochondrial ribosomal protein S5 (MRPS5) level initiates UPRmt 

activation and results in increased longevity in both worms and mice [122].
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Many of the longevity genes, including AKT (glucose uptake), EIF4EBP1, and RPS6KA1 
(protein synthesis, autophagy), SIRT (mitochondrial function), and FOXO3 (oxidative stress 

defense), have multiple effects with intertwined actions in overlapping metabolic networks 

that often affect mitochondrial function [173]. Associations between mtDNA and longevity 

differ from the SNP-based associations seen in the nuclear genome. Several small and 

underpowered studies have associated mtDNA variation with human longevity in Japanese 

[220], Chinese Uygur [221], Italian [222], French [223], Irish [224] and Finnish [220] 

populations.

3. DNA damage and genomic instability

Perturbations in genomic stability might have negative outcomes, including cancer, reduced 

lifespan, and premature aging. Genomic DNA is subjected to incessant chemical, physical, 

and biological abuse, resulting in tens of thousands of molecular lesions per cell per day 

[225]. DNA damage can result from endogenous processes, such as hydrolysis, oxidation 

and alkylation, or exposure to radiation or environmental mutagens. Most DNA lesions are 

rapidly corrected by a sophisticated network of genome maintenance systems. Unrepaired 

DNA damage, both nuclear [226] and mitochondrial, leads to mutations, loss and gain of 

sequence, and aging [227–228]. The RecQ helicase family participates in maintaining 

genomic stability and is conserved across organisms [229]. In humans, sequencing of genes 

involved in DNA repair revealed that SNPs in the WRN helicase gene are associated with 

shorter lifespan. GWAS studies have identified markers associated with longevity at loci 

involved in genome maintenance, including WRN, LMNA, CDKN2A/CDKN2B, FOXO1, 

and FOXO3 [41, 230].

4. Proteostasis imbalance

Protein homeostasis is maintained by tightly regulated action of intricate cellular systems 

that are gradually compromised with age, leading to an increase in accumulation of damaged 

and misfolded proteins. Loss of proteostasis contributes to many age-related pathologies, 

including neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease [231]. 

Most cellular proteins fold directly after translation in the cytosol while membrane and 

secreted proteins fold in the endoplasmic reticulum. Presence of misfolded proteins in these 

cellular compartments is detected by chaperone networks, which initiate a proteostasis 

response to restore cellular homeostasis. The cytosolic response is initiated by the heat 

shock response (HSR) regulated by stress-activated heat shock factor1 (HSF1) which 

induces transcription of chaperones and other protective genes [232]. In worms, reduction of 

HSF1 induces accelerated aging. In response to endoplasmic reticulum (ER) stress, unfolded 

protein response UPRER is mediated by three signaling cascades modulated by IRE1, PERK, 

and ATF6, leading to several outcomes including reduced translation rates and 

transcriptional upregulation of many chaperones [233]. Prolonged stress triggers apoptosis. 

In mitochondria, both the integrated stress response and UPRmt are activated to protect from 

proteotoxic stress, initiating a mitonuclear cascade that leads to transcription of protective 

genes [234–235]. Damaged proteins are degraded by the two principal proteolytic systems: 

the ubiquitin–proteasome system and the autophagic–lysosomal system. Their efficiency 

declines with age, supporting the idea that protein clearance mechanisms are directly linked 

to aging and age-associated diseases [236].
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Activation of UPRmt correlates with longevity across organisms in yeast, worms, flies, and 

mice [237]. A QTL for lifespan on Chr 2 in the BXD family of mice is thought to 

correspond to polymorphisms in mitochondrial ribosomal protein S5 (Mrps5). Expression 

correlates inversely with longevity in mouse, as it does in C. elegans [122]. Although no 

association has yet been found between mitochondrial ribosomal proteins (MRPs) and 

human lifespan, pathway-level genetic analysis points toward association between the MRP 
family and cognitive decline in women, independent of the APOE locus [151] and protein 

aggregation in C. elegans [238].

