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SUMMARY

Cancer is mostly incurable when diagnosed at a
metastatic stage, making its early detection via
blood proteins of immense clinical interest. Pro-
teomic changes in tumor tissue may lead to
changes detectable in the protein composition of
circulating blood plasma. Using a proteomic work-
flow combining N-glycosite enrichment and
SWATH mass spectrometry, we generate a data
resource of 284 blood samples derived from pa-
tients with different types of localized-stage carci-
nomas and from matched controls. We observe
whether the changes in the patient’s plasma are
specific to a particular carcinoma or represent a
generic signature of proteins modified uniformly in
a common, systemic response to many cancers.
A quantitative comparison of the resulting N-glyco-
site profiles discovers that proteins related to
blood platelets are common to several cancers
(e.g., THBS1), whereas others are highly cancer-
type specific. Available proteomics data, including
a SWATH library to study N-glycoproteins, will
facilitate follow-up biomarker research into early
cancer detection.
Cell
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INTRODUCTION

Carcinomas, the most common types of cancer, develop from

epithelial cells in a wide range of tissues. When detected at an

advanced stage, carcinomas usually have a poor prognosis,

making their early detection (e.g., via protein biomarkers) a clin-

ically important priority. Compared with tissue sections and

other clinical diagnostic approaches, early cancer detection’s

primary interest lies in human blood because blood plasma is

easily accessible and hypothesized to contain proteins secreted

or shed from tissues that reflect homeostatic changes associ-

ated with most cancers (Cima et al., 2011; Surinova et al., 2015).

Many malignancies share dysregulations in a range of molec-

ular pathways that lead to similar systematic disorders and

common responses to therapy (Hanahan and Weinberg, 2011).

Historically, most biomarker discovery studies reported a list or

signature of molecules significantly changed between cohorts

of control samples and the specific carcinoma in question.

Only in October 2012 did The Cancer Genome Atlas (TCGA)

Research Network begin systematically analyzing commonal-

ities in perturbed genomic profiles across different tissue tumors

(Weinstein et al., 2013). Since then, several large-scale studies

have analyzed clinical samples representing various cancer

types by genomic techniques (Hoadley et al., 2014; Kandoth

et al., 2013; Uhlen et al., 2017), resulting in the illustration of

genetic commonalities, differences, and emergent themes

across various tumor lineages.
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In recent years, significant technical improvements have

advanced mass spectrometry (MS) to a stage where large

numbers of proteins can be quantified reproducibly and accu-

rately across large sample cohorts (Guo et al., 2015; Liu et al.,

2015), meaning that proteomic techniques have matured to a

level where challenging biological and clinical questions can

now be addressed.

To date, plasma biomarker projects have aimed principally at

detecting different-abundance proteins in a cohort of case and

control samples collected within the same tumor entity. The

question as to what extent detected protein markers are specific

to a particular type of cancer or shared between different cancers

remains generally unanswered. No proteomic investigation has

looked for plasma biomarkers for different tissue cancers within

the same study. To address these open questions, we analyzed

blood samples of patients with one of five carcinoma types: colo-

rectal cancer (CRC), pancreatic cancer (Panc), lung cancer

(Lung), prostate cancer (Proc), and ovarian cancer (OC), samples

that were collected from patients whose tumor was still localized.

From each sample, we selectively isolated N-glycosylated pep-

tides to increase the coverage of low-abundant tissue-secreted

proteins via the reduction of sample complexity. Analyzing the re-

sulting peptides in their de-glycosylated form (Zhang et al., 2003)

by reproducible sequential window acquisition of all theoretical

mass spectra (SWATH)-MS (Gillet et al., 2012), we generated a

digital representation of each plasma or serum sample that could

be queried for the presence and quantity of specific peptides

using a targeted data analysis (Röst et al., 2014).

The results of this cross-tumor study at the plasma proteomic

level insightfully reveal that early carcinomas display ‘‘specific

biomarkers’’ for individual carcinoma types as well as ‘‘common

biomarkers’’ of cancer-related blood changes and that the ma-

jority of common carcinoma markers detected were angiogen-

esis-regulatory proteins released from activated blood platelets.

These markers appear to be ‘‘sensitive’’ to early carcinoma exis-

tence, whereas specific markers were demonstrably associated

with a range of reported oncogenes. Our study indicates that the

state-of-the-art blood proteomics of several tissue carcinomas

at a time can now empirically prove that a certain fraction of

the blood proteome follows very similar expression changes in

cancer patients. A data resource of hundreds of N-glycoproteins

consistently measured in the blood of subjects with various solid

tumors and a spectral library of thousands of N-linked glycopep-

tides for measuring cancer-relevant glycoproteomes are now

fully available to the cancer research community.

RESULTS

Changes in Blood Plasma Proteins Associated with Five
Localized-Stage Carcinomas
The precise definition of and distinctions between tumor stages

is a particular challenge for cross-tumor studies because tumor

progression and the stage at which tumors are diagnosed differ

notably between different organ or tissue malignancies (McPhail

et al., 2015; Siegel et al., 2012). For instance, more than 50% of

prostate carcinomas are diagnosed as localized disease. In

contrast, pancreatic adenocarcinoma, often characterized by

an asymptomatic early stage (Yachida et al., 2010), is incidentally
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discovered at an early stage in only around 10% of cases (Ma-

jumder et al., 2015).

To minimize the confounding effects of advanced stage IV tu-

mors (metastatic disease outside of regional lymph nodes),

blood samples collected for this study were derived from

patients with localized stages of CRC, Lung, Proc, Panc, and

OC (Table S1). All cancer samples were consecutively recruited

as diagnosed, and patients did not receive any type of treatment.

For each particular cancer type, the control samples were

collected together with cancer samples in the same local hospi-

tal and were matched with respect to age and gender for each

individual cohort (Tables S1); i.e., each cancer type had its

own specific matched control group. This precludes the control

and cancer samples from being processed arbitrarily (i.e.,

different protocols, sample storage, etc.) (STAR Methods; Table

S5). The controls consisted of healthy individuals with no known

history of cancer. In particular, the Proc control cohort included

male individuals with benign prostate disease. To extend the MS

detection to lower-abundance plasma proteins, we selectively

enriched and analyzed N-glycosylated peptides by their de-gly-

cosylated form. N-glycosylated proteins are frequently released

or secreted from tissue into the circulation (Schiess et al., 2009;

Surinova et al., 2015), and it has been demonstrated that, in the

MS analysis of such enriched samples, proteins can be robustly

quantified to the low nanogram per milliliter concentration range

(Liu et al., 2013). We prepared the samples in large scale by

solid-phase extraction of N-glycoproteins and by multi-well

plate-based sample processing, as described previously (Cima

et al., 2011; Surinova et al., 2015). In the discovery phase

(cross-tumor analysis), we processed 162 blood samples, of

which 155 were individual samples and 7 were experimental rep-

licates of randomly chosen cancer or control samples from

among the five cohorts. In two independent validation cohorts,

wemeasured an additional 129 samples and 3 experimental rep-

licates. Overall, 294 samples from 284 distinct subjects and 10

experimental replicates were prepared and analyzed (Figure 1A).

Broad Coverage and Quantification of Blood Plasma
N-Glycoproteins by Targeted MS
To consistently quantify the same N-glycoproteins across all in-

dividuals, we utilized large-scale, reproducible sample prepara-

tion followed by SWATH-MS. SWATH-MS is a next-generation,

massively parallel targeting technique for proteomics measure-

ments. The identified peptides are quantified by label-free quan-

tification. This approach consists of a data-independent acquisi-

tion (DIA) strategy where fragment ion spectra of all peptides

contained in a sample are recorded, followed by in silico data

analysis, where sets of targeted peptides are assigned to protein

signatures and quantified (Figure 1A; Guo et al., 2015). To search

the thus acquired MS data, we established, to date, the largest

spectral library of plasma N-glycopeptides by fractionated

shotgun analysis, containing high-quality MS2 information for

4,347 N-glycosylated peptides corresponding to 1,151 plasma

glycoproteins. This library essentially maximizes the detection

coverage of the cancer plasma glycoproteomes (Figure 1A).

