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ABSTRACT

Machine learning methods have dramatically improved in recent years thanks to
advances in deep learning (LeCun, Bengio, and Hinton, 2015), a set of methods
for training high-dimensional, highly-parameterized, nonlinear functions. Yet deep
learning progress has been concentrated in the domains of computer vision, vision-
based reinforcement learning, and natural language processing. This dissertation
is an attempt to extend deep learning into domains where it has thus far had little
impact or has never been applied. It presents new deep learning algorithms and
state-of-the-art results on tasks in the domains of source-code analysis, relational
databases, and tabular data.
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C h a p t e r 1

INTRODUCTION

Over the past eight years deep learning (LeCun, Bengio, and Hinton, 2015) has
become the dominant approach to machine learning, and machine learning has
become the dominant approach to artificial intelligence.

Yet progress in deep learning has been concentrated in the domains of computer
vision, vision-based reinforcement learning, and natural language processing. Upon
seeing the revolution deep learning has sparked in these fields, one must ask: to what
other problem domains can deep learning be applied, and to what effect?

This dissertation is an attempt to help answer this question.

The brief history of modern deep learning suggests that necessary conditions for
deep learning efficacy include having lots of high-dimensional data and appropriate
computer hardware to process it. So why have domains like database analysis, ge-
nomics, tabular machine learning, chemistry, industrial control systems, information
security, formal methods, or neuroscience, which meet these criteria, not had deep
learning revolutions of their own (yet)?

One reason is that deep learning research moves at the pace of deep learning software,
and support for domains beyond images, reinforcement learning simulators, and text
is slow in coming. This is a major reason why all code written in service of this
dissertation has been open-sourced.

Another reason, in parallel to software, is that machine learning research requires
datasets and benchmarks. For many less-well-studied domains data are inaccessible
or difficult to use, and there is no consensus on benchmarks. The work presented in
this dissertation includes the curation and release of three new, large-scale datasets
and benchmarks in hopes of addressing this issue.

But perhaps the most important reason is the dependence of deep learning on model
architecture. Convolutional networks for vision and transformer models for natural
language are not successful merely because they are deep, but because their structure
matches their domain of application. Much is not understood about why this is
the case, but it is clear that new domains require new model designs. Most of this
dissertation is devoted to developing them.
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Besides the benefits to other fields of science, engineering, and technology, bringing
deep learning to other domains is important for machine learning itself. Machine
learning is a discipline defined by benchmarks, and if all benchmarks are computer
vision, reinforcement learning, or natural language benchmarks, the field risks
unhelpfully narrowing its scope. In particular, it risks narrowing its scope to the
problems most immediately visible to the types of people who do deep learning
research.

This leads us to the deeper motivation for this dissertation, which is to push deep
learning into domains that matter for those with fewer resources, computational and
otherwise. To that end, this dissertation proceeds as follows:

Chapter 2 presents the results of extensive interviews with scientists, engineers, and
executives in East Africa on what problems they face and how machine learning
might help solve them. This project, though nontechnical, was a significant factor in
orienting the research direction taken in this dissertation.

Chapter 3 delves into the domain of deep learning on computer source code. We
present an extension to graph neural network-based models that addresses the unique
open-vocabulary problem faced in learning tasks on computer source code and
thereby improves performance.

Chapter 4 presents a new application of deep learning to supervised learning
problems on relational databases. We introduce new datasets and a promising graph
neural network-based system for this domain of considerable practical importance.

Chapter 5 explores the performance of deep learning models on tabular data, often
considered an area where deep learning has little to offer. We introduce a new
benchmark that mostly confirms this notion, but also explore a new regime called
subset-restricted finetuning for which deep learning proves useful.

Chapter 6 examines issues with information-theoretic regularization methods used
in Chapter 5, and presents a method called Minimal Achievable Sufficient Statistic
Learning for circumvents them.

Finally, Chapter 7 takes the lessons learned in Chapters 5 and 6 and applies them to
the problems of Chapter 4, leading to noticeable performance improvements.

References

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). “Deep learning”. In:
Nature 521.7553, pp. 436–444.
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C h a p t e r 2

SOME REQUESTS FOR MACHINE LEARNING RESEARCH
FROM THE EAST AFRICAN TECH SCENE

2.1 Introduction
Based on 46 in-depth interviews with scientists, engineers, and executives, this
chapter presents a list of concrete machine research problems, progress on which
would directly benefit technology ventures in East Africa.1

The goal of this chapter is to give machine learning researchers a fuller picture of
where and how their efforts as scientists can be useful. The goal is not to highlight
research problems that are unique to East Africa — indeed many of the problems
listed below are of general interest in machine learning. The problems on the list
are united solely by the fact that technology practitioners and organizations in East
Africa reported a pressing need for their solution.

We are aware that listing machine learning problems without also providing data for
them is not a recipe for getting those problems solved. If the reader is interested in
any of the problems below, we will gladly introduce them to the organizations or
people with access to data for those problems. But to protect privacy and intellectual
property, we have not attributed problems to specific organizations or people.

2.2 Research Problems
Natural Language Processing
Mobile phone ownership and use, particularly of feature phones, is widespread in
East Africa. SMS and voice interactions are one of the few big data sources in the
region. Moreover, since literacy, technological and otherwise, remains low, natural
language interfaces and conversational agents have huge potential for impact.

A few organizations in East Africa are trying to leverage NLP methods, but they face
many challenges, including the following:

Handling Rapid Code-Switching with Models trained on Single Language Corpora:
In SMS and voice communication, many East Africans rapidly code-switch (switch

1This chapter’s focus on East Africa is based on where the author had work experience and
connections. But many of the problems listed are likely relevant to other regions.
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between languages). This is usually done multiple times per sentence, throughout an
interaction, and usually between English and another language.

Despite perhaps striking some readers as a fringe linguistic phenomenon, every
engineer interviewed herein who had worked with NLP models reported that this
was a significant issue for them. It makes using models trained on single-language
corpora — the most widely available corpora — difficult. Additionally, the number
of possible combinations of local languages plus English makes training language
models for each combination infeasible.

Named Entity Recognition with Multiple-Use Words: NER is an important part
of NLP pipelines in East Africa. However, the entity detection step of NER is
complicated by the fact that English words are commonly used as names in East
Africa, e.g. Hope, Wednesday, Silver, Editor, Angel, Constant. Capitalization is not
used regularly enough in SMS to help.

Location Extraction from Natural Language: Despite the proliferation of mobile
phones, GPS availability and accuracy is limited in East Africa. Extraction of
locations from natural language is therefore critical for numerous applications, from
localization of survey respondents to building speech-only navigation apps (for use
with feature phones).

This task is complicated by the fact that most rural locales, and many urban ones,
lack usable addressing schemes. Most people specify locations and directions
contextually, e.g. “My house is in Kasenge; it’s the yellow one two minutes down the
dirt road across from the Medical Center.”

Even approximate or probabilistic localization based on such location information
from natural language would be invaluable. Combining satellite imagery or user
interaction would be particularly impressive.

Priors for Autocorrect and Low-Literacy SMSUse: SMS text contains many language
misuses due to a combination of autocorrection and low literacy, e.g. “poultry farmer”
becoming “poetry farmer”. Such mistakes are bound to occur in any written language
corpus, but engineers working with rural populations in East Africa report that this
is a prevalent issue for them, confounding the use of pretrained language models.
This problem also exists to some degree in voice data with respect to English spoken
in different accents. Priors over autocorrect substitution rules, or custom, per-dialect
confusion matrices between phonetically similar words could potentially help.

Disambiguating Similar Languages: Numerous languages are spoken in East Africa,
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many of which are quite distinct in meaning but can be difficult to identify in small
inputs or when rendered into text (especially when combined with typographical
errors). Even when data are available for tasks like sentiment analysis in multiple
similar languages, performing tasks when the input language is ambiguous and from
a set of similar languages remains an open problem.