5. Telomere length

Telomeres are complex nucleoprotein structures at the tips of eukaryotic chromosomes made 

up of repetitive sequences bound by shelterin complex proteins (TRF1, TRF2, TIN2, POT1, 
TPP1, RAP1) [239]. The erosion of telomeres during DNA replication can trigger the onset 

of cellular senescence [240], but linkage between telomere length, aging, and reproductive 

success are complex and depend on species and life history [e.g., 241]. Common laboratory 

strains such as B6 mice have a mean telomere length of ~50 kb, whereas the wild-derived 

CAST/EiJ has shorter (~15 kb) telomeres comparable to that of humans [242]. Telomere 

length is inherited as a unique genotype, and short telomeres are sufficient on their own to 

cause degenerative diseases associated with aging even in the presence of normal levels of 

telomerase [243]. Heritability of telomere length has been demonstrated in human studies, 

but it is still unclear whether telomere shortening is a risk factor for telomere-mediated 

disease [244].

The most prevalent genes implicated in monogenic inherited telomere disorders (about 90% 

of cases) are TERT (telomerase reverse transcriptase) and TERC (telomerase RNA). Rare 

mutations in these genes cause autosomal dominant disease leading to significant morbidity 

after maturity [42, 245]. Taking a candidate gene approach, Atzmon and colleagues 

identified a common TERT haplotype that is associated with both exceptional longevity and 

telomere length in a cohort of Ashkenazi centenarians and their offspring [246]; a finding 

that has been replicated with variable success [247, see, http://genomics.senescence.info/

longevity/gene.php?id=TERT)..

6. Epigenetics

There is no doubt that the epigenome ages at multiple levels (e.g., histones and 

heterochromatins, noncoding RNAs, DNA methylation) [248–250]. DNA methylation has 

received the most attention because this modification can be most readily quantified by 

existing technology. The most widely used epigenetic clock is calculated using 353 specific 

CpG sites that are distributed across the human genome, and this age biosignature has been 

more closely related to “biological age” rather than “chronological age” and is predictive of 

human health and longevity [251–253]. This powerful approach for predicting the biological 

aging rate has now been extended to mouse [254].

The mechanistic basis of epigenetic changes as a function of age remain unclear. Genetic 

variation is causally linked to phenotypes, but interpreting associations with epigenetic 

markers can be problematic. Unlike GWAS hits, the direction of causality between DNA 
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methylation and aging is ambiguous [78, 255]. Epigenetic data are also more liable to noise 

and confounding variables; for instance, the increase in cellular heterogeneity with aging 

could contribute to some of the age-related signal in DNA methylation. An optimal scenario 

would be when evidence from both genetic and epigenetic studies converge on a common 

gene variant that modulates the epigenome. A possible example is the enhancer of zest 

homolog 2 (Ezh2) gene that codes for the core catalytic subunit of the polycomb repressive 

complex. Polycombs are highly conserved multimeric proteins that control epigenetic status 

during embryonic development, cell differentiation, and stem cell proliferation, and 

potentially aging [256]. The Ezh2 locus in the BXD family is highly polymorphic and is 

associated with cis-acting variation in expression of the Ezh2 transcript. Work by de Haan 

and colleagues identified Ezh2 as a candidate for hematopoietic stem cell aging, and 

overexpression of this gene rescues stem cell aging [257–259]. On the epigenetics front, 

CpG sites that undergo age-dependent changes in DNA methylation, including the 353 age-

informative sites used to calculate the human epigenetic age, are enriched in genes targeted 

by the polycomb complex [251, 260–262]. This is an example in which the integration of 

genomic and epigenomic data can shed light on some of the mechanistic aspects of an aging 

epigenome. A multi-omic approach and careful integration of epigenomic and genomic 

approaches will be a powerful ally to the genetic cartography of aging and longevity.