Using the configured N-glycoprotein spectral library and

OpenSWATH workflow (Röst et al., 2014; Figure 1A), we identi-

fied 1,444 distinct N-glycopeptides (272 UniProt-annotated



A

B C D

E F

Figure 1. ConsistentN-GlycoproteinProfiling

in 284 Blood Samples

(A) Schematic representation of the SWATH-MS

workflow and SWATH assay library generation

from native and synthetic glycopeptides of can-

cer-associated proteins (CAPs).

(B) Protein CV violin plots corresponding to all

clinical samples (blue) and technical (red) and

whole-process replicates (green). n corresponds

to the number of samples in the cross-tumor da-

taset.

(C) DAVID functional annotation (FDR < 0.05) of

measured glycoproteins. The plasma proteome

reference set (Farrah et al., 2011) is used as the

background proteome for enrichment analysis.

(D) Protein concentrations are estimated based on

the plasma proteome reference set. Pink circles

represent FDA-approved biomarkers.

(E) Reactome network view of 74 blood glyco-

proteins significantly connected to 111 oncogene

drivers.

(F) Distribution of the number of edges created

using a ‘‘switching algorithm’’ and 100 random

networks in the Reactome. The red arrow marks

the edge number observed between 74 glyco-

proteins and 111 cancer drivers—well above that

randomly expected.

See also Figure S1.
glycoproteins) at a controlled false discovery rate (FDR) of 1% in

initial cross-tumor analysis. To perform objective proteomics

comparison between five carcinomas, we filtered these data to

select the 1,360 glycopeptides that were quantified in at least

two-thirds of the clinical samples, which collapsed into 203 gly-

coproteins (Table S6). Of these reported values, 88.4% were

directly determined from the corresponding signal intensities.

The remaining 11.6% were aligned and requantified with the

transfer of identification confidence (TRIC) algorithm (Röst

et al., 2016). After data acquisition, systematic batch artifacts

were corrected at the level of high-quality peptide fragment ion

signals (STAR Methods). The reproducibility was nearly perfect

for the MS technical replicates (square root of coefficient of

determination [R] = 0.96–0.98) and was also excellent between

experimental replicates (R = 0.92–0.94) (Figures S1A and S1B).

Specifically, the calculated coefficients of variation (CVs) of

protein abundance between all individual biological samples

was, on average, 35%, whereas the corresponding values were

16% and 19% for technical and experimental replicates, respec-
Cell R
tively (Figure 1B), suggesting that biolog-

ical variation can be revealed by our

method. DAVID functional enrichment

analysis (Huang et al., 2009) of the 203

glycoproteins confirmed that secreted,

extracellular proteins with signal peptides

were significantly enriched (Figure 1C).

The estimated dynamic range of protein

abundance covered �7 orders of magni-

tude (Figure 1D). Notably, among our

203 glycoproteins, 30 have already been

used as plasma biomarkers for various
diseases as approved by the Food and Drug Administration

(FDA) (Anderson, 2010; Figure 1D). Taken together, these ana-

lyses indicate that these data provide a high-quality, comprehen-

sive dataset for cross-tumor analysis of human plasma/serum

proteins.

Circulating Blood Glycoproteins Linked to Diverse
Cancer Drivers
To further explore whether the consequences of common

genomic lesions across different tumors were apparent in

the generated protein profiles, we explored the relationship

between the list of known cancer genes and the measured

blood glycoproteins using the Reactome signaling pathway

database (Liu et al., 2014; Matthews et al., 2009). Specifically,

we asked whether the regulated glycoproteins identified in this

study were significantly associated with cancer drivers based

on their functional implication in common signaling pathways

documented in Reactome. We therefore combined information

from the Catalogue of Somatic Mutations in Cancer (COSMIC)
eports 23, 2819–2831, May 29, 2018 2821



Figure 2. Unsupervised Clustering Based on 203 Glycoproteins in

the Cross-Tumor Dataset

Arrows mark the paired samples of seven experimental replicates (Rep1–7)

across 155 subjects. For further details, see STAR Methods.
census database (Forbes et al., 2015), the Vogelstein onco-

gene list (Vogelstein et al., 2013), and the recently published

HotNet2 pan-cancer (Leiserson et al., 2015; Figure 1E). This

analysis yielded 661 genes as reported cancer drivers (Fig-

ure 1E). We found that 74 glycoproteins quantified in our study

were strongly interconnected with 118 of 661 cancer drivers in

the functional interaction network (249 interaction network

edges; Figure 1E, right; Table S7). The degree of the intercon-

nection is significantly higher than expected by chance in

random networks (p < 0.001; Figure 1F). The results therefore

establish the datasets as a valuable resource to link blood

glycoprotein abundance changes to different types of tissue

cancers.

Global N-Glycoprotein Expression Patterns of Five
Carcinomas
To explore the variation in N-glycoprotein patterns between the

different groups of cancer patients in a cross-tumor study, we

used hierarchical cluster analysis to group the samples accord-

ing to the quantitative protein profiles. As an initial quality check,

we performed unsupervised clustering and observed that,

among all 162 measured blood samples, the seven paired sam-

ples for whole-process replicates (i.e., 7 experimental replicates)

always clustered directly adjacent to one another, indicating high

experimental reproducibility (Figure 2). The patterns generated

from the 162 blood samples revealed two main clusters and

several small sub-clusters. Interestingly, neither the main clus-

ters nor the sub-clusters of blood samples were driven by tumor

tissue type, and only modest clustering was observed for Proc

(Figure 2). Neither the cancer samples nor their controls clus-

tered according to original cohort or batch processing, thus indi-

cating both significant individual biological variations and tumor

tissue heterogeneity. Overall, the data indicate that hierarchical

clustering based on the obtained plasma proteome profiles of

the tested cancer cases does not distinguish tumor tissue origin

at the early, localized disease stage.
2822 Cell Reports 23, 2819–2831, May 29, 2018
Blood Protein Expression across Five Carcinoma
Cohorts
We next perceived protein significance and fold change (FC) ob-

tained by MSstat analysis (log2-transformed FC; Table S6; Choi

et al., 2014) for each glycoprotein between all cancer types and

their respective controls (FCCancer/Ctrl). The FCCancer/Ctrl distribu-

tions indicate that most blood glycoproteins harbor small

expression changes in early carcinomas (Figure 3A). To assess

the FC variation related to the total procedure, we spiked to

each blood sample an equal amount of the bovine N-glycopro-

tein fetuin-B before glycoprotein enrichment, and, based on its

successive measurements, we confirmed a minimal method

variation (Figure S1C). The maximal FCs observed were 2.7

and 2.5 (i.e., original-scale FCs) for the proteins Angiopoietin-

related protein 7 (ANGPTL7) and Thrombospondin-1 (THBS1)

in Proc and CRC respectively, whereas approximately 90% of

the FC data were within the range of ±1.2-fold (i.e., correspond-

ing to log2FC = j0.26j; Figure 3A). Consequently, we defined dif-

ferential expression as the subset of proteins that changedwith a

FC above j1.2j and statistical cutoff of the nominal p value below

0.05. This permissive statistical cutoff in the initial analysis

was used to maximize the detection of common glycoprotein

changes between five independent tissue cancers. Several pro-

teins were shared between multiple cancer cohorts, particularly

THBS1, which was differentially regulated in all tissue carci-

nomas except in the pancreas (Figures 3B–3F; Table S1).

Among the group of 74 glycoproteins that we found to be

directly interconnected with 118 cancer drivers (Figure 1E), 25

proteins were significantly differentially regulated in at least

one of the carcinomas (Table S7). We highlighted these proteins

and their respective cancer drivers in the network for each can-

cer (Figures 3G–3K). These plots allowed us to visually compare

the ‘‘driver hubs’’ that emerged in each of the five functional net-

works. Comparative analysis of the perturbed networks and their

consequences on glycoprotein abundance showed that three

known oncogenes—TP53, the gene with the highest mutation

frequency across tumors (Petitjean et al., 2007); the key tumor

suppressor gene adenomatous polyposis coli (APC; Aoki and

Taketo, 2007); and a tumor progression cell surface proteogly-

can, syndecan 4 (SDC4; Beauvais and Rapraeger, 2004)—

were found to be emphasized in all five networks of regulated

plasma proteins (Figures 3G–3K). One of the known mutated

genes in Panc, SMAD family member 4 (SMAD4), also known

as deleted in Panc, locus 4 (DPC4) (Majumder et al., 2015),

was interconnected with apolipoprotein B (APOB), which

significantly changed in pancreatic and CRC blood (Figure 3G).