Data Gaps: Specific domains for which data and pretrained models are limited
include East African languages; non-Latin-character text; non-Western English.

Computer Vision
Satellite data and mobile phone data (including mobile money data) are the primary
sources of big data in East Africa. But satellite data are the more abundant and open
of the two, which has led to widespread use of computer vision models for satellite
data in the region. Mobile phone cameras also have enabled the use of computer
vision for applications ranging from disease identification to stock management. Yet
many research problems remain to be solved to maximize the utility of computer
vision in East Africa.

Specialized Models for Satellite Imagery:2 Excellent work has been done using
satellite data in East Africa, and its importance to the region cannot be overstated.
But satellite data, as a subset of general image data, have many unique properties.
Little work has been done to develop specialized image models to exploit/compensate
for these properties, some of which include:

• The presence of reliable image metadata, such as precise geolocation of images
on the Earth’s surface, camera position and orientation, image acquisition time,
and pixel resolution.

• The inherent time-series nature of satellite imagery, which consists of repeated
images of the same location across time.

• Imagery that is captured at different wavelengths and modes, each with unique
properties, e.g. optical vs. near-infrared or passive vs. active/radar.

• The presence of cloud occlusion (particularly in passive measurements), cloud
shadows, and the ensuing illumination variability these both cause.
2A more detailed explanation of this topic, written with the help of Dr. Hamed Alemohammad,

can be found at https://milan.cvitkovic.net/assets/documents/Satellite_Imagery_
2018.pdf.

https://milan.cvitkovic.net/assets/documents/Satellite_Imagery_2018.pdf
https://milan.cvitkovic.net/assets/documents/Satellite_Imagery_2018.pdf
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• Multiple resolutions of imagery for the same ground truth, and the frequent need
to transfer models trained on one resolution to another.

Map Generation: Generating road maps and identifying homes in rural areas are
critical tasks for many East African organizations. But road networks and buildings
change rapidly in East Africa due to construction and weather, and road identification
is challenging when roads are unpaved. Rapid, frequent, satellite-imagery-based
map making is thus a high value use of computer vision in East Africa.

While the general task of generating maps and road-networks from satellite images is
not new (Bastani et al., 2018), the scarcity of labeled map data in East Africa means
structured prediction models for map making in the region need to be developed that
can better leverage prior knowledge about road network structure.

Document Understanding and OCR: Many East African government agencies,
organizations, and businesses have all their records on paper. Given the general
scarcity of data in the region, solutions for automated information extraction from
such documents is greatly desired. These documents are usually handwritten,
however, so existing OCR extraction pipelines have not proven usable.

Data Gaps: Specific domains for which data and pretrained models are limited
include: dark-skinned faces; high-resolution satellite imagery of East African
geography; general ground-level imagery of East Africa (models pretrained on, e.g.,
ImageNet have trouble identifying East African consumer goods, vehicles, buildings,
flora, etc.); low-resolution imagery of documents (bank statements, government
records, IDs); images taken with feature phone cameras.

Data Au Naturel
Data from East Africa are scarce and expensive to obtain, and they almost never come
to practitioners as perfectly i.i.d. real-valued vector pairs. Research into models better
suited for data-as-they-are was the most common request heard from interviewees.

Learning Directly on Relational Databases: Many data in East Africa (and the rest
of the world) are stored in relational, usually SQL, databases, including perhaps the
most abundant, though least open, source of data in the region: private business data.
Extracting data from a relational database and converting them to real-valued vectors
is one of the largest time expenditures of working data scientists and engineers in
East Africa. Moreover, converting the inherently relational data in a SQL database
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into vectors that a machine learning model can pretend are i.i.d. is, even when done
by the best data scientist, a fraught process.

A system that could build a structured model based on a relational database’s
particular schema and train it without requiring manual ETL and flattening of data
into vectors would be beneficial for many of the organizations interviewed. We
develop such a system in Chapter 4.

Merging datasets: The most common way interviewees handled data scarcity was by
merging datasets. Versions of this tactic included:

• Combining surveys containing differently-phrased versions of essentially the
same question.

• Combining customer or surveyee interaction histories gathered over different but
overlapping times.

• Augmenting survey data with satellite data, without accurate location information
in the surveys.

No interviewee was familiar with any techniques or models well-suited for these
scenarios. The obvious choice given recent advances in natural language processing
is some form of transfer learning. We are not aware of any work on transfer learning
for general tabular data, though we explore this briefly in Chapter 5.

Adversarial Inputs (no, not that kind): East African economies are low-trust relative
to those of wealthier regions (Zak and Knack, 2001). Interviewees who use machine
learning with surveys or customer interaction data reported spending significant
effort fighting fraud or dishonesty.

This issue is pervasive not only with companies that offer products, e.g. loans, based
on survey responses. It is present even in surveys where the surveyee stands to
gain nothing. Prof. Tim Brown suggests distinguishing such adversarial inputs
into two categories: “defensive”, where surveyees do not trust your intent and thus
obfuscate or misrepresent themselves in responses, and “offensive”, where surveyees
are searching for the answer you want to hear.

Handling fraud is not exclusively a machine learning problem by any means. But
there are interesting open research questions around building models, especially
interactive systems, that are wary of being gamed, e.g. safe reinforcement learning
models for when the danger is not extreme variance in rewards, but rather adversarial
corruption of observations.
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Resource-Limited Machine Learning
Cellular access is widespread in East Africa, but it remains patchy in many rural
areas, and electrical power for devices is scarce. Additionally, some countries like
Kenya have laws that prevent some data from leaving the country. These issues limit
the utility of existing machine learning technologies.

Models for small, low-powered devices: The utility of reducing the computation and
memory requirements of modern machine learning models is well known (Cheng
et al., 2017). It is listed here simply to reiterate its importance to East African
organizations trying to use deep learning.

Communication-Limited Active Learning and Decision Making: Survey collection
is an expensive, slow process, usually done by sending enumerators (human data
collectors) across large regions to conduct interviews. But it is also one of the
only sources of data about East Africa, especially about poorer and rural regions.
Maximizing the information collected in such surveys is thus critical.

One potential strategy to do this is active learning. Survey enumerators typically have
access to smartphones with data-collection software like ODK,3 making it potentially
viable to employ machine learning techniques like active learning in surveying.
However, this active learning scenario does not fit neatly into the standard settings
of query synthesis, stream-based, or pool-based. It is a multi-agent, cost-sensitive
active learning task, where the agents cannot reliably communicate with one another,
and where the agent’s decision is not just whom to survey but also which subset of a
large set of questions to ask each surveyee.

In a similar vein, some organizations are piloting automatedmoney or food distribution
programs in rural areas based on satellite, weather, survey, and other data. This is a
distributed decision-making task with the same complications as the surveying case
described above.

Other
Reinforcement Learning: No interviewee reported using any reinforcement learning
methods. However interest was expressed in it, particularly regarding machine
teaching and using reinforcement learning in simulations, e.g. using reinforcement
learning in epidemiological simulations to find worst case scenarios in outbreak
planning.

3https://opendatakit.org/software/

https://opendatakit.org/software/
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Machine Teaching: There is a shortage of good educational resources and teachers in
East Africa. Several initiatives exist that use mobile phones as an education platform.
Practitioners were interested in using ideas from machine teaching in their work
to personalize content delivered. However, we did not encounter anyone who had
employed any results from the machine teaching literature at this point.

Uncertainty Quantification: An important factor that keeps the wealth of rich regions
from moving into poorer regions like East Africa, despite the fact that it should earn
greater returns there, is risk (Alfaro, Kalemli-Ozcan, and Volosovych, 2008). Not all
risk can be machine-learned away by any means. But (accurate) predictive models
are risk-reduction tools.

