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Abstract Satellite altimetry has been widely used to determine surface elevation
changes in polar ice sheets. The original height measurements are irregularly dis-
tributed in space and time. Gridded surface elevation changes are commonly derived
by repeat altimetry analysis (RAA) and subsequent spatial interpolation of height
change estimates. This article assesses how methodological choices related to those
two steps affect the accuracy of surface elevation changes, and how well this accu-
racy is represented by formal uncertainties. In a simulation environment resembling
CryoSat-2 measurements acquired over a region in northeast Greenland between
December 2010 and January 2014, different local topography modeling approaches
and different cell sizes for RAA, and four interpolation approaches are tested. Among
the simulated cases, the choice of either favorable or unfavorable RAA affects the
accuracy of results by about a factor of 6, and the different accuracy levels are prop-
agated into the results of interpolation. For RAA, correcting local topography by an
external digital elevation model (DEM) is best, if a very precise DEM is available,
which is not always the case. Yet the best DEM-independent local topography cor-
rection (nine-parameter model within a 3,000m diameter cell) is comparable to the
use of a perfect DEM, which exactly represents the ice sheet topography, on the same
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cell size. Interpolation by heterogeneous measurement-error-filtered kriging is signifi-
cantly more accurate (on the order of 50% error reduction) than interpolationmethods,
which do not account for heterogeneous errors.

Keywords Satellite altimetry · Kriging · Repeat altimetry · Interpolation · Ice sheet

1 Introduction

Satellite altimetry is one means of determining mass changes in ice sheets (Shepherd
et al. 2018), which are affected by climate change and affect the global sea level. Mass
changes are derived from estimations of volume changes combined with firn and ice
densities (Shepherd et al. 2012; Hurkmans et al. 2014; Khan et al. 2015; McMillan
et al. 2016).

Deriving height changes from satellite altimetry usually involves two steps: local
height change determination from repeat altimetry, and subsequent spatial interpo-
lation at unobserved areas, possibly involving smoothing. As the repeated altimeter
measurements do not refer to exactly the same position, the local topography has to
be accounted for. The repeat altimetry analysis (RAA) approach has been widely used
to solve this problem (Legrésy et al. 2006; Flament and Rémy 2012b; Nilsson et al.
2016; Sørensen et al. 2018a; Schröder et al. 2019). However, it is subject to a number
of methodological choices in the processing chain. They include the size and arrange-
ment of RAA cells, modeling of seasonal height changes (Sørensen et al. 2011), the
use of signal parameters such as leading-edge width or backscatter to model changing
signal penetration (Simonsen and Sørensen 2017), and outlier elimination.

The spatial coverage of height change estimates from RAA depends on the orbit
geometry and the success ofRAAestimates, and is neither homogeneous nor complete.
Therefore, subsequent interpolation and filtering is commonly applied. Hurkmans
et al. (2012b, 2014) apply ordinary kriging (OK) with spatiotemporal modeling of the
underlying process. They also introduce external data of higher resolution to improve
the interpolation via external drift. OK is an exact interpolator (Cressie 1993). Exact
interpolation is desired when the input values are free of error. This is not the case
for height changes derived by RAA. They are the output of a fitting algorithm and are
provided with individual uncertainties of the estimate. Uncertainties can be used to
refine interpolation, for example, by using heterogeneous measurement-error-filtered
kriging (HFK) (Christensen 2011).

Note that the preprocessing of altimetry data, which is not the subject of this
investigation, can differ in slope correction and radar waveform retracking algorithms
(Hurkmans et al. 2012a; Helm et al. 2014; Nilsson et al. 2016; Sørensen et al. 2018b).
This affects positioning and height measurements as well as further derived values
such as height change estimates. As a matter of fact, the irregular spatial coverage
remains unaffected, and coping with it is the focus of this study.

Various approaches in RAA and interpolation lead to differences in the final height
change estimates and their correspondingly derived uncertainties. In RAA, altime-
try measurements are jointly processed in a defined area (called a cell). The effect
of cell size and related modeling of the underlying local topography on trends in
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height change is investigated. For the subsequent interpolation OK, inverse distance
weighting (IDW), filtered kriging (FK) andHFKare applied. These four different inter-
polation approaches are investigated with respect to the accuracy of the interpolated
height changes and the reliability of their uncertainty estimates.

The coastal areas show the highest changes in the elevation of the Greenland
Ice Sheet (GIS) (Sørensen et al. 2018a). These areas are covered by CryoSat-2
measurements in interferometric synthetic aperture radar (SARIn) mode. While the
low-resolutionmode (LRM) has a beam-limited footprint of 20km and a pulse-limited
footprint of 1.5km, SARIn mode enhances along-track resolution to 300m and uses
the across-track angle for measurement attribution (Wingham et al. 2006). Obtaining
full spatial coverage of height change in an areawith sloped topography in combination
with the irregular spatial distribution of RAA height change estimates is challenging.
This simulation study is conducted at the eastern margins of the Northeast Greenland
Ice Stream (NEGIS), where these circumstances can be reproduced without incorpo-
rating additional difficulties such as narrow fjords.

Section 2 introduces themathematics ofRAAand the interpolation algorithms used.
Section 3 describes the simulations, including the synthetic data set and processing
details. The results are analyzed and discussed in Sect. 4. Section 5 summarizes the
results and highlights the effect of RAA parameter choices and the benefits of HFK
for subsequent interpolation.