In another case, the known Lung driver PIK3CA (Scheffler

et al., 2015) was highlighted because of its connection to

interleukin 1 receptor accessory protein (ILI1RAP), upregulated

in the plasma of Lung (Figures 3H and S2A). These results sug-

gest that different oncogenic mutations might influence the

blood protein abundance of functionally related proteins as an

outcome window demonstrating various cancer diseases.

Shared Glycoprotein Signatures across Carcinomas
Reveal a Common Role for Platelets
We hypothesize that two types of blood protein changes exist in

the plasma/serum of tumor patients—proteins that are specific
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Figure 3. Variation and Functional Links be-

tween Glycoproteins and Oncogenes

(A) Violin plots representing distributions of all

calculated glycoprotein FCCancer/Ctrl across five

cancer types.

(B–F) Five volcano plots corresponding to five

carcinomas (n = 29–36 subjects per cohort)–

colorectal cancer (CRC; B), lung cancer (Lung; C),

pancreatic cancer (Panc; D), ovarian cancer

(OC; E), and prostate cancer (Proc; F)–visualized

with differentially expressed proteins (p < 0.05);

downregulated proteins are presented as blue

circles and upregulated ones as red circles (FC >

j±1.2j).
(G–K) Functional relation networks of 118 cancer

drivers and 74 glycoproteins for all five carci-

nomas: CRC (G), Lung (H), Panc (I), OC (J), and

Proc (K). Glycoproteins are highlighted as up- or

downregulated (red or blue circles, respectively)

when significantly changed in cancer cohorts.

Cancer drivers related to blood-regulated proteins

in cancer cohorts are highlighted in yellow. Green

arrows indicate common cancer drivers: p53,

SDC4, and APC.
to a certain cancer and those common tomanymalignancies. To

test this hypothesis, we compared the lists of differentially abun-

dant proteins for the five cancer cohorts (Figure 4A). The protein

THBS1 significantly changed expression in the blood of four of

five carcinomas—CRC, Lung, Proc, and OC (Figures 4A and

4B). Somewhat surprisingly, in ovarian carcinoma, THBS1 was

downregulated (Figure 4B), indicating that common blood pro-

teins modulated across carcinomas can nevertheless have

different responses depending on the tissue of origin. The

same results were observed for other estrogen-positive tumors,

such as breast cancer (Suh et al., 2012). ANGPTL7 showed

expression changes in three of the cancer cohorts (the CRC,

pancreatic, and prostate cohorts; Figures 4A and S2B), whereas

10 further glycoproteins were significantly altered in at least two

of the five cancers (Table S8).
Cell R
Intriguingly, three of the top pathways

that appear as most relevant for the pro-

tein set significantly altered in more than

one carcinoma type were associated

with blood platelets; 9 of 12 proteins

were involved in platelet activation,

signaling, and aggregation (Figure 4C;

Table S8) or were secreted from activated

platelets (Wijten et al., 2013; Figures 4A

and S2C). Among these is THBS1, a pro-

tein differentially regulated in multiple

cancers (Figure 4B). Previous findings

suggest that proteins that covary in terms

of expression levels over different condi-

tions tend to be involved in the same

biological modules (Foster et al., 2006).

Interestingly, among 9 common proteins

associated with platelets, 4 positively

and significantly correlate with THBS1
(Spearman’s rank correlation coefficients (rho) R 0.3, p < 0.01)

in cancer patients (Figure S2C). The four proteins with the high-

est positive correlation with THBS1 expression (rho > 0.4, p <

1.0e�4) in the cancer blood were platelet glycoprotein V (GP5),

tissue inhibitor of metalloproteinases 1 (TIMP1), multimerin

1 (MMRN1), and osteonectin (SPARC) (Figure 4D). The plasma

levels of these proteins followed regulatory patterns similar to

THBS1 for all five cancer cohorts, including Panc and OC (Fig-

ure 4E). Also, remarkably, these proteins are directly linked to

platelet function or structure (Table S8) and their abundance

levels in the plasma of cancer patients were also correlated (Fig-

ure 4D, left). In contrast to THBS1, the common cancer protein

ANGPTL7 is not related to platelet function and did not show

any correlation with other platelet proteins in terms of their abun-

dance levels (Figure 4D, right). This suggests that altered platelet
eports 23, 2819–2831, May 29, 2018 2823
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Figure 4. Blood Protein Changes in Five Carcinomas

(A) Venn diagram and its summary table of shared significantly regulated proteins between cancers.

(B) THBS1 log2 protein abundance in five cancer cohorts and their respective controls (p value cutoffs: ***p < 0.001, **p < 0.01, *p < 0.05). THBS1measurements in

five non-cancerous groups were remarkably stable.

(C) Overrepresented biological processes (FDR < 0.05) in the shared proteins set revealed by statistical analysis based on the Reactome pathway database

(Matthews et al., 2009).

(D) Proteins that correlate with THBS1 in cancer samples based on Spearman’s rank correlation coefficients (rho) (criteria: Spearman rho > j0.4j, p < 0.0001)

calculated between THBS1 concentrations and all other quantified glycoproteins. Correlations between the top two cancer proteins and platelet-related proteins

are shown by color and intensity of shading as presented in the legend.

(E) Log2 protein abundance of four proteins that positively covary with THBS1 (rho > 0.4, p < 1.0e�05). Boxplots indicatingmedian line (for n = 14–22 subjects) and

the maximum and minimum of the given data (upper and lower hinges, respectively).

See also Figure S2.
protein expression, exemplified by THBS1, a major blood regu-

lator of angiogenesis (Jiménez et al., 2000), is a common feature

in cancerous states.

Random Forest-Based Classification Analysis of Cancer
Types in the Cross-Tumor Dataset
Next we sought to define predictive blood signatures for each in-

dividual cancer type within the cross-tumor dataset. As a first

step, we performed random forest-based classification analysis

(Breiman, 2001), treating each carcinoma type separately; i.e.,

patient samples from a specific cancer type were compared

with the corresponding controls. To account for the demo-

graphic characteristics, the random forest analysis was

repeated, including covariates such as age and gender, where

applicable (adjusted model). Although the incidence of other

confounders (e.g., smoking, obesity) can conceivably be found

sporadically in both the control and cancer subjects, we were
2824 Cell Reports 23, 2819–2831, May 29, 2018
unable to test these additional confounders in a more systematic

way. Based on random forest analysis, the highest prediction ac-

curacy was demonstrated in cases of pancreatic and prostate

carcinoma (86% and 65% out-of-bag accuracy, respectively;

non-adjusted model; Figure 5A). The results of this adjusted

analysis for the pancreatic and prostate cohorts were very

similar to the non-adjusted analysis results (Figure 5A). By

contrast, colorectal, lung, and ovarian carcinomas could not

be sufficiently separated from their respective controls at this

stage (out-of-bag accuracies = 57%, 48%, and 51%, respec-

tively; Figure 5A), indicating the relative difficulty of early disease

prediction using the plasma proteome for these cancer types, a

difficulty that could be ascribed to the larger individual variation

of the cancers in question.

To further examine potential cancer-related functions of blood

proteins identified in our cross-tumor study, we performed

feature selection via stability selection analysis (Meinshausen
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Figure 5. Random Forest-Based Classifica-

tion Analysis of Cancer Types in the Cross-

Tumor Dataset

(A) ‘‘Out-of-bag’’ accuracy estimates for non-

adjusted and age- and gender-adjusted models of

random forest classifiers provided. N corresponds

to the number of subjects per cancer cohort.

(B and C) List of top-scoring proteins generated

via stability selection analysis for pancreatic

(B) and prostate (C) carcinoma cohorts. Prioritized

as top-scoring predictors are all proteins with

importance scores above a threshold, set as 1/10

of the highest importance score assigned within

each cohort.

See also Figure S3 for colorectal, lung, and ovarian

carcinoma cohorts.
and Buhlmann, 2010), including age and gender as covariates.