Machine learningmodels aremost useful for risk-reductionwhen they can (accurately)
quantify their uncertainty. This is particularly true when data are scarce, as they
usually are in East Africa. UQ is hardly a new problem in machine learning, but it is
listed here to reiterate its importance to the organizations interviewed. Importantly,
when used in East Africa, UQ is typically much more concerned with conservatively
quantifying overall downside risk, with respect to some quantity of interest, than
characterizing overall model uncertainty around point predictions.

2.3 Interviews Conducted

• Chris Albon, Devoted Health

• HamedAlemohammad, Radiant Earth
Foundation

• Elvis Bando, Independent Data Sci-
ence Consultant

• Joanna Bichsel, Kasha

• Prof. Tim Brown, Carnegie Mellon
University Africa

• Ben Cline, Apollo Agriculture

• Johannes Ebert, Gravity.Earth

• Dylan Fried, Lendable

• Sam Floy, The East Africa Business
Podcast

• Lukas Lukoschek, MeshPower

• Daniel Maison, Sky.Garden

• Lauren Nkuranga, GET IT

• Mehdi Oulmakki, African Leadership
University

• Jim Savage, Lendable

• Rob Stanley, Wefarm

• Linda Dounia Rebeiz, Eneza Educa-
tion

• Kamande Wambui, mSurvey

• Muthoni Wanyoike, Instadeep

• Anonymous individuals with the fol-
lowing affiliations:
Fenix International, Kasha, GET IT,
Carnegie Mellon University Africa,
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kLab, Safaricom, Give Directly (2),
Sankofa.africa, Rwanda Online, We
Effect, Andela, Moringa School (2),
Nelson Mandela African Institute of
Science and Technology, IBM Re-

search Africa, Sky.Garden (2), Medic
Mobile, Engineering and data science
students (9), independent data science
consultant, anonymous company
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C h a p t e r 3

OPEN VOCABULARY LEARNING ON SOURCE CODE WITH A
GRAPH–STRUCTURED CACHE

3.1 Introduction
Computer program source code is an abundant and accessible form of data from
which machine learning algorithms could learn to perform many useful software
development tasks, including variable name suggestion, code completion, bug
finding, security vulnerability identification, code quality assessment, or automated
test generation. But despite the similarities between natural language and source
code, deep learning methods for Natural Language Processing (NLP) have not been
straightforward to apply to learning problems on source code (Allamanis, Barr, et al.,
2017).

There are many reasons for this, but two central ones are:

1. Code’s syntactic structure is unlike natural language. While code contains
natural language words and phrases in order to be human-readable, code is not
meant to be read like a natural language text. Code is written in a rigid syntax
with delimiters that may open and close dozens of lines apart; it consists in
great part of references to faraway lines and different files; and it describes
computations that proceed in an order often quite distinct from its written
order.

2. Code is written using an open vocabulary. Natural language is composed
of words from a large but mostly unchanging vocabulary. Standard NLP
methods can thus perform well by fixing a large vocabulary of words before
training, and labeling the few words they encounter outside this vocabulary as
“unknown”. But in code every new variable, class, or method declared requires
a name, and this abundance of names leads to the use of many obscure words:
abbreviations, brand names, technical terms, etc.1 A model must be able to

1We use the terminology that a name in source code is a sequence of words, split on CamelCase
or snake_case, e.g. the method name addItemToList is composed of the words add, item, to,
and list.
We also use the term variable in its slightly broader sense to refer to any user-named language
construct, including function parameter, method, class, and field names, in addition to declared
variable names.
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reason about these newly-coined words to understand code.

The second of these issues is significant. To give one indication: 28% of variable
names contain out-of-vocabulary words in the test set we use in our experiments
below. But more broadly, the open vocabulary issue in code is an acute example of a
fundamental challenge in machine learning: how to build models that can reason
over unbounded domains of entities, sometimes called “open-set” learning. Despite
this, the open vocabulary issue in source code has received relatively little attention
in prior work.

The first issue, however, has received attention. A common strategy in prior work is
to represent source code as an Abstract Syntax Tree (AST) rather than as linear text.
Once in this graph-structured format, code can be passed as input to models like
Recursive Neural Networks or Graph Neural Networks (GNNs) that can, in principle,
exploit the relational structure of their inputs and avoid the difficulties of reading
code in linear order (Allamanis, Brockschmidt, and Khademi, 2018).

In this chapter we present a method for extending such AST-based models for
source code in order to address the open vocabulary issue. We do so by introducing
a Graph-Structured Cache (GSC) to handle out-of-vocabulary words. The GSC
represents vocabulary words as additional nodes in the AST as they are encountered
and connects them with the edges to where they are used in the code. We then
process the AST+GSC with a GNN to produce outputs. See Figure 3.1.

We empirically evaluated the utility of a Graph-Structured Cache on two tasks: a
code completion (a.k.a. fill-in-the-blank) task and a variable naming task. We found
that using a GSC improved performance on both tasks at the cost of an approximately
30% increase in training time. More precisely: even when using hyperparameters
optimized for the baseline model, adding a GSC to a baseline model improved its
accuracy by at least 7% on the fill-in-the-blank task and 103% on the variable naming
task. We also report a number of ablation results in which we carefully demonstrate
the necessity of each part of the GSC to a model’s performance.

3.2 Prior Work
Representing Code as a Graph
Given their prominence in the study of programming languages, Abstract Syntax
Trees (ASTs) and parse trees are a natural choice for representing code and have
been used extensively. Often models that operate on source code consume ASTs by
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linearizing them, usually with a depth-first traversal, as in (Amodio, Chaudhuri, and
Reps, 2017), (Liu et al., 2017), or (J. Li et al., 2017) or by using AST paths as input
features as in (Alon et al., 2018), but they can also be processed by deep learning
models that take graphs as input, as in (White et al., 2016) and (Chen, Liu, and Song,
2018) who use Recursive Neural Networks (RveNNs) (Goller and Kuchler, 1996) on
ASTs. RveNNs are models that operate on tree-topology graphs, and have been used
extensively for language modeling (Socher et al., 2013) and on domains similar to
source code, like mathematical expressions (Zaremba, Kurach, and Fergus, 2014;
Arabshahi, Singh, and Anandkumar, 2018). They can be considered a special case
of Message Passing Neural Networks (MPNNs) in the framework of (Gilmer et al.,
2017): in this analogy RveNNs are to Belief Propagation as MPNNs are to Loopy
Belief Propagation. They can also be considered a special case of Graph Networks
in the framework of (Battaglia et al., 2018). ASTs also serve as a natural basis for
models that generate code as output, as in (Maddison and Tarlow, 2014), (Yin and
Neubig, 2017), (Rabinovich, Stern, and Klein, 2017), (Chen, Liu, and Song, 2018),
and (Brockschmidt et al., 2019).

Data-flow graphs are another type of graphical representation of source code with a
long history (Krinke, 2001), and they have occasionally been used to featurize source
code for machine learning (Chae et al., 2017).

Most closely related to our work is the work of (Allamanis, Brockschmidt, and
Khademi, 2018), on which our model is heavily based. (Allamanis, Brockschmidt,
and Khademi, 2018) combine the data-flow graph and AST representation strategies
for source code by representing code as an AST augmented with extra labeled edges
indicating semantic information like data- and control-flow between variables. These
augmentations yield a directed multigraph rather than just a tree,2 so in (Allamanis,
Brockschmidt, and Khademi, 2018) a variety of MPNN called a Gated Graph Neural
Network (GGNN) (Y. Li et al., 2016) is used to consume the Augmented AST and
produce an output for a supervised learning task.

Graph-basedmodels that are not based on ASTs are also sometimes used for analyzing
source code, like Conditional Random Fields for joint variable name prediction
in (Raychev, Vechev, and Krause, 2015).