2 Theory

2.1 Repeat Altimetry Analysis

RAA is a fittingmethod based on least-squares regression. It uses heightmeasurements
hi and the corresponding locations and times in a cell to estimate parameters that
describe the underlying spatial and temporal variation in the measured elevations.

hi = Fti + Fli + Fsi + resi . (1)

The components Fti , Fli and Fsi describe the dependence on time, location and
radar signal return characteristics, respectively. Parameters of these components (as
specified below) are estimated by RAA. The resulting residuals between model and
observation are depicted in resi . The final choice of the RAA parameter set depends on
the satellite track configuration and the measurement properties of the mission used.

The design of the cells can vary (Sørensen et al. 2018a). If the cells are arranged
along the subsatellite tracks, rectangular cells that span several consecutive shots along
track and the repeat corridor across track are well established (Legrésy et al. 2006;
Ewert et al. 2012). In the case of regular grids, both rectangular (McMillan et al. 2014)
and circular (Simonsen and Sørensen 2017) cell shapes are commonly used. The latter
permit a constant maximum measurement distance to the cell center and are used in
this article.

In this study the time dependence in Eq. (1) is characterized by a linear trend dh
dt .

123



502 Math Geosci (2020) 52:499–525

Fti = dh

dt
(ti − t0). (2)

Additionally, seasonal elevation variations modeled by a combination of sine and
cosine terms can be introduced here (Sørensen et al. 2011).

The location-dependent componentmodels the local topography inside the analyzed
cell. A common approach is the fit of a plane (Smith et al. 2009; Sørensen et al. 2015;
Schröder et al. 2019)

Fli = a0 + a1xi + a2yi , (3)

where xi , yi are horizontal Cartesian coordinates with their origin in the cell center,
and a0, a1, a2 are the parameters of the plane. Other local topography models exist,
such as the biquadratic model with six parameters,

Fli = a0 + a1xi + a2yi

+ a3x
2
i + a4y

2
i + a5xi yi , (4)

used by Nilsson et al. (2016), Simonsen and Sørensen (2017) or the nine-parameter
model

Fli = a0 + a1xi + a2yi

+ a3x
2
i + a4y

2
i + a5xi yi

+ a6x
2
i yi + a7xi y

2
i + a8x

2
i y

2
i , (5)

used by Ewert et al. (2012), Wouters et al. (2015). In contrast, the local topography
model is reduced to only one parameter, a0, when a digital elevation model (DEM) is
subtracted beforehand (Sørensen et al. 2011; Helm et al. 2014; Simonsen and Sørensen
2017).

Additional parameters may be useful depending on specific characteristics of the
altimeter return signal, which is affected by characteristics of the reflecting surface and
volume of firn or ice. For CryoSat-2, by the parameter dBS, the effects of time-variable
signal penetration with anomalies of backscattered power bsi − bs are described.

Fsi = dBS(bsi − bs). (6)

This modeling can be further expanded by involving leading-edge width or trailing-
edge slope of the signal waveform (Flament and Rémy 2012a; Simonsen and Sørensen
2017), or a bias between ascending and descending satellite tracks (McMillan et al.
2014; Simonsen and Sørensen 2017). However, such interactions between the radar
measurements and the uppermost firn layer are complex (Simonsen and Sørensen
2017; Adodo et al 2018) and are not yet fully understood. This study focuses on the
analysis of different aspects of spatial sampling. In regions where the topography is
sufficiently flat to allow for reliable analysis of such waveforms, the influence of the
scattering characteristics acts on significantly larger scales. Therefore, we expect a
negligible influence of such parameters on our results and do not further analyse these
types of parameters.
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For each cell, all selected parameters are solved for simultaneously in a joint least-
squares adjustment to all measurements hi lying inside this cell. The elevation change
parameter dh

dt is the target of this analysis. The RAA approach also provides an a
posteriori standard error for dh

dt , based on the statistics of the residuals resi .
The choice of the local topography model depends on several considerations. The

actual topography of Greenland, which is smooth in the ice sheet interior and rugged at
themargins, has to be taken into account. The ability to properly model the topography
is also linked to the cell size and the number of observations available. Because of the
limited number of observations in smaller cells, the number of topography parameters
is restricted, while in larger cells a simple model might not be able to depict the actual
local topography. The effect of different cell sizes and local topography models is
investigated in this study.

2.2 Interpolation

The estimated height changes dh
dt have to be interpolated to obtain values at places

where data are missing or RAA could not be solved successfully. The interpolation
methods used in this study are all based on the same principle: observations Z at
locations ri are used to calculate a new value Z∗ at a certain location r0 by weighted
summation (Myers 1991; Cressie 1993; Chilès and Delfiner 2012). In this section, r
denotes a two-dimensional position vector.

Z∗(r0) =
n∑

i=1

λi · Z(ri ). (7)

To derive the weights λi , IDW uses only geometric information, while kriging uses
a geostatistical approach. Different kriging methods have been developed, based on
formulations by D. Krige and G. Matheron (Chilès and Delfiner 2012). This study
focuses on OK, FK and HFK. Detailed information about the used kriging methods
are given for example by Cressie (1993), Chilès and Delfiner (2012), Christensen
(2011).

The number of points used for interpolation depends on the data set and the user’s
decision. Irregularly distributed observationsmay lead to distorted results, for example
due to unwanted screening (Cressie 1988; Chilès and Delfiner 2012) or spatial biases.
Therefore, the surroundings are often divided into a certain number of sectors, selecting
observations in each of the sectors to obtain a more uniform distribution. The same
applies for variograms (Stosius and Herzfeld 2004).