The importance scores of top predictor proteins are shown for

well-separated Panc and Proc (Figures 5B and 5C) and for the

other three cancer types (Figures S3A–S3C). A high importance

score was assigned to age (covariate = ‘‘years of life’’) in 4 of the

5 cancer cohorts in initial cross-tumor analysis (Figure S3D).We

observed that roughly half of the proteins selected via stability

selection analysis are common to all cancer types (Figures 5

and S3), whereas the other half are cancer type-exclusive. The

primary shared proteins include fibronectin (FN1), inter-alpha-

trypsin inhibitor heavy chain H3 (ITIH3), THBS1, and ANGPTL7.

By contrast, carnosine dipeptidase 1 (CNDP1), polymeric immu-

noglobulin receptor (PIGR), and butyrylcholinesterase (BCHE) in

pancreas and RNase A (RNASE1), pregnancy zone protein

(PZP), and peptidase inhibitor 16 (PI16) in Proc are examples

of tissue-specific markers (Figure 5C).

Common and Specific Blood Proteins in Cancer
To take advantage of the cross-tumor study design, we visual-

ized and compared the individual stratification ability via receiver

operating characteristics (ROC) analysis—respective areas un-

der the ROC curves (AUC)—for FN1 and THBS1 as examples

of shared cancer proteins and PIGR and PZP as examples of tis-

sue-specific markers (Panc and Proc; Figures 6A–6D). The box-

plots of PIGR and FN1 for Panc and PZP and THBS1 for Proc

illustrate the protein distribution against matched controls (Fig-

ures 6B and 6D; see also Figure 4B for THBS1). THBS1, as

mentioned above, changed expression in 4 of 5 cancers and pro-

vided almost equally good separation in Proc, OC, CRC, and

Lung carcinomas (AUC values; Figures 6C), whereas the pancre-

atic candidate marker FN1 was equally capable to distinguish

lung and prostate carcinomas (Figure 6A). In contrast, PIGR

changed expression solely in the pancreas (Figure 6B, right)

and yielded a strong stratification capability for Panc exclusively

(Figure 6A, right). PZP, a hormone-sensitive protein, demon-

strated significant downregulation in the serum of Proc patients
Cell R
and stratified them reasonably well

against benign prostate disease (Fig-

ure 6C, right). PZP also stratified OC

cancer in female subjects and a had ten-

dency for elevated plasma levels in these
patients (Figure 6C, right). However, PZP is a quite specific

to prostate malignancies because, in reality, these hormone-

related cancers (i.e., OC and Proc) cannot be confounded. Inter-

estingly, PZP and SHBG have previously been reported in a

smaller cohort of blood samples as highly abundant proteins in

women versus men (Geyer et al., 2016). Notably, these findings

were consistent in our data, and female plasma indeed con-

tained higher levels of these two proteins (Figure S4). The pro-

teins common to carcinomas, interestingly, tend to represent

the higher protein FC in the cancer plasma compared with tu-

mor-specific (e.g., Panc: FN1 = j2.5 ± 0.2j versus PIGR =

j1.7 ± 0.2j; Proc: THBS1 = j1.8 ± 0.3j versus PZP = j1.5 ± 0.2j).
Nevertheless, the difference of the respective AUC values for

FN1 (AUC = 0.938) versus PIGR (AUC = 0.844) in pancreatic

and THBS1 (AUC = 0.755) versus PZP (AUC = 0.773) in Proc

were not statistically significant (bootstrap-based p = 0.262

and 0.787, respectively; Figures 6A–6C, right), suggesting that

the specific maker candidates can achieve a similar predictive

power than common markers even when the FCs are smaller.

We hereby confirm that the markers common to carcinomas

generally represent the highest protein FC in the cancer plasma

and effective stratification abilities but that specific markers are

necessary to make any blood cancer signature tissue type

specific.

Common and Cancer-Specific Blood Proteins in the
Independent Cohorts of Pancreatic and Prostate
Carcinoma
To verify the putative glycoprotein markers for Proc and Panc

discovered by the cross-tumor analysis either as tissue-specific

or common cancer changes, we collected two additional, inde-

pendent cohorts of localized pancreatic (n = 45) and prostate

(n = 84) carcinoma (Table S5). Likewise, we extracted glycopro-

teins from 132 plasma samples (i.e., 129 clinical samples and 3

identical plasma replicates), measured them again by SWATH-

MS, and analyzed them for protein statistical significance in an
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Figure 6. Common and Specific Predictors

in the Plasma Proteome of Pancreatic and

Prostate Cancer

(A–D) Individual proteins selected as common (FN1

and THBS1) or specific (PIGR and PZP) cancer

markers in pancreatic (A) and prostate (C) carci-

noma cohorts visualized by ROC curves. The

confidence interval (CI) of 95% for each ROC curve

is presented in parenthesis. All traces below the

AUC cutoff value of 0.7 are presented with dashed

lines. Respective AUCs were compared by using a

bootstrap test for two correlated ROC curves.

Boxplots were generated from log2 abundance

of the respective proteins: FN1 and PIGR for

Panc (B) and THBS1 and PZP for Proc (D) cohort.

Fold change and p values for each respective

marker were obtained from MS stats analysis. Line

and plot colors correspond to the respective can-

cers. Boxplots indicating median line (for n = 14–22

subjects) and the maximum and minimum of the

given data (upper and lower hinges, respectively).
independent experiment (Table S2). In total, we identified and

functionally annotated 356 plasma glycoproteins, 272 of which

were identified in the cross-tumor discovery cohort and 294

and 243 in the prostate and pancreatic validation cohorts,

respectively (Table S6).

To investigate the status of individual proteins in the respective

validation sets, we first evaluated the predictive performance of

the discovered candidates above (Figures 5B and 5C), starting

from the top protein with the highest stability selection score.

Adjusted (for age and gender) and non-adjusted AUC analysis

revealed 8 candidates for pancreas—FN1, CNDP1, ITIH3,

PIGR, BTD, BCHE, F13B, and HRG—and 2 for prostate—PZP

and THBS1—tissue (Table S3) that remain significantly predic-

tive of cancer. The corresponding p values of AUC scores for in-

dividual proteins (DeLong test, comparison with chance level

AUC = 50%) were corrected for the number of tests performed

via FDR-based correction (Benjamini and Hochberg, 1995).
2826 Cell Reports 23, 2819–2831, May 29, 2018
AUC scores with FDR-corrected p < 0.1

in adjusted and non-adjusted analyses

were considered significant (Table S3).

To account for demographic con-

founders in differential expression anal-

ysis of top selected candidates, we used

a linear regression model that relates indi-

vidual protein expression levels (response

variable) to the group assignment (i.e.,

control or cancer) and also to confounders

such as age and gender (Table S4; Fig-

ure 7). Of seven predictive candidates,

the final four glycoproteins (FN1, ITIH3,

CNDP1, and PIGR) also retained signifi-

cant differential expression in the plasma

of Panc patients for both discovery and

validation cohorts when accounting

for age and gender (FDR-corrected

p < 0.1; Table S4; Figure 7A). For localized

Proc, two predictive glycoproteins, PZP
and THBS1, remained significantly differentially expressed

(FDR-corrected p < 0.1) in the Proc serum of discovery and

validation cohorts when accounting for age (dot plots;

Figure 7B).

In summary, our additional experiments (Figure 7) confirmed

that two pancreatic tissue-specific proteins from cross-tumor

analysis, PIGR and CNDP1, classified the localized cancer sta-

tistically different from the chance level (i.e., AUC = 50%) with

ROC AUC values of 72% and 75% in the validation data (n =

45, FDR-corrected p = 0.02 and p = 0.001, respectively; Fig-

ure 7A). These AUC scores were slightly lower compared with

those obtained in the initial pancreatic cohort (n = 29, AUC =

85% and 86% for PIGR and CNDP1, respectively; FDR-cor-

rected p < 0.0001; Figure 7A). Two common cancer proteins

from the initial Panc panel, FN1 and ITIH3, related to platelets,

exhibited slightly higher predictive performance for Panc

compared with tissue-specific proteins, with AUC values of



78% and 80%, respectively, and with p values far beyond the

chance level of AUC = 50% (FDR-corrected p < 0.001). The

performance of the hormone-specific marker PZP in the Proc

validation data was acceptably higher than would have been ex-

pected by chance, with AUC = 65% (FDR-corrected p = 0.03).