2This multigraph was referred to as a Program Graph in (Allamanis, Barr, et al., 2017) and is
called an Augmented AST herein.
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Reasoning about Open Sets
The question of how to gracefully reason over an open vocabulary is longstanding
in NLP. Character-level embeddings are a typical way deep learning models handle
this issue, whether used on their own as in (Kim et al., 2016), or in conjunction
with word-level embedding Recurrent Neural Networks (RNNs) as in (Luong and
Manning, 2016), or in conjunction with an n-gram model as in (Bojanowski et
al., 2017). Another approach is to learn new word embeddings on-the-fly from
context (Kobayashi et al., 2016). Caching novel words, as we do in our model, is
yet another strategy (Grave, Cissé, and Joulin, 2017) and has been used to augment
N-gram models for analyzing source code (Hellendoorn and Devanbu, 2017).

In terms of producing outputs over variable-sized input and outputs, also known as
open-set learning, attention-based pointer mechanisms were introduced in (Vinyals,
Fortunato, and Jaitly, 2015) and have been used for tasks on code, e.g. in (Bhoopchand
et al., 2016) and (Vasic et al., 2019). Such methods have been used to great effect in
NLP in e.g. (Gulcehre et al., 2016) and (Merity et al., 2017). The latter’s pointer
sentinel mixture model is the direct inspiration for the readout function we use in the
Variable Naming task below.

Using graphs to represent arbitrary collections of entities and their relationships
for processing by deep networks has been widely used (Johnson, 2017; Bansal,
Neelakantan, and McCallum, 2017; Pham, Tran, and Venkatesh, 2018; Lu et al.,
2017), but to our knowledge we are the first to use a graph-building strategy for
reasoning at train and test time about an open vocabulary of words.

3.3 Preliminaries
Abstract Syntax Trees
An Abstract Syntax Tree (AST) is a graph— specifically an ordered tree with labeled
nodes — that is a representation of some written computer source code. There is a
1-to-1 relationship between source code and an AST of that source code, modulo
comments and whitespace in the written source code.

Typically the leaves of an AST correspond to the tokens written in the source
code, like variable and method names, while the non-leaf nodes represent syntactic
language constructs like function calls or class definitions. The specific node labels
and construction rules of ASTs can differ between or within languages. The first step
in Figure 3.1 shows an example.
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Graph Neural Networks
A Graph Neural Network (GNN) is any differentiable, parameterized function that
takes a graph as input and produces an output by computing successively refined
representations of the input. Many GNNs have been presented in the literature, and
several nomenclatures have been proposed for describing the computations they
perform, in particular in (Gilmer et al., 2017) and (Battaglia et al., 2018). Here we
give a brief recapitulation of supervised learning with GNNs using the Message
Passing Neural Network framework of (Gilmer et al., 2017).

A GNN is trained using pairs (G, y) where G = (V, E) is a graph defined by its
vertices V and edges E , and y is a label. y can be any sort of mathematical object:
scalar, vector, another graph, etc. In the most general case, each graph in the dataset
can be a directed multigraph, each with a different number of nodes and different
connectivity. In each graph, each vertex v ∈ V has associated features xv, and each
edge (v,w) ∈ E has features evw.

A GNN produces a prediction ŷ for the label y of a graph G = (V, E) by the following
procedure:

1. A function S is used to initialize a hidden state vector h0
v for each vertex v ∈ V

as a function of the vertex’s features (e.g. if the xv are words, S could be a
word embedding function):

h0
v = S(xv)

2. For each round t from 1 to T :

a) Each vertex v ∈ V receives the vector mt
v , which is the sum of “messages”

from its neighbors, each produced by a function Mt :

mt
v =

∑
w∈neighbors of v

Mt(ht−1
v , ht−1

w , evw).

b) Each vertex v ∈ V updates its hidden state based on the message it
received via a function Ut :

ht
v = Ut(ht−1

v ,mt
v).

3. A function R, the “readout function”, produces a prediction based on the
hidden states generated during the message passing (usually just those at from
time T):

ŷ = R({ht
v |v ∈ V, t ∈ {1, . . . ,T}}).
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GNNs differ in how they implement S, Mt , Ut , and R. But all these functions are
differentiable and most are parameterized, so the model is trainable via stochastic
gradient descent of a loss function on y and ŷ.
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Figure 3.1: Our model’s procedure for consuming a single input instance of source
code and producing an output for a supervised learning task.
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3.4 Model
Our model consumes an input instance of source code and produces an output for a
supervised learning task via the following five steps, sketched in Figure 3.1:

1. Parse the source code (snippet, file, repository, version control history, etc.)
into an Abstract Syntax Tree.

2. Add edges of varying types (details in Table 3.3) to this AST that represent
semantic information like data- and control-flow, in the spirit of (Allamanis,
Brockschmidt, and Khademi, 2018). Also add the reversed version of all
edges with their own edge type. This results in a directed multigraph called an
Augmented AST.

3. Further augment the Augmented AST by adding a Graph-Structured Cache.
That is, add a node to the Augmented AST for each vocabulary word encoun-
tered in the input instance. Then connect each such “cache node” with an edge
(of edge type WORD_USE) to all variables whose names contain its word.

4. Vectorize the Augmented AST + GSC graph into a form suitable for a GNN.
(That is, perform Step 1 from Section 3.3.) Each AST node that doesn’t
represent a variable is vectorized as a learned embedding of the language
construct it represents, e.g. Parameter, Method Declaration, etc. Each
cache node and each node that represents a variable is vectorized as a learned
linear map of the concatenation of a type embedding and a name embedding.
The name embedding is a Character-Level Convolutional Neural Network
(CharCNN) (Zhang, Zhao, and LeCun, 2015) embedding of the word/name
the node contains. The type embedding is a learned embedding of the name of
the Java type of the token it contains, e.g. int, a user-defined class, etc., with
cache nodes having their own unique Cache Node type.

5. Process the graph with a GNN, as per Section 3.3. (That is, perform Steps 2
and 3 from Section 3.3.) The readout functions differ depending on the task
and are described in the Experiments section below.

Our main contribution to previous works is the addition of Step 3, the Graph-
Structured Cache step. The combination of relational information from the cache
nodes’ connections and lexical information from these nodes’ CharCNN embeddings
allows the model to, in principle, flexibly reason about words it never saw during
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training, but also recognize words it did. For example, it could potentially see a class
named “getGuavaDictionary” and a variable named “guava_dict” and both (a)
utilize the fact that the word “guava” is common to both names despite having never
seen this word before, and (b) exploit learned representations for words like “get”,
“dictionary”, and “dict” that it has seen during training.

3.5 Experiments
We evaluated our model, described in Section 3.4, on two supervised tasks: a
Fill-In-The-Blank task and a Variable Naming task. For each task, we compare our
model to others that differ in how they parse the code and how they treat the words
they encounter. Table 3.1 details the different variations of the procedure in Section
3.4 against which we compare our model.

Code to reproduce all experiments is available online3 and in the code accompanying
this dissertation.

Data and Implementation Details
We used Java source code as the data for our experiments as it is among the most
popular programming languages in use today (TIOBE, 2018; Github, 2017). To
construct our dataset, we randomly selected 18 of the 100 most popular Java repos
from the Maven repository4 to serve as training data. See Table 3.2 for the list.
Together these repositories contain about 500,000 non-empty, non-comment lines of
code. We checked for excessive code duplication in our dataset (Lopes et al., 2017)
using CPD5 and found only about 7% of the lines to be contiguous, duplicated code
blocks containing more than 150 tokens.

We randomly chose 3 of these repositories to sequester as an “Unseen Repos” test
set. We then separated out 15% of the files in the remaining 15 repositories to serve
as our “Seen Repos” test set. The remaining files served as our training set, from
which we separated 15% of the datapoints to act as a validation set.