Future directions

Progress in unraveling the genetics of longevity is on the threshold of a new phase, poised to 

burst out from the gloom of an infinitesimal model of gene action—thousands of 

polymorphisms with undetectable effects—to the clarity of a large collection of validated 

gene variants. The development of powerful genetics, genomics, and bioinformatics tools is 

enabling a more comprehensive and perhaps even more objective systems analysis of 

longevity networks. By combining discovery-based methods with mechanistic analyses and 

systematic studies of GXE, it is highly likely that over the next decade many new genes, 

networks, and mechanisms will be connected to longevity and aging-related diseases.

We need to make better progress using both huge human cohorts and model organisms, 

including mouse—our most effective mammalian model. Boosting sample sizes is an 

obvious and often effective strategy, but this may not be enough. A better strategy at this 

point is to integrate across species, models, and experiments. Model organisms have already 

proved their worth in longevity research. However, the lack of more intimate collaboration 

between human and model organism researchers remains a barrier. We have some seen some 

strong results from collaboration across species with yeast, mouse, or C. elegans serving as 

instigators and corroborators of key discoveries [31, 122, 167]. Yeast, C. elegans, 

Drosophila, naked mole rats, killifish, and mice can help trace networks and mechanisms of 

longevity, and provide unrivalled access to the next frontier—GXE interactions and aging. 

Our hope is that the next version of this review will not only summarize a much more 

numerous set of longevity gene variants, but showcase new mechanisms that explain how 

genetic, epigenetic, cellular, and hormonal systems interact with environment and lifestyle to 

modify rates of aging. Finally, mechanisms are not enough. We need to aim, and aim rapidly, 

at developing and testing interventions that both increase vigor and reduce diseases and 

functional deficits that accompany aging

Hook et al. Page 17

Biochim Biophys Acta. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgments

We thank NIA support (R01 AG043930); the UT Center for Integrative and Translational Genomics; the UT-ORNL 
Governor’s Chair; the NIH F32 Ruth Kirchstein Fellowship Program (F32 GM119190 to EGW); the NIA 
Interventions Testing Program; and the Nathan Shock Center for Excellence in the Biology of Aging (U01 
AG022307 and P30 AG013319 to JFN). We thank Kathryn Graehl for discussions and editing.

Abbreviations

B6 C57BL/6J mouse strain

Chr chromosome

D2 DBA/2J mouse strain

ER endoplasmic reticulum

F1 filial 1 generation

F2 filial 2 generation

GWAS genome-wide association study

GXE gene-by-environmental interaction

HDL high-density lipoprotein

HSR heat shock response

ITP Interventions Testing Program

LOD logarithm of odds

Mb megabase

MHC or H2 major histocompatibility complex

mtDNA mitochondrial DNA

NAD nicotinamide adenine dinucleotide

QTL quantitative trait locus

ROS reactive oxygen species

SNP single nucleotide polymorphism

UPR unfolded protein response

UPRER unfolded protein response of endoplasmic reticulum

UPRmt unfolded protein response of mitochondria
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Figure 1. 
Illustration of the effect of sample size (x-axis) on the yield of genome-wide association 

study (GWAS) findings (y-axis). Variation in human height (red dots) is a highly complex 

trait with moderate heritability that was refractory to GWAS at sample sizes below ~10,000 

subjects. Longevity studies (stars) were refractory until sample sizes reached ~20,000. 

Longevity points: Deelen et al. (D1) [263], Deelen et al. (D2) [264], Tanaka et al. (T) [265], 

Flachsbart et al. (Fl) [164], Joshi et al. (J) [266], and McDaid et al. (Mc) [31]. Redrawn with 

additions from Visscher et al. [267].
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Figure 2. 
QTLs for mouse longevity adapted from Yuan and colleagues [81] with added peaks from 

Houtkooper et al. [122], Yuan et al. [133], and Newell et al. [152]. We have also added a 

locus on Chr 1 at about 80 Mb detected by remapping data from Rikke et al. [96] via 

GeneNetwork LXS phenotype 10156 (asterisk to right of Chr 1). Length of colored bars 

represents the 95% confidence interval or a 40 Mb interval centered on the peak.
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