THBS1, another common cancer protein from cross-tumor anal-

ysis, predicted cancer status compared with benign prostate hy-

perplasia for both the discovery and validation cohorts, with

similar AUC values of 73% and 79%, respectively (FDR-cor-

rected p < 0.001; Figure 7B).

The combination of proteins, such as the entire composite

model of 13 pancreatic or 17 prostate candidates resulting

from the above stratification analysis (i.e., a random forest

model) could not predict either pancreatic or prostate tumor tis-

sue in additional blood validation cohorts with AUC values as

high as in initial discovery cohorts (Figures S5A–S5C). The

Pancmodel of 13 proteins predicted tumors with 71% accuracy,

achieving an ROCAUC value of 66% in the test cohort, indicating

acceptable overall predictive performance, although at lower

levels compared with the discovery cohort (AUC = 0.96, 95%

confidence interval [CI] = 0.9–1.0) (Figure S5A). In the validation

prostate cohort, the combination of 17 selected proteins pre-

dicted the cancer tissue only slightly better than random assign-

ment (AUC = 0.55, 95% CI = 0.43–0.68). A principal-component

analysis (PCA) plot based on pancreatic composite model

visualized a moderate, respective control-versus-cancer sepa-

ration in both the training and validation datasets (Figures S5C

and S5D).

Interestingly, THBS1, FN1, and ITIH3 are commonly changed

cancer platelet proteins identified in the initial cross-tumor anal-

ysis whose ‘‘individual’’ predictive ability for pancreatic and

prostate carcinomas remains stable in the independent popula-

tions. Common markers of blood cancerous changes together

with tumor type-specific proteins, such as PIGR and CNDP1

for pancreas and PZP for prostate tissue, although confirming

their predictive ability and differential expression in the additional

cancer subjects, still need to be verified in follow-up experiments

against a reference population containing other diseases, such

as benign tumors, inflammatory disease, chronic pancreatitis,

or diabetes.

DISCUSSION

In the present proteomics study, we analyzed the blood samples

of 284 subjects, generating the data resource that allowed us to

reveal molecular similarities and differences within the plasma/

serum proteome in different human cancers: colorectal, pancre-

atic, lung, prostate, and ovarian carcinomas. To date, no current

blood proteomics investigation combines multi-cancer compar-

isons within the same analysis; such studies rely on meta-ana-

lyses and can be confounded by variable pre-analytical factors,

proteomics techniques, and measurement machines (Amess

et al., 2013). To avoid experimental bias by using one universal

control group for all comparisons, our study design included,

for each cancer type, a matched control from each hospital cen-

ter. To increase the analytical depth of the blood proteome, we

subjected the samples to glycoprotein enrichment and acquired

proteomics data using reproducible, highly multiplexed SWATH-
MS. The entirely independent collection and analysis of external

blood samples, totaling 129, allowed us to further test putative

biomarker candidates previously discovered by initial cross-tu-

mor analysis of the 155 individuals. Across all samples, we

examined whether the molecular systems perturbed in different

tumors represent a common, systemic response to cancer or

whether the protein biomarkers are specific to each cancer

type. Based on our systems-level analysis, although reporting

high sensitivity to reflect cancer metabolism, common markers

ostensibly are not necessarily specific to individual cancers.

We demonstrated that the proteins FN1, THBS1, and ITIH3,

involved in platelet activation, signaling, and aggregation, are

those that change across different tissues in early cancer and

appear to be sensitive to general cancer biology in the blood

(Figure 5). THBS1 expression in cancer disease previously deliv-

ered somewhat controversial results (Miyata and Sakai, 2013),

probably because of its complex function in the process of tissue

angiogenesis related to tumor development and staging (Kazer-

ounian et al., 2008). The dysregulated platelet proteome discov-

ered in this cross-tumor study is in line with two recent publica-

tions demonstrating that blood-isolated platelet mRNA profiles

distinguished accurately between carcinomas (localized or

advanced metastatic stage) and healthy individuals (Best et al.,

2015). Our study detected carcinoma-specific markers (e.g.,

CNDP1 and PIGR for pancreatic carcinoma), some of which

the literature had previously reported as blood biomarkers.

PZP, confirmed here as significantly changed in the prostate

serum, has been reported as a protease inhibitor that forms a

complex with non-catalytic prostate-specific antigen (PSA),

which has been approved for early serum screening of Proc

(Christensson et al., 1990). Of the differentially expressed pro-

teins identified in the Panc plasma, PIGR has previously been

described as one of the biomarkers overexpressed in the fluid

of pancreatic cysts with malignant potential (Park et al., 2015)

and has also recently been reported as elevated in the plasma

of Panc patients, but at levels not significantly different from

those measured in patients with chronic pancreatitis (Sogawa

et al., 2016). Although some of our specific and common cancer

proteins confirmed their significant ability to predict localized

Panc in the validation experiment, our control samples were

limited to healthy individuals. This could result in a higher rate

of false positive results when testing our predictive candidates

against subjects with benign tumors and inflammation disease,

such as diabetes or chronic pancreatitis, compared with the re-

sults observed in our study. PIGR levels, together with CNDP1,

FN1, and ITIH3, were indeed significantly altered in the plasma

of localized Panc in the two independent geographic cohorts

(i.e., University Hospital Olomouc, Czech Republic, and Univer-

sity of Washington, United States; Figure 7A). Further follow-up

experiments will be required to determine whether the

pancreas-specific PIGR and CNDP1 plasma protein levels, indi-

vidually or in combination with other cancer-sensitive markers

(i.e., FN1 and ITIH3), can distinguish between chronic pancrea-

titis and localized pancreatic carcinoma. Two serum candidates,

PZP as prostate tissue-specific and THBS1 as a common cancer

marker, both confirmed their individual predictive ability for pros-

tate carcinoma when tested against control subjects with benign

prostatic disease. Further studies are necessary to characterize
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Figure 7. Performance of Individual Proteins in Independent Validation Cohorts of Prostate and Pancreatic Carcinoma

(A and B) ROC curves for individual markers corresponding to age and gender non-adjusted analyses in the discovery and test datasets of pancreatic (A) and

prostate (B) cancer cohorts. Test cohort summary statistics (i.e., specificity, sensitivity, and accuracy at 95% CI) of individual proteins were calculated at an

(legend continued on next page)
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blood protein biomarkers of a broader range of cancers and to

evaluate their potential clinical utility to provide some indication

of cancer type in combination with tissue-specific markers. In

contrast to studies of advanced tumor stages, wherein blood

signatures could reflect organ-specific malignancy, this study

aligns the real challenge facing proteomics methods whose

aim is to detect early-stage cancer disease in the blood of

asymptomatic subjects. This study also indicates that emerging

proteomics technologies, such as SWATH-MS, that provide

comprehensive, accurate proteinmeasurements can enable effi-

cient strategies for early and non-invasive cancer detection. Until

recently, the technological challenge of measuring blood pro-

teins, many of which are low in abundance and only observed

under specific conditions, has limited proteomics analysis

across large-scale clinical studies to the measurement of fewer

than a hundred proteins in a maximum of a few dozen samples.

Combining SWATH-MS and N-glycosite enrichment provides

more comprehensive plasma analysis than previous proteomics

studies, allowing thousands of glycopeptides to be reproducibly

monitored over hundreds of clinical samples.
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Jiménez, B., Volpert, O.V., Crawford, S.E., Febbraio, M., Silverstein, R.L., and

Bouck, N. (2000). Signals leading to apoptosis-dependent inhibition of neo-

vascularization by thrombospondin-1. Nat. Med. 6, 41–48.

Kandoth, C., McLellan, M.D., Vandin, F., Ye, K., Niu, B., Lu, C., Xie, M., Zhang,

Q., McMichael, J.F., Wyczalkowski, M.A., et al. (2013). Mutational landscape

and significance across 12 major cancer types. Nature 502, 333–339.

Kazerounian, S., Yee, K.O., and Lawler, J. (2008). Thrombospondins in cancer.

Cell. Mol. Life Sci. 65, 700–712.