Our data preprocessor builds on top of the open-source Javaparser6 library to generate
ASTs of our source code and then augment the ASTs with the edges described in Table
3.3. We used Apache MXNet7 as our deep learning framework. All hidden states

3https://github.com/mwcvitkovic/Deep_Learning_On_Code_With_A_Graph_
Vocabulary

4https://mvnrepository.com/
5https://pmd.github.io/latest/pmd_userdocs_cpd.html
6https://javaparser.org/
7https://mxnet.apache.org/

https://github.com/mwcvitkovic/Deep_Learning_On_Code_With_A_Graph_Vocabulary
https://github.com/mwcvitkovic/Deep_Learning_On_Code_With_A_Graph_Vocabulary
https://mvnrepository.com/
https://pmd.github.io/latest/pmd_userdocs_cpd.html
https://javaparser.org/
https://mxnet.apache.org/
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Table 3.1: Nomenclature used in Experiments section. Each abbreviation describes a
tweak/ablation to our full model as presented in Section 3.4. Using this nomenclature,
our full model as described in Section 3.4 and shown in Figure 3.1 would be an
“AugAST-GSC” model.

Abbreviation Meaning

Code Representation AST Skips Step 2 in Section 3.4.
AugAST Performs Step 2 in Section 3.4.

Vocab Strategies

Closed Vocab Skips Step 3 in Section 3.4, and
instead maintains word-embedding
vectors for words in a closed vocab-
ulary. In Step 4, name embeddings
for nodes representing variables are
produced by taking the mean of the
embeddings of the words in the vari-
able’s name. Words outside this
model’s closed vocabulary are la-
beled as <UNK>. This is the strategy
used in (Allamanis, Brockschmidt,
and Khademi, 2018).

CharCNN Skips Step 3 in Section 3.4.
Pointer Sentinel Follows Steps 3 and 4 as described

in Section 3.4, except it doesn’t add
edges connecting cache nodes to the
nodes where their word is used. In
the Variable Naming task, this is
equivalent to using the Pointer Sen-
tinel Mixture Model of (Merity et al.,
2017) to produce outputs.

GSC Follows Steps 3 and 4 as described
in Section 3.4.

Graph Neural Network
GGNN Performs Step 5 in Section 3.4 using

the Gated Graph Neural Network
of (Y. Li et al., 2016).

DTNN Performs Step 5 in Section 3.4 us-
ing the Deep Tensor Neural Network
of (Schütt et al., 2017).

RGCN Performs Step 5 in Section 3.4 us-
ing the Relational Graph Convolu-
tional Network of (Schlichtkrull et
al., 2017).



20

in the GNN contained 64 units; all GNNs ran for 8 rounds of message passing; all
models used a 2-layer CharCNN with max-pooling to perform the name embedding;
all models were optimized using the Adam optimizer (Kingma and Ba, 2015); all
inputs to the GNNs were truncated to a maximum size of 500 nodes centered on
the <FILL-IN-THE-BLANK> or <NAME-ME> tokens, as in (Allamanis, Brockschmidt,
and Khademi, 2018). About 53% of input graphs were larger than 500 nodes before
truncation. The only regularization we used was early stopping — early in our
experiments we briefly tried L2 and dropout regularization, but saw no improvements.

We performed only a moderate amount of hyperparameter optimization, but all of it
was done on the baseline models to avoid biasing our results in favor of our model.
Specifically, we tuned all hyperparameters on the Closed Vocab baseline model, and
also did a small amount of extra learning rate exploration for the Pointer Sentinel
baseline model to try to maximize its performance.

The Fill-In-The-Blank Task
In this task we randomly selected a single usage of a variable in some source code,
replaced it with a <FILL-IN-THE-BLANK> token, and then asked the model to predict
what variable should have been there. An example instance from our dataset is shown
in Figure 3.2. This task is a simplified formulation of the VarMisuse task from
(Allamanis, Barr, et al., 2017) that accomplishes the same goal of finding misused
variables in code.

The models indicate their prediction for what variable should go in the blank by
pointing with neural attention over all the nodes in the AugAST. This means all
training and test instances only considered cases where the obfuscated variable
appears somewhere else in the code. Single uses are rare however, since in Java
variables must be declared before they are used. It also means there are sometimes
multiple usages of the same, correct variable to which a model can point to get the
right answer. In our dataset 78% of variables were used more two times, and 33%
were used more than four times.

The models compute the attention weightings yi for each Augmented AST node i

differently depending on the readout function of the GNN they use. Models using a
GGNN as their GNN component, as all those in Table 3.4 do, compute the attention
weightings as per (Y. Li et al., 2016):

ŷi = σ
(

f1(hT
v , h

0
v)
)
� f2(hT

v ),
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Table 3.2: Repositories used in experiments. All were taken from the Maven
repository (https://mvnrepository.com/). Entries are in the form “group/repository
name/version”.

Seen Repos
com.fasterxml.jackson.core/jackson-core/2.9.5
com.h2database/h2/1.4.195
javax.enterprise/cdi-api/2.0
junit/junit/4.12
mysql/mysql-connector-java/6.0.6
org.apache.commons/commons-collections4/4.1
org.apache.commons/commons-math3/3.6.1
org.apache.commons/commons-pool2/2.5.0
org.apache.maven/maven-project/2.2.1
org.codehaus.plexus/plexus-utils/3.1.0
org.eclipse.jetty/jetty-server/9.4.9.v20180320
org.reflections/reflections/0.9.11
org.scalacheck/scalacheck_2.12/1.13.5
org.slf4j/slf4j-api/1.7.25
org.slf4j/slf4j-log4j12/1.7.25
Unseen Repos
org.javassist/javassist/3.22.0-GA
joda-time/joda-time/2.9.9
org.mockito/mockito-core/2.17.0

Input

Parse code, 
process 

with GNN

public static boolean isPrime(int n) {
  if (n < 2) {
    return false;
  }   
  for (int p : SmallPrimes.PRIMES) {
    if (0 == (n % p)) {
      return n == p;
    }   
  }
  return PrimeTest(<FILL-IN-THE-BLANK>);
}

. .
 . 

Readout:
compute 
attention 

over nodes

Output

n = 0.91
p = 0.7

isPrime = 0.001
.
.
.

Figure 3.2: Example of a model’s procedure for completing the Fill-In-The-Blank
task. Each Fill-In-The-Blank instance is created by replacing a single usage of a
variable (n, in this example) with the special token <FILL-IN-THE-BLANK>. The
model then processes the code as depicted in Figure 3.1. To produce outputs, the
model’s readout function computes a soft-attention weighting over all nodes in the
graph; the model’s output is the variable at the node on which it places maximal
attention. In this example, if the model put maximal attention weighting on any of
the green-highlighted variables, this would be a correct output. If maximal attention
is placed on any other node, it would be an incorrect output. Only in-scope usages of
a variable are counted as correct.

https://mvnrepository.com/
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Table 3.3: Edge types used in Augmented ASTs. The initial AST is constructed
using the AST and NEXT_TOKEN edges, and then the remaining edges are added. The
reversed version of every edge is also added as its own type (e.g. reverse_AST,
reverse_LAST_READ) to let the GNN message passing occur in both directions.

Edge Name Description

AST The edges used to construct the original AST.
NEXT_TOKEN Edges added to the original AST that specify the left-to-

right ordering of the children of a node in the AST. These
edges are necessary since ASTs have ordered children, but
we are representing the AST as a directed multigraph.

COMPUTED_FROM Connects a node representing a variable on the left of an
equality to those on the right. (E.g. edges from y to x
and z to x in x = y + z.) The same as in (Allamanis,
Brockschmidt, and Khademi, 2018).

LAST_READ Connects a node representing a usage of a variable to all
nodes in the AST at which that variable’s value could have
been last read from memory. The same as in (Allamanis,
Brockschmidt, and Khademi, 2018).