In the field of geodesy, besides kriging, different least-squares collocation meth-
ods are commonly applied, which may also model uncertainties (Nilsson et al. 2015;
Sørensen et al. 2018a). These include different treatment of measurement and inter-
polation errors. This study focuses on interpolation error, although methods such as
IDWandOKwould need additional uncertainty assessment. Basic agreement between
kriging and collocation methods is confirmed (Dermanis 1984), although the individ-
ual requirements can differ. Distinguishing these two statistical approaches is outside
the scope of this article.
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Previous studies prove the general suitability of the selectedmethods (Rühaak 2015;
Christensen and Berrett 2016; Kang et al. 2017) and provide some comparison results
(Chaplot et al 2006; Li and Heap 2011). To the authors’ knowledge, HFK has not yet
been applied to height changes derived by satellite altimetry.

2.2.1 Inverse Distance Weighting

The weights of IDW depend on the normalized distances di between the locations of
the new point r0 and the surrounding observations ri .

λi = d−k
i∑n

i=1 d
−k
i

. (8)

The power k of the distance can be adjusted to any positive value (Webster and Oliver
2007). In this study, a value of 1 is used to model linear dependence.

The uncertainty of interpolation σIDW can be estimated by error propagation as

σ 2
IDW = 1

n − 1

n∑

i=1

λi (Z(ri ) − Z∗(r0))2. (9)

Points that have observations retain their observed value, and their interpolation error
is set to zero.

2.2.2 Ordinary Kriging

Kriging uses a variogram for the calculation of weights λi . Variograms describe the
inquired process in terms of the second moments of value differences in their depen-
dence to distance h. The sample variogram value γ̂ for distance d can be calculated
from the observations by

γ̂ (d) = 1

2n

n∑

i=1

(Z(ri ) − Z(ri + d))2. (10)

These values are calculated for several distance classes representing an interval of
discrete width. A specific variogram model γ is fitted to this sample variogram γ̂ . The
characteristic parameters describing it are sill (representing the variance of the pro-
cess), range (corresponding to themaximum distance at which correlation between the
values can be observed) and nugget (a discontinuity at the origin). This discontinuity
at distances near zero is caused, for example, by limitations of the sampling density
(Chilès and Delfiner 2012).

In the formulation of the kriging system, this modeled function is applied to the
distances d between the points involved according to
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⎡

⎢⎢⎢⎣

γ (d11) . . . γ (d1n) 1
...

. . .
...

...

γ (dn1) . . . γ (dnn) 1
1 . . . 1 0

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

λ1
...

λn
m

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

γ (d10)
...

γ (dn0)
1

⎤

⎥⎥⎥⎦ . (11)

This equation system is then solved for the weights λi . m is the Lagrange parameter,
which completes the system. Interpolation is then applied according to Eq. (7).

The resulting kriging variance σ 2
OK at a certain point equals the minimized mean

squared error on which the kriging formulation is based (Cressie 1988).

σ 2
OK =

n∑

i=1

λiγ (di0) + m. (12)

For OK, the value for γ (dii ), that is the variogram value for zero distance, is zero, so
that the main diagonal in the matrix of Eq. (11) consists of zeros.

2.2.3 Filtered Kriging

In the case of no errors, the nugget of the variogram consists only of microscale
variation. For noisy data, an error component has to be considered. The aim is to
derive values of the error-free component T from measurements Z corrupted with
noise ε (Christensen 2011).

Z(r) = T (r) + ε(r). (13)

If the varianceσ 2 of the error ε is knownand assumed to be homogeneously distributed,
for example due to known measurement errors, it can be introduced into kriging.
Different notations can be found for example atDelhomme (1978), Cressie (1993), Rü-
haak (2015). Based on Christensen (2011), FK can be expressed as

⎡

⎢⎢⎢⎣

γ (d11) . . . γ (d1n) 1
...

. . .
...

...

γ (dn1) . . . γ (dnn) 1
1 . . . 1 0

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

λ1
...

λn
m

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

γ10
...

γn0
1

⎤

⎥⎥⎥⎦ , (14)

with

γi0 =
{

γ (di0) − σ 2

2 , di0 �= 0
σ 2

2 , di0 = 0
. (15)

The kriging variance is

σ 2
FK =

n∑

i=1

λi

(
γi0 − σ 2

2

)
+ m. (16)
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This method leads to a filtering of the input data set, so that the values of the
observed points are modified, depending on the error variances used. In contrast to
OK, the kriging variance at observed points is no longer zero.

2.2.4 Heterogeneous Measurement-Error-Filtered Kriging

HFK, which incorporates heterogeneous measurement errors into kriging, was devel-
oped by Christensen (2011) and successfully applied, for example, by Christensen and
Sain (2012), Christensen and Berrett (2016), Kang et al. (2017). The error variances
σ 2
i of the observations are used individually in Eq. (18), aftermodifying the variogram.

The values of the original variogram γ are reduced by the mean of the individual error
variances σ 2

i of the observations.

γ ∗(d) =
{

γ (d) − 1
n

∑n
i=1 σ 2

i , h �= 0
0, h = 0.

(17)

The arithmetic mean of the RAA-derived a posteriori errors used in Eq. (17) for
HFK variogram adjustment is used in this study as homogeneous error for FK in
Eq. (14). It differs between the different RAA calculations.

The newly modeled variogram γ ∗ is used in the HFK equation.

⎡

⎢⎢⎢⎢⎣

γ ∗(d11) . . . γ ∗(d1n) + σ 2
1 +σ 2

n
2 1

...
. . .

...
...

γ ∗(dn1) + σ 2
n +σ 2

1
2 . . . γ ∗(dnn) 1

1 . . . 1 0

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

λ1
...

λn
m

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎣

γ ∗(d10) + σ 2
1
2

...