Keller, A., Nesvizhskii, A.I., Kolker, E., and Aebersold, R. (2002). Empirical sta-

tistical model to estimate the accuracy of peptide identifications made by MS/

MS and database search. Anal. Chem. 74, 5383–5392.

Kunszt, P., Blum, L., Hullár, B., Schmid, E., Srebniak, A., Wolski, W., Rinn, B.,

Elmer, F.-J., Ramakrishnan, C., Quandt, A., and Malmström, L. (2015). iPortal:
2830 Cell Reports 23, 2819–2831, May 29, 2018
the swiss grid proteomics portal: Requirements and new features based on

experience and usability considerations. Concurr. Comput. 27, 433–445.

Leiserson, M.D., Vandin, F., Wu, H.T., Dobson, J.R., Eldridge, J.V., Thomas,

J.L., Papoutsaki, A., Kim, Y., Niu, B., McLellan, M., et al. (2015). Pan-cancer

network analysis identifies combinations of rare somatic mutations across

pathways and protein complexes. Nat. Genet. 47, 106–114.

Liu, Y., H€uttenhain, R., Surinova, S., Gillet, L.C., Mouritsen, J., Brunner, R.,

Navarro, P., and Aebersold, R. (2013). Quantitative measurements of N-linked

glycoproteins in human plasma by SWATH-MS. Proteomics 13, 1247–1256.

Liu, Y., Chen, J., Sethi, A., Li, Q.K., Chen, L., Collins, B., Gillet, L.C., Wollsc-

heid, B., Zhang, H., and Aebersold, R. (2014). Glycoproteomic analysis of

prostate cancer tissues by SWATH mass spectrometry discovers N-acyletha-

nolamine acid amidase and protein tyrosine kinase 7 as signatures for tumor

aggressiveness. Mol. Cell. Proteomics 13, 1753–1768.

Liu, Y., Buil, A., Collins, B.C., Gillet, L.C., Blum, L.C., Cheng, L.Y., Vitek, O.,

Mouritsen, J., Lachance, G., Spector, T.D., et al. (2015). Quantitative variability

of 342 plasma proteins in a human twin population. Mol. Syst. Biol. 11, 786.

Majumder, S., Chari, S.T., and Ahlquist, D.A. (2015). Molecular detection of

pancreatic neoplasia: Current status and future promise. World J. Gastroen-

terol. 21, 11387–11395.

Matthews, L., Gopinath, G., Gillespie, M., Caudy, M., Croft, D., de Bono, B.,

Garapati, P., Hemish, J., Hermjakob, H., Jassal, B., et al. (2009). Reactome

knowledgebase of human biological pathways and processes. Nucleic Acids

Res. 37, D619–D622.

McPhail, S., Johnson, S., Greenberg, D., Peake, M., and Rous, B. (2015).

Stage at diagnosis and early mortality from cancer in England. Br. J. Cancer

112 (Suppl 1), S108–S115.

Meinshausen, N., and Buhlmann, P. (2010). Stability selection. J. R. Stat. Soc.

Series B Stat. Methodol. 72, 417–473.

Miyata, Y., and Sakai, H. (2013). Thrombospondin-1 in urological cancer: path-

ological role, clinical significance, and therapeutic prospects. Int. J. Mol. Sci.

14, 12249–12272.

Park, J., Yun, H.S., Lee, K.H., Lee, K.T., Lee, J.K., and Lee, S.Y. (2015). Discov-

ery and Validation of Biomarkers That DistinguishMucinous andNonmucinous

Pancreatic Cysts. Cancer Res. 75, 3227–3235.

Petitjean, A., Achatz, M.I., Borresen-Dale, A.L., Hainaut, P., and Olivier, M.

(2007). TP53 mutations in human cancers: functional selection and impact

on cancer prognosis and outcomes. Oncogene 26, 2157–2165.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Affi-gel Hydrazine resin, 1 l Bio-Rad Cat#153-6050

N-glycosidase F, rec. E. coli. Roche Diagnostics AG Cat#11365193001

PNGaseF (glycerol free), 75,000 units,

500,000 units/ml

BioConcept AG Cat#P0705L

Fetuin-B Sigma Cat#F3004-25MG

Human N-glycoprotein SWATHatlas (Liu et al., 2014) JPT Peptide Tech, Berlin, Germany

Trypsin Promega Cat#V5113

AB beta-Galactosidase digested Sigma Cat#4333606

Critical Commercial Assays

iRT-kit WR Biognosys N/A

Deposited Data

COSMIS v71 https://cancer.sanger.ac.uk/cosmic N/A

ProteomeXchange (Proteomics data, raw

data files)

http://proteomecentral.

proteomexchange.org

PXD004998

SWATH library (TraML format) http://proteomecentral.

proteomexchange.org

PXD004998

REACTOME DB (Matthews et al., 2009) N/A

List of cancer drivers Table S7, excel file N/A

Proteomics data Table S5, excel file N/A

Software and Algorithms

Analyst TF 1.5.1 software AB Sciex N/A

ProteoWizard (version 3.0.3316) (Chambers et al., 2012) N/A

OpenMS tool https://www.openms.de/

Trans-Proteomic Pipeline (TPP v4.6

OCCUPY rev 0, Build 201208211847)

(Keller et al., 2002) (Shteynberg et al., 2011) N/A

OpenSWATH tool (Röst et al., 2014) http://www.openswath.org/en/latest/

TRIC algorithm (Röst et al., 2016) N/A

SWATH2stats (Blattmann et al., 2016) http://bioconductor.org/packages/release/

bioc/html/SWATH2stats.html

MSstats (version MSstats.daily 2.3.5) (Choi et al., 2014) http://bioconductor.org/packages/release/

bioc/html/MSstats.html

Cluster 3.0 v.1.52 (Eisen et al., 1998) N/A

Cytoscape (Shannon et al., 2003) N/A

Other

96-Well Sirocco plate Waters Cat#186002448

96-Well MACROSpin G10,40-400 ml, ea.

Gel Filtration

Nest Group Cat#SNS S010L

MACROSpin Plate-VydacSilicaC18 Nest Group Cat#SNS SS18V

3-mm 200 Å Magic C18 AQ resin MichromBioResources Cat#2847
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the LeadContact Dr. Tatjana

Sajic (e-mail: sajic@imsb.biol.ethz.ch).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Clinical Samples
In the initial study we used five clinical cancer cohorts. Sample collection and procession were standardized for all five cancer types

studied to increase the chance of detecting biological signals. The protocols of the blood collection, processing, and storage within

each clinical cohort were approved by the regional ethics committees in each individual health institution before starting patient

enrollment and sample collection. The subjects of CR, Lung, and pancreatic localized carcinoma with their respective control sub-

jects were recruited at the University Hospital Olomouc in the Czech Republic, which was approved by the ethics committees of the

Medical Faculty at the University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University, Olomouc. All individ-

uals have signed an informed consent document.

The blood plasma samples from the above cancer cohorts were prepared according to a plasma protocol described previously

(Surinova et al., 2015). In brief, blood was collected into tubes processed with EDTA and was directly centrifuged at 6,067 g for

3 min at 4�C. Plasma was transferred into a fresh tube, frozen at �20�C, and then stored at �80�C.
The samples of epithelial ovarian cancer and their respective control subjects were collected at Skåne University Hospital and

ethical permission was approved by the Lund University Ethics Committee. The patients gave written informed consent for partici-

pation. All blood samples from the ovarian cancer cohort were drawn into EDTA-coated tubes and were centrifuged at 2000 g, for

10 min and the plasma was stored in �80�C within two hours from sampling.

The Proc cohort was approved by the Ethics Committee of the Canton of St. Gallen, Switzerland. All patients have signed consent

for participation. Benign prostate hyperplasia samples were used as the corresponding control samples. Blood serum samples were

prepared starting from 8 mL of blood collected in a serum separator tube containing clot activator and gel (Vacutainer, SSTTM II

Advance, REF 367953; Becton Dickinson) as described previously (Cima et al., 2011).