LAST_WRITE Connects a node representing a usage of a variable to all
nodes in the AST at which that variable’s value could have
been last written to memory. The same as in (Allamanis,
Brockschmidt, and Khademi, 2018).

RETURNS_TO Points a node in a return statement to the node containing
the return type of the method. (E.g. x in return x gets an
edge pointing to int in public static int getX(x).)

LAST_SCOPE_USE Connects a node representing a variable to the node repre-
senting the last time this variable’s name was used in the
text of the code (i.e. capturing information about the text,
not the control flow), but only within lexical scope. This
edge exists to try and give the non-GSC models as much
lexical information as possible to make them as comparable
with the GSC model.

LAST_FIELD_LEX Connects a field access (e.g. this.whatever or
Foo.whatever) node to the last use of this.whatever (or
to the variable’s initialization, if it’s the first use). This is
not lexical-scope aware (and, in fact, can’t be in Java, in
general).

FIELD Points each node representing a field access (e.g.
this.whatever) to the node where that field was declared.

WORD_USE Points cache nodes to nodes representing variables in which
the vocab word was used in the variable’s name.
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where the f s are MLPs, ht
v is the hidden state of node v after t message passing

iterations, σ is the sigmoid function, and � is elementwise multiplication. The
DTNN and RGCN GNNs compute the attention weightings as per (Schütt et al.,
2017):

ŷi = f (hT
v ),

where f is a single hidden layer MLP. The models were trained using a binary cross
entropy loss computed across the nodes in the graph.

The performance of models using our GSC versus those using other methods is
reported in Table 3.4. For context, a baseline strategy of random guessing among
all variable nodes within an edge radius of 8 of the <FILL-IN-THE-BLANK> token
achieves an accuracy of 0.22. We also compare the performance of different GNNs
in Table 3.5.

The Variable Naming Task
In this task we replaced all usages of a name of a particular variable, method, class,
or parameter in the code with the special token <NAME-ME>, and asked the model to
produce the obfuscated name (in the form of the sequence of words that compose the
name). An example instance from our dataset is shown in Figure 3.3. This task is
the same as the VarNaming task from (Allamanis, Barr, et al., 2017).

To produce a name from the output of the GNN, our models used the readout function
of (Allamanis, Brockschmidt, and Khademi, 2018). This readout function computes
the mean of the hidden states of the <NAME-ME> nodes and passing it as the initial
hidden state to a 1-layer Gated Recurrent Unit (GRU) RNN (Cho et al., 2014). This
GRU is then unrolled to produce words in its predicted name, in the style of a
traditional NLP decoder. We used a fixed length unrolling of 8 words, as 99.8% of
names in our training set were 8 or fewer words long. The models were trained by
cross entropy loss over the sequence of words in the name.

To decode each hidden state output of the GRU h into a probability distribution
Pvocab(w|h) over words w, the Closed Vocab and CharCNN models pass h through a
linear layer and a softmax layer with output dimension equal to the number of words
in their closed vocabularies (i.e. a traditional decoder output for NLP). In contrast,
the GSC model not only has access to a fixed-size vocabulary but can also produce
words by pointing to cache nodes in its Graph-Structured Cache. Specifically, it uses
a decoder architecture inspired by the Pointer Sentinel Mixture Model of (Merity
et al., 2017): the probability of a word w being the GSC decoder’s output given that
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Table 3.4: Accuracy on the Fill-In-The-Blank task. Our model is the AugAST-GSC.
The first number in each cell is the accuracy of the model (1.0 is perfect accuracy),
where a correct prediction is one in which the graph node that received the maximum
attention weighting by the model contained the variable that was originally in the
<FILL-IN-THE-BLANK> spot. The second, parenthetical numbers are the top-5
accuracies, i.e. whether the correct node was among those that received the 5
largest attentions weightings from the model. See Table 3.1 for explanations of
the abbreviations. All models use Gated Graph Neural Networks as their GNN
component.

Closed Vocab CharCNN GSC

Seen repos AST 0.57 (0.83) 0.60 (0.84) 0.89 (0.96)
AugAST 0.80 (0.90) 0.90 (0.94) 0.97 (0.99)

Unseen repos AST 0.36 (0.68) 0.48 (0.80) 0.80 (0.93)
AugAST 0.59 (0.78) 0.84 (0.92) 0.92 (0.96)

Table 3.5: Accuracy (and top-5 accuracy) on the Fill-In-The-Blank task, depending
on which type of GNN the model uses. See Table 3.1 for explanations of the
abbreviations. All models use AugAST as their code representation.

GGNN DTNN RGCN

Seen repos Closed Vocab 0.80 (0.90) 0.72 (0.84) 0.80 (0.90)
GSC 0.97 (0.99) 0.89 (0.95) 0.95 (0.98)

Unseen repos Closed Vocab 0.59 (0.78) 0.46 (0.68) 0.62 (0.79)
GSC 0.92 (0.96) 0.80 (0.89) 0.88 (0.95)

Input

Parse code, 
process 

with GNN

int <NAME-ME> 
  = assertArraysAreSameLength(expected, 
      actuals, header);
        
for (int i = 0; i < <NAME-ME>; i++) {
  Object expected 
    = Array.get(expected, i);

. .
 . 

Readout:
unroll RNN

Output

 ‘expected’  ‘length’   ‘<EOS>’
 

RNN RNN RNN

Figure 3.3: Example of a model’s procedure for completing the Variable Naming
task. Each Variable Naming instance is created by replacing all uses of some variable
(expectedLength, in this example) with a special <NAME-ME> token. The model
then processes the code as depicted in Figure 1. To produce outputs, the model takes
the mean of the <NAME-ME> nodes’ hidden states (depicted here in orange), uses
them as the initial hidden state of a Recurrent Neural Network, and unrolls this RNN
to produce a name as a sequence of words.
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the GRU’s hidden state was h is

P(w|h) = Pgraph(s|h)Pgraph(w|h) +
(1 − Pgraph(s|h))Pvocab(w|h)

where Pgraph(·|h) is a conditional probability distribution over cache nodes in the
GSC and the sentinel s, and Pvocab(·|h) is a conditional probability distribution over
words in a closed vocabulary. Pgraph(·|h) is computed by passing the hidden states of
all cache nodes and the sentinel node through a single linear layer and then computing
the softmax dot-product attention of these values with h. Pvocab(·|h) is computed
as the softmax of a linear mapping of h to indices in a closed vocabulary, as in
the Closed Vocab and CharCNN models. If there is no cache node for w in the
Augmented AST or if w is not in the model’s closed dictionary then Pgraph(w|h) and
Pvocab(w|h) are 0, respectively.

The performance of our GSC versus other methods is reported in Table 3.6. More
granular performance statistics are reported in Table 3.7. We also compare the
performance of different GNNs in Table 3.8.

3.6 Discussion
As can be seen in Tables 3.4 and 3.6, the addition of a GSC improved performance
on all tasks. Our full model, the AugAST-GSC model, outperforms the other models
tested and does comparatively well at maintaining accuracy between the Seen and
Unseen test repos on the Variable Naming task.

To some degree the improved performance from adding the GSC is unsurprising: its
addition to a graph-based model is adding extra features and does not remove any
information or flexibility. Under a satisfactory training regime in which overfitting is
avoided, a model could simply learn to ignore it if it is unhelpful, so its inclusion
should never hurt performance. The degree to which it helps, though, especially
on the Variable Naming task, suggests that a GSC is well worth using for some
tasks, whether on source code or in NLP tasks in general. Moreover, the fact that
the Pointer Sentinel approach shown in Table 3.6 performs noticeably less well than
the full GSC approach suggests that the relational aspect of the GSC is key. Simply
having the ability to output out-of-vocabulary words without relational information
about their usage, as in the Pointer Sentinal model, is insufficient for our task.