γ ∗(dn0) + σ 2
n
2

1

⎤

⎥⎥⎥⎥⎦
.

(18)
According to Eq. (17), the variogram value for zero distances is zero. Therefore, the
main diagonal of the matrix in Eq. (18) is zero, just as for OK. All other elements of
the matrix incorporate the individual error variances.

The kriging variance for HFK is defined analogously to OK.

σ 2
HFK =

n∑

i=1

λi

(
γ ∗(di0) + σ 2

i

2

)
+ m. (19)

This method leads to a filtering of the input data set. In contrast to FK, the filtering
considers the individual uncertainties at the observation points.

3 Simulation Setup

In order to assess the different RAAmodels and interpolationmethods, simulations are
performed on synthetic data sets. Figure 1 introduces the area investigated in this study.
The area of approximately 23,000km2 covers the lower part of the NEGIS drainage
system, based on a slightmodification of its delineation byZwally et al. (2012) (Fig. 1).
The main glaciers are Nioghalvfjerdsbræ (79N) and Zacchariæ Isstrøm (ZAC) (cf.
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Fig. 1 a Location of synthetic data (green) used in this article and the discussed glaciers Nioghalvfjerdsbræ
(79N) and Zacchariæ Isstrøm (ZAC). b Simulated height changes. cAssumed true topography (TanDEM-X
DEM). d Topography-derived slope. All with 100m resolution

Fig. 1a). They have shown substantial changes in the past 10 years (Mouginot et al.
2015; Mayer et al. 2018). The CryoSat-2 measurements in this area are mainly in
SARIn mode, except for the southwestern corner. The low-resolution mode (LRM)
measurements were not included in this study. All geographic data sets and figures
are in polar stereographic projection, with 45◦W as the central meridian (European
Petroleum Survey Group Geodesy (EPSG) Code EPSG:3413).

3.1 Simulation Data

Several real data sets were combined to obtain an authentic simulated data set. A rate
of elevation change (Fig. 1b) is simulated by summing up contributions related to
position, flow velocity, elevation and surface mass balance patterns. For each position
i , height change is simulated as

dh

dt i
= b0 + b1xi + b2yi + b3vi + b4hi + b5si . (20)

The terms b0 +b1xi +b2yi simulate a component with a simple linear dependence on
position. This reflects height loss from southwest to northeast, based on topography
and location of the outlet glaciers. The term b3vi creates a trend that depends on ice
flow velocity provided by Joughin et al. (2010a, b), in order to mimic changes related
to ice flow dynamics. b4hi denotes topography-related changes, using the TanDEM-X
(TerraSAR-X add-on for Digital Elevation Measurements) DEM (Krieger et al. 2007;
Rizzoli et al. 2017). The term b5si introduces an additional spatial pattern. s is taken
as a temporal snapshot of the cumulative surface mass balance anomaly at a certain
time from RACMO 2.3 (Regional Atmospheric Climate Model) (Noël et al. 2015).
The factors bi balance the different components and adjust the annual height change
between ± 2m year−1. The spatial resolution of this data set can be adjusted. It is
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Fig. 2 Illustration of RAA method and local topography modeling. a Distribution of cells (black circles)
with 2000m diameter and the CryoSat-2 measurement locations (gray dots) for a selected area with under-
lying TanDEM-XDEM. For the red highlighted cell, the modeled local topography using different numbers
of parameters (indicated in the top left corner) is shown on the right side, namely bwith three parameters, c
with six and d with nine parameters. The synthetic CryoSat-2 height measurements are shown in the same
color scale

100m for simulated CryoSat-2 measurements, and is adapted to the RAA resolution
(250m to 2500m) for comparisons with RAA results later on.

Locations and times of the actual CryoSat-2 measurements between December
2010 and January 2014 were used for simulation. The measured heights were simu-
lated based on the TanDEM-X DEM (set as initial topography of June 2009) and the
synthetic height change rates. A second data set of simulated height measurements
is produced by adding simulated errors. The errors are generated as pseudo-random
numbers from a uniform distribution between −c and c, where the slope-dependent c
is defined based on a study of altimetry precision by Schröder et al. (2019) with

c = 0.11m + 0.79 · slope2 m

degree2
. (21)

In RAA, these errors are introduced as a priori standard errors for the noisy data.

3.2 Simulation Procedure

The simulated heightmeasurements are used as input forRAA,where different choices
ofRAAcell size and local topographymodel are assessed. Figure 2 emphasizes the role
of local topography in RAA applications. For a selected cell with 2,000m diameter, the
topography of TanDEM-X DEM and three differently parametrized local topography
models are compared. As the local topography models are used to reduce the satellite
observations to the cell center, model and reality should optimally match.

RAA was applied to both the error-free and the noisy data set, with cell diameters
of 500 m, 1,000m, 2,000m, 3,000m, 4,000m and 5,000m. Because of the rather
short time span and the main focus on the trend of height change, seasonal parameters
were not included. The RAA cells are distributed on a regular grid (Helm et al. 2014;
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Fig. 3 ArcticDEM (a–d) and GIMP DEM (e–h), restricted to the area of interest. a, e Surface topography,
c, g corresponding slope. b, f and d, h: differences in the TanDEM-X DEM surface topography and slope,
respectively. For the height subtraction in b, f, the values are mean-adjusted with a mean of 2.687m and
−27.143m, respectively

Schröder et al. 2019; Sørensen et al. 2018a) with overlapping areas (Wouters et al.
2015; Sørensen et al. 2018a). The local topography fit is parametrized using three, six
and nine parameters (cf. Eqs. (3–5)), and DEMs are used to subtract the topography in
each cell before the height change trend is estimated. The TanDEM-XDEM represents
the true surface topography used for simulation, which is usually not available in real
data applications. Therefore, additional DEMswere introduced, namely theGreenland
Mapping Project (GIMP) DEM (Howat et al. 2014) and the ArcticDEM (Porter et al.
2018). They are likely to be used in actual applications because of their Greenland-
wide coverage. The use of TanDEM-X DEM is abbreviated with T in this article, the
GIMP DEM with G and the ArcticDEM with A. The parametrized local topography
models are distinguished by the number of parameters, three, six and nine.