The cancer samples of Cross-Tumor data were consecutively recruited as diagnosed at early localized (Stage I, n = 53) or locally

advanced clinical stage (Stage II and III, n = 30). The male and female subjects were involved. All patients gave written informed con-

sent for participation. The CRC and Proc samples at the localized stage of disease were partially selected from the previously pub-

lished clinical studies (Surinova et al., 2015) and (Cima et al., 2011) respectively. The Proc cohort consisted of 22 carcinomas and 14

respective controls, while the other four cancer cohorts consisted of 15 or 16 carcinomas and 14 or 15 respective controls resulting in

a total of 155 individuals’ blood samples included in this study (Table S1).

In the validation phase we used 129 additional clinical blood samples. Proc cohort (n = 84) was approved by the Ethics Committee

of the Canton of St. Gallen, Switzerland. Blood serum samples were prepared in the same way as the samples of the initial training

prostate cohort as described above. Panc dataset (n = 45) was approved by the Institutional Review Board at the University of Wash-

ington (Seattle, WA).The plasma samples were collected into purple-top tubes (Becton Dickinson, Franklin Lakes, NJ) with EDTA, the

potassium salt, as an anticoagulant. The blood was centrifuged at 330 g for 20 min.

Clinico-pathological details of 284 human subjects for cross-tumor analysis and prostate and pancreatic validation experiment are

present in the excel Table S5 Patient’s characteristics are summarized in Table S1 and Table S2.

METHOD DETAILS

Isolation of de-N-glycopeptides from blood samples
The 294 blood samples were prepared by solid-phase extraction of N glycoproteins as previously described (Cima et al., 2011; Sur-

inova et al., 2015; Zhang et al., 2003), then applied in a high-throughput manner (Surinova et al., 2015). The initial 162 samples were

processed in four batches. In each batch, samples were randomized and experimental replicates of the same blood samples were

included in parallel. The samples were prepared by using multi-channel well plates (Sirocco plate ref: 186002448 Waters) which en-

ables high-throughput ‘‘in-well’’ sample processing. First, the proteins were treated with sodium periodate solution to oxidize the

glycan moieties and then purified by G-10 gel filtration cartridges (Nest Group, Southborough, MA). The samples were conjugated

overnight to Affi-gel Hydrazine resin (Bio-Rad) that was loaded in each well of Sirocco plate. With extensive washing procedure we

removed unbound proteins from the matrix. Overnight protein digestion (protein/trypsin ratio of 200:1) was performed directly on the

plate that contains conjugated glycoproteins on the hydrazine matrix. The next day digested non-glycopeptides are extensively

washed out from the matrix. N-linked glycopeptides were released by PNGase F (PNGaseF, N-glycosidase F) enzyme from the hy-

drazide matrix, subsequently cleaned on MACROSpin Plate-VydacSilicaC18 (ref: Nest Group, Southborough, MA), solubilized in

100 mL of 0.1% aqueous formic acid (FA) with 2% acetonitrile (ACN) and were used for final MS analysis. The reference glycoprotein

fetuin-B (Swiss-prot: Q58D62) was spiked in equal 1 pmol/mL amount into the each plasma or serum samples to control intra-exper-

imental variations. N-glycopeptides corresponding to 2 mL of patient blood were used for each MS run.

SWATH-MS DATA GENERATION

N-glycoprotein SWATH-Assay Library
The SWATH assay library was built from the data-dependent acquisition (DDA, also known as shotgun) analysis of synthetic

peptides (Liu et al., 2014) and native glycopeptides isolated from natural blood samples. DDA acquisition was performed on
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TripleTOF 5600 mass spectrometer equipped with a NanoSpray III source and heated interface (AB Sciex, Concord, Ontario,

Canada). The common pool sample of native enriched N-glycopeptides from all the samples in the study was fractionated in

24 off-gel fractions or used directly as non-fractionated sample for downstream MS analysis. In line with native enriched

glycopeptides we acquired DDA spectra of synthetic N-glycopeptides previously collected by literature search (Cancer-asso-

ciated proteins: CAPs) and synthetized using SPOT-synthesis technology (JPT Peptide Tech, Berlin, Germany)(Frank, 2002).

To each of the samples indexed retention time (iRT) peptides were added (RT-kit WR, Biognosys) and the peptides

samples were injected onto a in-house C18 nanocolumn packed directly in a fused silica PicoTip emitter (New Objective,

Woburn, MA, USA) with 3-mm 200 Å Magic C18 AQ resin (Michrom BioResources, Auburn, CA, USA). Reverse phase peptide

separation was performed on a NanoLC-Ultra 2D Plus system (Eksigent–AB Sciex, Dublin, CA, USA). The nanoLC gradient

was linear from 2 to 35% B (0.1% formic acid in ACN) over 120 min at a flow rate of 300 nl/min and an oven temperature

of 70�C.
The nano-LC and MS instruments were operated by Analyst TF 1.5.1 software (AB Sciex). Electrospray ionization was per-

formed in positive polarity at a voltage of 2.6 kV and was assisted pneumatically by nitrogen (20 psi). Mass spectra and tandem

mass spectra were recorded in ‘‘high-sensitivity’’ mode over a mass/charge (m/z) range of 50 to 2000 with a resolving power of

30,000 (full width at half maximum [FWHM]). MS/MS spectra acquisition was triggered by DDA mode consisting in a survey scan

of 250 ms followed by 20 MS/MS-dependent acquisitions of 50 ms each. MS/MS spectra were generated by collision-induced

dissociation (nitrogen) with dynamic collision energy (i.e., rolling collision energy [CE]). DDA selection of the precursor ions was

as follows: the 20 most intense ions (threshold of 50 counts), charge state from 2 to 5, isotope exclusion of 4u, and precursor

dynamic exclusion of 8 s leading to a maximum total MS duty cycle of 1.15 s. External mass calibration was performed by in-

jecting a 100-fmol solution of b-galactosidase tryptic digest every samples in order to avoid carryover between clinical samples.

Raw data files (.wiff) were centroided and converted into mzML format using the ABSciex converter (beta version 2011) and sub-

sequently converted into mzXML using openMS (version 1.8). The converted data files were searched using the search engines

X! TANDEM CYCLONE TPP (2011.12.01.1 - LabKey, Insilicos, ISB), Omssa (version 2.1.9), and Comet (version 2013.02, revision

2) against the reviewed canonical Swiss-Prot complete proteome database for human (released Oct 1, 2013) appended with

common contaminants and reversed sequence decoys (Elias and Gygi, 2007)(40,951 protein sequences including decoys), fe-

tuin-B (Swiss-prot: Q58D62) bovine protein sequence and iRT peptides sequence. The database search included following

criteria: semi-tryptic digestion and allowing up to 2 missed cleavages. Included were ‘Carbamidomethyl (C)’ as static and ‘Dea-

midated (N); Oxidation (M)’ as variable modifications. The mass tolerances were set to 30 ppm for precursor-ions and 0.1 Da for

fragment-ions.

The identified peptides were processed and analyzed through the Trans-Proteomic Pipeline (TPP v4.6 OCCUPY rev 0, Build

201208211847) using PeptideProphet (Keller et al., 2002), iProphet (Shteynberg et al., 2011) and ProteinProphet scoring. Peptide

identifications were reported at FDR of 0.01. The raw spectral libraries were generated from all valid peptide spectrum matches ob-

tained from native and synthetic peptides filtered for N-glycosylation motive (NXS or NXT; X s P) and converted to TraML format

using the OpenMS tool ConvertTSVToTraML (version 1.10.0). Decoy transition groups were generated based on shuffled sequences

by the OpenMS tool OpenSwathDecoyGenerator (version 1.10.0) and appended to the final SWATH library in TraML format. The MS

assays, constructed from the top six most intense transitions with Q1 range from 400 to 1,200 m/z excluding the precursor SWATH

window, were used for targeted data analysis of SWATH maps.

From both fractionated and unfractionated samples we obtained confident MS2 spectra for 453 native N-glycoproteins (2743

N-glycopeptides) (Figure 1). Based on this spectral library we augmented MS2 spectra information by injecting 1604 N-glycopep-

tides corresponding to 880 glycoproteins that were associated with cancer biology based on databases and literature evidence.

DDA data from endogenous and synthetic peptides were then combined at the peptide level. Assays coming from synthetic

peptides were only accepted if the corresponding peptides were not identified at the endogenous level in the N-glycoproteome

isolated from blood samples. All peptides missing the N-glycosylation motif were removed. Finally, the spectral library was config-

ured to contain high quality MS assays for 4347 N-glycopeptides from 1151 glycoproteins. This library was then converted into the

final format by using the OpenMS tool, as described above. The final combined library was optimized for plasma N-glycoprotein

identification.