The downside of using a GSC is the computational cost. Our GSC models ran about
30% slower than the Closed Vocab models. Since we capped the graph size at 500
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Table 3.6: Accuracy on the Variable Naming task. Our model is the AugAST-GSC.
The first number in each cell is the accuracy of the model (1.0 is perfect accuracy),
where we consider a correct output to be exact reproduction of the full name of the
obfuscated variable (i.e. all the words in the name and then an EOS token). The
second, parenthetical numbers are the top-5 accuracies, i.e. whether the correct full
name was among the 5 most probable sequences output by the model. See Table 3.1
for explanations of the abbreviations. All models use Gated Graph Neural Networks
as their GNN component.

Closed Vocab CharCNN Pointer Sentinel GSC

Seen
repos

AST 0.23 (0.31) 0.22 (0.28) 0.19 (0.33) 0.49 (0.67)
AugAST 0.19 (0.26) 0.20 (0.27) 0.26 (0.40) 0.53 (0.69)

Unseen
repos

AST 0.05 (0.07) 0.06 (0.09) 0.06 (0.11) 0.38 (0.53)
AugAST 0.04 (0.07) 0.06 (0.08) 0.08 (0.14) 0.41 (0.57)

Table 3.7: Extra information about performance on the Variable Naming task. Entries
in this table are of the form “subword accuracy, edit distance divided by real name
length”. The edit distance is the mean of the character-wise Levenshtein distance
between the produced name and the real name.

Closed Vocab CharCNN Pointer Sentinel GSC (ours)

Seen
repos

AST 0.30, 0.94 0.28, 1.08 0.32, 1.07 0.56, 0.39
AugAST 0.26, 0.94 0.28, 0.99 0.35, 0.77 0.60, 0.37

Unseen
repos

AST 0.09, 1.23 0.10, 1.12 0.13, 1.37 0.42, 0.59
AugAST 0.09, 1.14 0.10, 1.12 0.14, 1.07 0.48, 0.49

Table 3.8: Accuracy (and top-5 accuracy) on the Variable Naming task, depending
on which type of GNN the model uses. See Table 3.1 for explanations of the
abbreviations. All models use AugAST as their code representation.

GGNN DTNN RGCN

Seen repos Closed Vocab 0.19 (0.26) 0.23 (0.31) 0.27 (0.34)
GSC 0.53 (0.69) 0.33 (0.48) 0.46 (0.63)

Unseen repos Closed Vocab 0.04 (0.07) 0.06 (0.08) 0.06 (0.09)
GSC 0.41 (0.57) 0.25 (0.40) 0.35 (0.49)
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nodes, the slowdown is presumably due to the large number of edges to and from the
graph cache nodes. Better support for sparse operations on GPU in deep learning
frameworks would be useful for alleviating this downside.

There remain a number of design choices to explore regarding AST- and GNN-
models for processing source code. Adding information about word order to the GSC
might improve performance, as might constructing the vocabulary out of subwords
rather than words. It also might help to treat variable types as the GSC treats words:
storing them in a GSC and connecting them with edges to the variables of those types;
this could be particularly useful when working with code snippets rather than fully
compilable code. For the Variable Naming task, there are also many architecture
choices to be explored in how to produce a sequence of words for a name: how to
unroll the RNN, what to use as the initial hidden state, etc.

Given that all results above show that augmenting ASTs with data- and control-flow
edges improves performance, it would be worth exploring other static analysis
concepts from the Programming Language and Software Verification literatures and
seeing whether they could be usefully incorporated into Augmented ASTs. Better
understanding of how Graph Neural Networks learn is also crucial, since they are
central to the performance of our model and many others. Additionally, the entire
domain of machine learning on source code faces the practical issue that many of the
best data for supervised learning on source code — things like high-quality code
reviews, integration test results, code with high test coverage, etc. — are not available
outside private organizations.
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C h a p t e r 4

SUPERVISED LEARNING ON RELATIONAL DATABASES
WITH GRAPH NEURAL NETWORKS, PART 1

4.1 Introduction
Relational data is the most widely used type of data across all industries (Kaggle, Inc.,
2017). Besides HTML/CSS/Javascript, relational databases (RDBs) are the most
popular technology among developers (Stack Exchange, Inc., 2018). The market
merely for hosting RDBs is over $45 billion USD (Asay, 2016), which is to say
nothing of the societal value of the data they contain.

Yet learning on data in relational databases has received relatively little attention
from the deep learning community. The standard strategy for working with RDBs in
machine learning is to “flatten” the relational data they contain into tabular form, since
most popular supervised learning methods expect their inputs to be fixed–size vectors.
This flattening process not only destroys potentially useful relational information
present in the data, but the feature engineering required to flatten relational data is
often the most arduous and time-consuming part of a machine learning practitioner’s
work.

In this chapter, we introduce a method based on Graph Neural Networks (GNNs)
that operates on RDB data in its relational form without the need for manual feature
engineering or flattening. (For an introduction to GNNs, see the previous chapter’s
Section 3.3.)

4.2 Relational Databases
A relational database1 (RDB) is a set of tables, {T 1,T 2, . . . ,TT }. An example is
shown in Figure 4.1. Each table represents a different type of entity: its rows
correspond to different instances of that type of entity and its columns correspond to
the features possessed by each entity. Each column in a table may contain a different
type of data, like integers, real numbers, text, images, date, times, geolocations, etc.
Unless otherwise specified, any entry in a table can potentially be empty, i.e. contain
a null value. We denote row i of table t as T t

i,: and column j of table t as T t
:, j .

What makes RDBs “relational” is that the values in a column in one table can refer
1RDBs are sometimes informally called “SQL databases”.
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patient_id hometown contracted_flu?

aaa 2 False

bbb 1 True

ccc 1 False

visit_id visit_date patient_id flu_shot_given? visit_location

1 2019-01-22 bbb False 1

2 2019-02-16 aaa True 1

3 2019-03-05 bbb False 1

4 2019-03-08 bbb False 2

city_id state

1 AA

2 BB

Patient Table

Visit Table

City Table

Foreign key

visit_id                     str
visit_date                datetime
patient_id                         str
flu_shot_given?        bool
visit_location               int

Visit

patient_id  str
hometown     int
contracted_flu?         bool

Patient

city_id   int
state                str

City

Figure 4.1: (Left) Toy example of a relational database (RDB). (Right) Schema
diagram of the same RDB.

to rows of another table. For example, in Figure 4.1 the column TVisit
:,patient_id refers to

rows in TPatient based on the values in TPatient
:,patient_id. The value in T

Visit
i,patient_id indicates

which patient came for Visit i. A column like this that refers to another table is called
a foreign key.

The specification of an RDB’s tables, their columns, and the foreign key relationships
between them is called the database schema. It is usually depicted diagrammatically,
as on the right side of Figure 4.1.

Readers familiar with object-oriented programming may find it helpful to think of
each table as an object class. In this analogy, the table’s columns are the class’s
attributes, and each of the table’s rows is an instance of that class. A foreign key is
an attribute that refers to an instance of a different class.

There are many software systems for creating and managing RDBs, including
MySQL, PostgreSQL, and SQLite. But effectively all RDB systems adhere closely
to the same technical standard (International Organization for Standardization, 2016),
which defines how they are structured and what data types they can contain. Thanks
to this nonproliferation of standards, the ideas we present in this chapter apply to
supervised learning problems in nearly every RDB in use today.

4.3 Supervised Learning on Relational Databases
A broad class of learning problems on data in a relational database
D = {T 1,T 2, . . . ,TK} can be formulated as follows: predict the values in a target
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column T k
:,target of T k ∈ D given all other relevant information in the database.2

In this chapter, supervised learning on relational databases refers to this problem
formulation.