Figure 3 depicts the differences between the additional DEMs and the TanDEM-X
DEM, which is introduced as the true topography. The DEMs differ in data source
and nominal time, but are similar in spatial resolution (about 100m). The mass loss
between different height acquisitions leads to different surface heights. After offset
removal, the influence of fast-changing surface heights at the outlet glaciers on the
different DEMs becomes apparent.

For RAA, the slope is of main interest. The slopes of the ArcticDEM match well
those of the TanDEM-XDEM, except for some distinct features. Significant discrepan-
cies occur for the GIMP DEM in some regions, which will influence the RAA results.
The reasons for these differences, involving different data acquisition methods and
time spans, are not a focus of this article and are therefore not further discussed.
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After RAA, an outlier detection was applied on the resulting parameters. The simu-
lated height changes vary between−2m year−1 and+2m year−1. Therefore, absolute
height changes exceeding 10m year−1 are removed. Additionally those with an a
posteriori standard deviation of more than 1m year−1 are removed. This criterion
is commonly applied to RAA results in Greenland (Simonsen and Sørensen 2017)
and affects less than 0.1% of the results. Prior to interpolation, a bicubic function is
removed from the original data, in order to reduce the influence of spatial trends on
the variogram modeling. This bicubic function was re-added after interpolation.

The gridded elevation trend dh
dt (hereafter denoted ĝi ), derived from synthetic data

by applying RAA and further interpolation, is compared with the original synthetic
(“true”) elevation trend (gi ). The calculation of true values gi is adapted to the spatial
resolution at which the estimates ĝi are calculated. That is, for each RAA cell size a
data set with true values is calculated based on the data of Eq. (20) in the respective
resolution. The differences gi − ĝi are termed true errors.

The accuracy of the results is assessed by the root-mean-square error (RMSE) over
all n grid cells.

RMSE =
√∑n

i=1 (gi − ĝi )2

n
. (22)

In contrast, the standard uncertainties are defined as the square root of the kriging and
interpolation variances.

4 Results

4.1 RAA Performance

The various cell size and local topography model combinations lead to different RAA
results. Figure 4 shows the ratio of grid cells with a successful height change estimate
by RAA, dependent on cell size and local topography model and restricted by outlier
criteria. Cells without valid RAA results need to be filled by interpolation. The use of
noisy versus error-free measurements leads to only a negligible difference with regard
to the spatial coverage with RAA results. The size of the RAA cells strongly affect the
coverage ratio, as larger cells cover the gaps between subsatellite tracks, while smaller
cells adhere more closely to the tracks.

The choice of the local topography model significantly affects the coverage ratio
for the 500m and 1,000m cell sizes. For a diameter of 500m, increasing the number
of parameters from three to six and nine decreases the number of successful estimates
dramatically. Here, the number of observations restricts the quality of parameter esti-
mation. As cell size increases, the influence of the local topography model on the
success of the height change estimates decreases. For cells with diameters of 3,000,
4,000, and 5,000m, the three-parameter model of local topography yields slightly less
valid RAA results than the six- and nine-parameter models. The use of DEM sub-
traction generally leads to more successful height change estimates, especially for the
smallest cell size.
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Fig. 4 Ratio of cells with valid RAA results after outlier detection depending on cell size and local
topography model. Cell diameter and local topography model are indicated in the lowest and second lowest
rows, respectively

The spatial pattern of a posteriori uncertainties reveals a reason for this local topog-
raphy model-dependent coverage. Figure 5 shows the standard deviations for cells
with 3,000m diameter. The spatial pattern is related to slope, leading to larger uncer-
tainties in the steep areas, for example near the steeply sloped zone leading into the
glacier tongue of 79N. The more complex the topography modeled, the better the
height change estimate and the lower its a posteriori uncertainty. In this investigation,
values with an a posteriori RAA-derived standard deviation of more than 1m year−1

are rejected (cf. Sect. 3.2). The rejections lead to gaps in the steep areas, depending
on the local topography model.

The true errors, ĝi − gi , for the selection of Fig. 5 are shown in Fig. 6. Compari-
son with Figs. 1d and 5 indicates that, similar to the formal uncertainties, the actual
errors depend on slope. Striking is the case where the GIMP DEM is used. There,
the actual errors are comparably high, even in flat areas. This observation concerning
the GIMP DEM subtraction is similar for all cell sizes. The use of TanDEM-X DEM
or ArcticDEM leads to both low uncertainties and small actual errors, except for the
steepest areas. For the cells with a diameter of 1,000m and less, no apparent slope-
dependent pattern of true error occurs (not shown). These observations apply for both
the error-free and the noisy data set.

The standard uncertainties from RAA estimation are compared with the true errors.
Figure 7 illustrates a nearly linear relationship between them for RAA cells with at
least 3,000m diameter, which confirms the visual assessment by Figs. 5 and 6. The
standard uncertainties slightly overestimate the true errors.