SWATH-MS Measurement and Data Processing
All blood samples were measured on TripleTOF 5600mass spectrometer operated in SWATHmode as described earlier (Gillet et al.,

2012). Reverse phase peptide separation was performed with linear nanoLC gradient as described above. An accumulation time of

100 ms was used for 32 fragment ion spectra of 26 m/z each and for the precursor scans (swaths) acquired at the beginning of each

cycle, resulting in a total cycle time of 3.3 s. The swaths were overlapping by 1 m/z and thus cover a range of 400-1200 m/z. The

collision energy for each window was determined according to the calculation for a charge 2+ ion centered upon the window with

a spread of 15. Raw SWATH data files were converted into the mzXML format using ProteoWizard (version 3.0.3316) (Chambers

et al., 2012) and SWATH data analysis was performed using the OpenSWATH tool (Röst et al., 2014) integrated in the iPortal workflow

(Kunszt et al., 2015).
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QUANTIFICATION AND STATISTICAL ANALYSIS

SWATH-MS data analysis
The OpenSWATH workflow input files consisted of the mzXML files from the SWATH acquired data, the TraML assay library file

and the TraML file for iRT peptides. SWATH data were extracted with 50 ppm around the expected mass of the fragment ions

and with an extraction window of ± 300 s around the expected retention time after performing alignment of iRT peptides. The

runs were subsequently aligned with a target FDR of 0.01 and a maximal FDR of 0.1 for aligned features. In the absence of a

confidently identified feature, the peptide and protein intensities were obtained by integration of the respective background

signal at the expected peptide retention time (Röst et al., 2016). Next, the recorded feature intensities obtained from automatic

OpenSWATH data processing were filtered with functions from the R/Bioconductor package SWATH2stats (Blattmann et al.,

2016) to reduce the size of the output data, remove low-quality features, and to only keep the features that were identified in

at least 2/3 of data (> 100 MS runs) below m-score cut off of 0.01. This resulted in a list of 1360 glycopeptides achieving peptide

FDR below 1%. After data were acquired and analyzed we did find systematic artifacts between the samples prepared in

different batches. Thus, in the next step, the batch effect was corrected on the level of high quality fragment ion signals by

applying mean centering as described previously(Sims et al., 2008). Fragment ion intensity values were log2 transformed and

quintile normalized. Next, we calculated the mean value for all signal intensity recorded in individual batch (batch mean) and

subtracted it from each run (fragment ion wise) belonged to individual batch. To preserve the dynamics of the original data in-

tensities, the global mean across all samples was added. Then these corrected fragment intensities were introduced in the

R/Bioconductor package MSstats (version MSstats.daily 2.3.5) and converted to relative protein abundances that were used

for further statistical data analysis (Choi et al., 2014).

The MSstats output file with relative protein intensities was used as input file for further unsupervised sample clustering. The FCs

and p values of all five carcinoma cohorts compared to their respective controls were obtained in five parallel analyses by linearmixed

models with expanded scope of biological and technical replication. The raw p values < 0.05 and FCs cutoff ± 1.2 were used as the

input for further statistical analysis (Table S6).

Bioinformatics Data Analyses
Hierarchical data clustering analysis was done by a two-dimensional centered heatmap using Cluster 3.0 v.1.52 on the log-trans-

formed, and normalized relative protein intensities (Eisen et al., 1998). City-block distance and average linkage as distance measure

were used for clustering. The functional annotation analyses were performed by DAVID (Huang et al., 2009)and Reactome pathway

database. Significant (FDR < 0.05) biological modules are represented with –log10 transformation of p value. The volcano plots were

obtained directly from the MSstats output. The boxplots or violin plots of total or separate significant proteins in five carcinoma co-

horts were plotted using the ggplot2 package (Wickham, 2009) in Rstudio (version 3.0.2). The Spearman correlation between protein

pairwise was calculated and visualized by using Corrgram package in Rstudio (Friendly, 2002). Venn diagrams were drawn by an

online tool (http://bioinformatics.psb.ugent.be/webtools/Venn/). The results were exported for Cytoscape visualization (Shannon

et al., 2003).

Functional Network Analysis
The Reactome Functional Interaction Network (Wu et al., 2010) was used to investigate the functional relationships between regu-

lated glycoproteins and the genes reported as cancer drivers in one of the tree data resources COSMIS v71 (https://cancer.sanger.

ac.uk/cosmic), Vogelstein list (Vogelstein et al., 2013) or HotNet analysis (Leiserson et al., 2015)from which a list of 661 altered genes

was manually compiled. These cancer genes were found to be significantly mutated in cancer or heavily involved cancer develop-

ment in the previous studies. The statistical significance of the functional relationships between regulated glycoproteins and altered

genes was assessed in Reactome database and its 100 random instances. We used the switching algorithm implemented in the

Random Network Plugin for Cytoscape (Wu et al., 2014) and the network graphs were visualized in Cytoscape (Shannon et al.,

2003) (Table S7).

Data Stratification in Cross-Tumor dataset
Random Forest analysis

In the cross-tumor study, each carcinoma typewas analyzed separately. Patient samples from a specific cancer typewere compared

with the group of corresponding control samples. For each cancer type, we trained a random forest classifier (ensemble of 500 de-

cision trees) to stratify cancer versus corresponding control. We repeated this analysis with and without including clinical covariates

(age, gender) and reported the ‘‘out of bag’’ estimate of accuracy for each model.

Feature prioritization via stability selection analysis

Additionally, we performed feature prioritization via stability selection analysis (Meinshausen and Buhlmann, 2010) including age and

gender as covariates. We prioritized as top-scoring predictors all proteins with importance scores above a threshold. We used as

threshold value the 1/10 of the highest importance score assigned within each carcinoma cohort.
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Data validation on independent cancer cohorts
Independent cohorts for Panc and Proc

The discovered diagnostic protein predictors in the initial Panc andProc cohorts (Figure 5) were evaluated in two independent plasma

cohorts of the respective carcinomas, particularly since the random forest models for these two carcinomas displayed the highest

‘‘out-of-bag’’ accuracy in discriminating cancer patients from healthy controls in the discovery cohort. For each carcinoma type, a

random forest model (ensemble of 500 decision trees) was fitted on the discovery cohort and subsequently evaluated on both dis-

covery and validation cohorts. The analysis was repeated with and without including confounders (age and gender) as input features,

resulting in similar performance results (consistently better when including confounders).

ROC analysis for top predictor proteins

ROC analysis, both non-adjusted and adjusted for age and gender, was performed for all proteins prioritized via stability selection in

the Panc and Proc cohorts. In non-adjusted analysis, protein expression values from the discovery and validation cohorts were

directly used. In adjusted analysis, a binomial logistic regression model, including confounders, was fitted on the discovery cohort

and subsequently applied to both discovery and validation cohorts. p values for the AUC scores of individual proteins were computed

via comparison with the chance level AUC = 50% using DeLong’s test for two uncorrelated ROC curves, and subsequently adjusted

for the number of tests performed via FDR-based correction (Benjamini and Hochberg, 1995).

Differential expression analysis for top predictor proteins

Differential expression analysis, accounting for age and gender as confounders, was performed for all proteins prioritized via stability

selection in the Panc and Proc cohorts. A linear regressionmodel was used to explain protein expression levels conditioning on group

assignment (i.e., control or cancer) and confounders such as age and gender. p values were obtained, indicating whether the regres-

sion coefficient for the group assignment (control or cancer) is significantly different than zero (Table S4). p values were adjusted for

the number of tests performed via FDR-based correction (Benjamini and Hochberg, 1995).

DATA AND SOFTWARE AVAILABILITY

All the raw data of MS measurements, together with the input spectral library are available via the ProteomeXchange Consortium

(http://proteomecentral.proteomexchange.org) with the dataset identifier: PXD004998 (Reviewer account details: Username:

reviewer08651@ebi.ac.uk, Password: A19Jz2hl). OpenSWATH related software is available on http://www.openswath.org/en/

latest/.
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