For the cells with diameters of 500m to 2,000m, small standard uncertainties are
significantly exceeded by true errors. This is similar for all local topography models,
and most pronounced for the GIMP DEM. The difference of this DEM from the
simulated topography has a very high effect when small RAA cells are used.

Figure 8 represents the color-coded RMSE information for the different combina-
tions of local topography models, cell sizes and the noisy and error-free data sets. The
RMSE spans from 0.13 to 0.85m year−1. This is a difference of factor 6.5. The RMSE
of the thee-parameter local topography model increases with increasing cell size. The
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Fig. 5 Standard uncertainty of RAA-estimated height changes, using noisy data and cells with 3,000m
diameter. The local topography model is indicated in the top left corner

Fig. 6 True error, ĝi−gi , of RAA-estimated height changes fromnoisy data for cellswith 3,000mdiameter.
The local topography model is indicated in the top left corner

six- and nine-parameter models have the lowest RMSE for cell diameters of 2,000m
and 3,000m. In contrast, the use of a DEM leads to the best RMSE with large cell
diameters. It is striking that the GIMP DEM-reduced RAA shows the worst results
among all local topography models.
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Fig. 7 Relationship between true error (ordinate) and RAA standard uncertainty (abscissa) for noisy data.
For clarity, RMS values were calculated over 20 intervals between 0 and 1m year−1 of sigma. The RAA
cell size is indicated in the top left corner; the local topography models are color-coded

Fig. 8 RMSE for the RAA-derived height change estimates for error-free (left) and noisy (right) data. Cell
diameters are indicated on the left, topography models at the bottom

The pseudo-random errors of the noisy data set affect the results and lead to higher
RMSE values compared with the error-free data set. The effect of the added noise
is strongest for cells with diameters of 2,000m and less. Asides from this effect, the
noisy and error-free data sets show similar results. The best results are obtained with
5,000m cell diameter and the TanDEM-X DEM.

In conclusion, different combinations of cell size and local topography models can
lead to satisfactory height change estimates. In the applied specific constellations,
cells with diameters of less than 2,000m do not cope well with perturbations, such as
the additional random errors. Larger cells include more observations in the estimation
process and therefore aremore capable of determining the desired linear height change
estimates. If no DEM is used, high parametrized local topography models should be
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preferred over a plane-fit model, as long as a sufficient number of observations are
available.

TheDEM subtraction leads to good results, as long as the DEM is close to the actual
topography.As shown inFig. 3, theArcticDEMis close to the assumed true topography
of the TanDEM-X DEM. Therefore it leads to better results than the GIMP DEM. The
importance of finding suitable DEMs concerning resolution and matching time span
has already been addressed by Sørensen et al. (2011) and is well demonstrated here.

As the difference between noisy and error-free height change estimates is not sig-
nificant, and the assumption of noise is assumed to better reflect the actual situation,
further analysis uses the noisy results only.

4.2 Impact of Variogram Models on Kriging Interpolation

Before interpolation is applied, the influence of different variograms is analyzed. This
analysis is done based on anRAAdata set with 2,000m cell diameter and nine topogra-
phy parameters. HFKwith different variogram selections is applied. The selectedRAA
result leaves sufficient area for interpolation, so that the effect of different variograms
on the kriging result can be properly studied.

Fitting a variogram is an essential part of kriging, as different spatial distances,
class divisions, weighting schemes and variogram models have to be considered. The
sample variograms were calculated in 30 distance classes (cf. Sect. 2.2.2) ranging
from zero to the chosen maximum distance. To fit the models, the different classes
were weighted with p depending on sample distance h and number of observations
per class n (Pardo-Igúzquiza 1999) as

p = n

h2
. (23)

Variograms with three options for the maximum distance (10; 50; 100km) and two
options for the analytical model (Gaussian and spherical) are considered, which results
in a total of six variogram model options. The choice of parameters for variogram
modeling depends on the assumptions on the underlying physical processes. Changes
in ice heights proceed on small and large scales. However, due to the radar footprint
and the coverage with satellite data, as well as the restrictions of RAA, the actual
spatial and temporal resolution is limited. The sample variogram can provide different
solutions depending on the scales considered. In the process of interpolation, points
are selected out of eight sectors, with a maximum of three points per sector. Therefore,
correct modeling of the variogram on short distances (depending on the cell size) is
of great importance.

The resulting variograms are illustrated in Fig. 9. The shapes of the sample vari-
ograms differ slightly according to the spatial scales. The sharp increase at distances
up to 3km (Fig. 9a) is less pronounced for large maximum distances (Fig. 9c). Further
increase of variogram values at more than 70km can be neglected, as it exceeds the
maximum distance between observation points for interpolation. The largest data gap
in the RAA results (at the heavily sloped region inland from the grounding line of
ZAC) spans an area of approximately 15km times 40km.
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Fig. 9 Variograms of the noisy results with 2,000m cell diameter and nine topography parameters, cal-
culated for a maximum difference of a 10km, b 50km and c 100km (note the different distance scales).
Sample (black) and fitted Gaussian (blue) and spheric (green) variograms are shown

For further investigation, HFK was applied to the selected RAA data set using the
six differently modeled variograms. Here, the focus is on the differences between the
results induced by different variogram models. These analyses show that the effect
of the choice of variograms on the final HFK result is negligible. The RMSE values
differ marginally (e.g. 0.129m year−1 to 0.145m year−1 for the complete interpolated
result).

In contrast, the kriging uncertainty is significantly affected by the choice of the
variogram, which thus affects the realism of the uncertainty characterization for the
interpolation result. The kriging uncertainty should reflect, in a statistical sense, the
true error. In Fig. 10 the kriging uncertainty is plotted against statistics of the true
error. Additionally, the underlying number of points per ratio is illustrated as relative
density. With a maximum distance of 10km, a nearly linear relationship is obtained.
As an exception, for the lowest uncertainty bin, a strong discrepancy is observed
between uncertainty and error. This is caused by just five cells,where theRAAstandard
uncertainty, that is, the uncertainty of the input toHFK, is significantly underestimated.

The meaningfulness of the kriging uncertainty is best achieved for the fit with a
maximum distance of 10km. The performance of the spheric and Gaussian variogram
models is comparable. This investigation shows that the variogram affects mainly
the kriging uncertainty, and less the interpolation result. Therefore, the variogram
modeling for interpolation of height changes should be focused on short distances.
For the following kriging, a spherical variogram model is fitted to sample variograms
spanning a maximum distance of 10km.

4.3 Interpolation Performance

Interpolation was applied to the noisy data sets of the RAA results using the four
interpolation methods IDW, OK, FK and HFK. The process included the calculation
of the sample variogram, the fitting of the model variogram, the calculation of weights
and finally the interpolation itself.

The RMSE values for the interpolated height changes are illustrated in Fig. 11. In
contrast to IDW and OK, FK and HFK change the values of grid cells that have valid
observations. Therefore, grid cells that have no valid value before interpolation are
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Fig. 10 HFK standard uncertainty (abscissa) is plotted against the true error (ordinate) for different vari-
ogram models, applied to the noisy RAA results with 2,000m diameter and nine topography parameters.
For clarity, RMS values (black dots) were calculated over 20 intervals between 0 and 0.3m year−1 of sigma.
The number of individual values are shown color-coded from many (purple) to fewer (yellow). The specific
variogram model and maximum distance are indicated in the top left corner

marked as “interpolated” and the entirety of the grid cells is marked as “complete”,
while the statistics of the filtered values are marked as “filtered”.

For large cell sizes (4,000 m; 5,000 m diameter) the RMSE of the complete grid
is determined predominantly by the RMSE of the filtered values, rather than by the
RMSE of the interpolated values, because of the high coverage of RAA results (cf.
Fig. 4).

For IDW, the RMSE of interpolation, shown in Fig. 11b, increases with increasing
cell size for the parametrized local topographymodels. The use of DEMs does not lead
to a clear advantage of certain cell sizes in interpolation. The complete result (Fig. 11c)
shows increasing RMSE with cell size for the parametrized models and decreasing
RMSE with cell size for the DEM subtraction. Compared with the underlying RAA
result (see Fig. 11a), the RMSE values are comparable or slightly lower. Notably,
for small cell sizes, where many grid cells are interpolated, the RMSE of interpolated
values is smaller than that for the original RAA results. This indicates that theweighted
averaging process of interpolation reduces noise in the RAA results. The best complete
results are achieved with 5,000m cell diameter and TanDEM-X DEM.
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Fig. 11 RMSE after interpolation with IDW (first row), OK (second row), FK (third row) and HFK (last
row), distinguished between interpolation (middle) and complete result (right), as well as filtered (left) for
FK and HFK. Cell diameters are indicated on the left, topography models at the bottom. The initial RAA
result (copy from Fig. 8b) is additionally shown in the top left, to enable comparison

Similar to IDW, the interpolation by OK (Fig. 11d) performs best for small cells
and parametrized models or with the TanDEM-X DEM or ArcticDEM and 4,000m
or 5,000m cell size. But the RMSE values are higher than for IDW, especially when
DEMs are used.

FK (Fig. 11f–h) interpolates similarly to OK, but considers a constant error that
is used to filter the observation points. This leads to improved RMSE values at these
points, as well as an improved complete result compared with OK and IDW. The
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Table 1 RMSE [myear−1] for the noisy data set with 3,000m cell diameter and nine-parameter topography
model

Observed points (filtered) Interpolation Complete

RAA 0.279

IDW 0.242 0.276

OK 0.271 0.278

FK 0.166 0.273 0.179

HFK 0.067 0.140 0.077

pattern of RAA RMSE is thereby maintained, leading to the best complete results
with TanDEM-X DEM and 4,000m, 5,000 m cell diameters.

For HFK, the filtering of the RAA results improves the RMSE significantly, much
more than for FK (cf. Fig. 11i, with Fig. 11a, f). In part, the RMSE decreases by more
than 0.3m year−1 after filtering with HFK (e.g. 500m cell diameter and GIMP DEM
subtraction). The height change rates best reflecting the simulated truth are achieved
with cell diameters of 2,000m to 4,000m and a local topography correction with six
or nine topography parameters or the TanDEM-X DEM or the ArcticDEM.

Table 1 shows the RMSE values for the observation points, interpolation and com-
plete results for a chosen example: the noisy data set with cell diameter of 3,000m
and nine topography parameters. The quality of IDW and OK interpolation is similar,
with IDW performing slightly better. FK interpolation performance is similar to OK,
but the filtering included at observation points improves the complete result. HFK not
only filters better than FK, but in many cases is even able to perform better interpola-
tion, leading to significantly improved complete height change results. The accuracy
improvement for this example (3,000m cell diameter and nine topography parameters)
is 72% between OK and HFK.

An example of the spatial pattern of the interpolated height changes, differences
and standard uncertainties can be seen in Fig. 12. The results of IDW and OK are very
similar and show speckled patterns. Their standard uncertainties neglect uncertainties
at observation points (value zero) and increasewith distance to them. In the interpolated
areas, the OK standard uncertainties are generally higher than for IDW, and with less
variation. The standard uncertainties are further discussed in Sect. 4.4. FK application
leads to a smoother height change result and less error compared with OK. The pattern
of uncertainties is similar, but has a fixed value (not zero) at observation points. HFK
leads to less error and amuch smoother height change result than the other interpolation
methods, which is due to the spatially varying filtering. The spatial pattern of the
standard uncertainties does not simply reflect the existence of observations, but gives
more reliable information about areas with higher uncertainties, which are mainly
the sloped regions near the grounding lines of the two glaciers. Additionally, the
uncertainties are no longer zero at observation points.

The southwestern corner of the study area is not observed by CryoSat-2 in SARIn
mode, but only in LRM mode. The consequent data gap is filled via extrapolation
by the different interpolation techniques. OK is not recommended for extrapolation
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Fig. 12 Resulting height changes (left), true error (center) and standard uncertainties (right) for the noisy
data set with 2,000m cell diameter and nine-parameter local topography model. The interpolation methods
are indicated in the top left corner of the left-hand plots

because the extrapolated values approach the data mean (Chilès and Delfiner 2012).
This is reflected in the corresponding higher standard uncertainties. IDW extrapolates
slightly better than OK and FK. Although HFK is based on OK, it performs best in
extrapolation as well.

The comparison of different interpolation methods shows that HFK is best suited
for application to height changes derived from satellite altimetry. In particular, the
filtering improves the results substantially. More simple geostatistical methods such
as OK do not necessarily outperform other approaches such as IDW.
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Fig. 13 Relationship between standard uncertainty and true error for the noisy data of the complete result.
For clarity, the RMS values were calculated over 100 intervals between 0 and 1m year−1 of sigma as a
mean of all topography models. The RAA cell sizes are shown in metersin the top left corner

4.4 Uncertainties

The kriging standard uncertainties of the four interpolation methods are investigated
to obtain more information about their reliability. As in Sects. 4.1 and 4.2, the rela-
tionship between true error and the standard uncertainties is analyzed. In Fig. 13, this
relationship is shown for all cell sizes and interpolation methods. The focus here is on
the distinction between the different interpolation approaches. Therefore, the different
topography models are not plotted separately.

IDW has a rather linear relationship, except for the observed points, where the
RAA value is maintained and the uncertainty set to zero. The standard uncertainties
underestimate the errors.

The inconsistency between error and uncertainties of RAA results observed in Fig. 7
for cells with a diameter of 2,000m and less propagate to inconsistencies for OK, FK
and HFK uncertainty estimates. This can be seen in Fig. 13a–c, where no simple linear
relationship between uncertainties and errors is visible. For cell diameters of 2,000m
and more, the plotted OK and FK relations are more scattered than those for HFK
and IDW. While the uncertainties of OK and FK for cell diameters of 2,000m and
below overestimate the errors, the opposite happens for cell diameters of 3,000m and
larger. Similar to IDW, the observation points of OK are provided with uncertainty
value of zero. FK and OK show very similar behavior in the relationship of error and
uncertainty analyzed here.

The HFK uncertainties estimated with data based on cell diameter of at least
3,000m represent the actual errors very well up to approximately 0.25m year−1.
Higher uncertainties underestimate the errors. The best accordance of errors and esti-
mated uncertainties is achieved with HFK for 3,000m and 4,000m cell diameter.
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This investigation shows that standard uncertainties should be handled with care.
The values at observation points for OK and IDW in particular are not meaningful.
HFK improves the reliability of the uncertainty estimate.

5 Conclusions

To obtain reliable information about the performance of different RAA configurations
and interpolation methods, a synthetic data set was created in order to compare the
derived height changes with known true values.

It was shown that the RAA results differ depending on the cell size and topography
parametrization. In these investigations, the models with six and nine topography
parameters lead to good results. The smallest analyzed cell size of 500m does not cope
wellwith the induced randomerrors,while cellswith a diameter larger than4,000mcan
lead to larger errors than those with smaller cells. The best results using parametrized
models are achieved with a cell diameter of 3,000m and nine topography parameters.
The results of DEM subtraction in RAA depend very much on the quality of the DEM;
the more the DEM represents the actual sampled topography, the better the results.
ArcticDEM and TanDEM-X DEM (assuming true topography), in conjunction with
cells of 3,000m and greater diameter, provide the most accurate RAA results among
all options tested. As the agreement of the DEM with the topography is difficult to
assess when real data is used, DEM subtraction should be applied carefully. The a
posteriori standard errors of RAA are reliable for cells with at least 3,000m diameter,
and can be used for filtering with FK and HFK.

The variograms used for kriging focus on short distances, as this gives the best
results for interpolation and reliable uncertainties. The subsequent interpolation was
accomplished with IDW, OK, FK and HFK. OK and IDW performed comparably
well. The resulting height changes are improved by the filtering included in the FK
and HFK algorithm. The best results are achieved by incorporating heterogeneous
errors with HFK. Additionally, the corresponding standard uncertainties are reliable,
and their spatial patterns reflect actual errors.

In this study, linear height change is the parameter of interest. This is a simplification
of the real process, as interannual signals are present. They can be resolved by RAA
and included in spatiotemporal interpolation.

Further research based on other regions and satellite missions, especially pulse-
limited radar data, could expand the applicability of these results. Additionally, the
influence of outlier criteria and selection of points used for interpolation can be elab-
orated. Stacked variograms are another approach to cope with the different behavior
apparent at different spatial scales that would be worth considering.

Based on these investigations, HFK can be recommended to achieve full spatial
coverage of height changes from satellite altimetry measurements derived by RAA,
as the results show the smallest error and least speckle, and provide meaningful and
reliable uncertainties.
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