This formulation encompasses all classification and regression problems in which
we wish to predict the values in a particular column in D, or predict any aggregations
or combinations of values in D. This includes time series forecasting or predicting
relationships between entities. Traditional supervised learning problems like image
classification or tabular regression are trivial cases of this formulation where D

contains one table.

There are several approaches for predicting values in T k
:,target, including first-order

logic- and graphical model inference-based approaches (Getoor and Taskar, 2007).
In this chapter we consider the empirical risk minimization (ERM) approach. The
ERM approach is commonly used, though not always mentioned by name: it is the
approach being implicitly used whenever a machine learning practitioner “flattens”
or “extracts” or “feature engineers” data from an RDB into tabular form for use with
a tabular, supervised, machine learning model.

More precisely, ERM assumes the entries of T k
:,target are sampled i.i.d. from some

distribution, and we are interested in finding a function f that minimizes the empirical
risk

min
f ∈F

1
N

N∑
i=1
L

(
f
(
T 1,T 2, . . . ,T k

:,:\target, . . . ,T
K
)
,T k

i,target

)
(4.1)

for a real-valued loss function L and a suitable function class F, where T k
:,:\target

denotes table k with the target column removed, and we assume that rows 1, . . . , N
of T k contain the training samples.

To solve, or approximately solve, Equation 4.1, we must choose a hypothesis class F
and an optimization procedure over it. We will accomplish this by framing supervised
learning on RDBs in terms of learning tasks on graphs.

Connection to Learning Problems on Graphs
A relational database can be interpreted as a directed graph — specifically, a directed
multigraph where each node has a type and has associated features that depend on its
type. The analogy is laid out in Table 4.1.

2We ignore issues of target leakage for the purposes of this chapter, but in practice care is needed.
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Table 4.1: Corresponding terms when interpreting a relational database as a graph.

Relational Database Graph

Row Node
Table Node type
Foreign key column Edge type
Non-foreign-key column Node feature
Foreign key from T A

u,i to T
B
v, j Edge from node u of type A to node v of type B

ith target value in table k, T k
i,target Target feature on node i of type k

Note that the RDB’s schema diagram (an example of which is in Figure 4.1) is not
the same as this interpretation of the entire RDB as a graph. The former, which has
tables as nodes, is a diagrammatic description of the properties of the latter, which
has rows as nodes.

Note also that the RDB-as-graph interpretation is not bijective: directed multigraphs
cannot in general be stored in RDBs by following the correspondence in Table 4.1.3
An RDB’s schema places restrictions on which types of nodes can be connected by
which types of edges, and on which features are associated with each node type, that
general directed multigraphs may not satisfy.

The interpretation of an RDB as a graph shows that supervised learning on RDBs
reduces to a node classification problem (Atwood and Towsley, 2016). (For concision
we only refer to classification problems, but our discussion applies equally to
regression problems.) In addition, the interpretation suggests that GNN methods are
applicable to learning tasks on RDBs.

Learning on RDBs with GNNs
The first challenge in defining a hypothesis class F for use in Equation 4.1 is
specifying how functions in F will interact with the RDB. Equation 4.1 is written
with f ∈ F taking the entire database D (excluding the target values) as input. But it
is so written only for completeness. In reality processing the entire RDB to produce
a single output is intractable and inadvisable from a modeling perspective. The
algorithms in the hypothesis class F must retrieve and process only the information
in the RDB that is relevant for making their prediction.

Stated in the language of node classification: wemust choose how to select a subgraph
3In principle one could use many-to-many tables to store any directed multigraph in an RDB, but

this would not follow the correspondence in Table 4.1.
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of the full graph to use as input when predicting the label of a target node. How best
to do this in general in node classification is an active topic of research (Hamilton,
Ying, and Leskovec, 2017). Models that can learn a strategy for selecting a subgraph
from an RDB graph are an interesting prospect for future research. In lieu of this,
we present Algorithm 1, or RDBToGraph, a deterministic heuristic for selecting
a subgraph. RDBToGraph simply selects every ancestor of the target node, then
selects every descendant of the target node and its ancestors.

Algorithm 1 RDBToGraph: Produce a graph of related entries in an RDB D useful
for classifying a target entry in D. Runs in O(|V | + |E |) time.
Require: RDB D with target values removed, target row i, target table k.

function RDBToGraph(D, i, k)
Let G = (V, E) be D encoded as a directed multigraph as per Table 4.1.
Let u ∈ V be the node corresponding to target entry T k

i,target ∈ D
VS ← {u}
repeat

A← {(v,w) | v < VS ∧ w ∈ VS} // A is for ancestors
VS ← VS ∪ {v | (v,w) ∈ A}

until VS stops changing
repeat

D← {(v,w) | v ∈ VS ∧ w < VS} // D is for descendants
VS ← VS ∪ {w | (v,w) ∈ D}

until VS stops changing
ES ← {(v,w) | v ∈ VS ∧ w ∈ VS}
return (VS, ES)

end function

RDBToGraph is motivated by the ERM assumption and the semantics of RDBs.
ERM assumes all target nodes were sampled i.i.d. Since the set of ancestors of a
target node u refer uniquely to u through a chain of foreign keys, the ancestors of u

can be thought of as having been sampled along with u. This is why RDBToGraph
includes the ancestors of u in the datapoint containing u. The descendants of u and
its ancestors are included because, in the semantics of RDBs, a foreign key reference
is effectively a type of feature, and we want to capture all potentially relevant features
of u (and its ancestors).

RDBToGraph misses potential gains that could be achieved by joining tables. For
example, in the KDD Cup 2014 dataset below, the Project table, which contains the
target column, has a reverse foreign key to the Essay table. In principle this means
there could be multiple Essays for each Project. But it so happens that there is one
Essay for each Project in the dataset. Knowing this, one could join the Project and
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Essay tables together into one table, reducing the number of nodes and edges in the
graph datapoint.

RDBToGraph may also be a bad heuristic when a table in an RDB has foreign keys
to itself. Imagine a foreign key column in a table of employees that points to an
employee’s manager. Applying RDBToGraph to make a prediction about someone
at the bottom of the corporate hierarchy would result in selecting the entire database.
For such an RDB, we could modify RDBToGraph to avoid selecting too many
nodes, for example by adding a restriction to follow each edge type only one time.
Nevertheless, RDBToGraph is a good starting heuristic and performs well for all
datasets we present in this chapter.

RDBToGraph followed by a GNN gives us a hypothesis class F suitable for
optimizing Equation 4.1. In other words, for a GNN gθ with parameters θ, our
optimization problem for performing supervised learning on relational databases is

min
θ

1
N

N∑
i=1
L

(
gθ

(
RDBToGraph

({
T 1,T 2, . . . ,T k

:,:\target, . . . ,T
K
}
, i, k

))
,T k

i,target

)
,

(4.2)
which we can perform using stochastic gradient descent. Figure 4.2 shows an example
of the entire procedure with the Acquire Valued Shoppers Challenge RDB introduced
in Section 4.5.

4.4 Related Work
The only work we are aware of that studies supervised learning tasks on relational
databases of the sort considered above comes from the feature engineering literature.

(Kanter and Veeramachaneni, 2015) present a method called Deep Feature Synthesis
(DFS) that automatically aggregates features from related tables to help predict the
value in a user-selected target column in an RDB. These engineered features can
then be used as inputs to any standard tabular machine learning algorithm. DFS
performs feature aggregation by recursively applying functions like MAX or SUM to
rows connected to the target column by foreign key relationships. This is somewhat
analogous to the multi-view learning approach of (Guo and Viktor, 2008).

The main advantages of DFS over a GNN-based approach like the one we are
proposing are (1) it produces more interpretable features, and (2) by converting RDB
data into tabular features, it lets the user apply powerful tabular learning methods
like gradient boosted decision trees (Ke et al., 2017) to their problem, which have
been observed to generally perform better on tabular data than existing deep models
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Figure 4.2: Example of our procedure for performing supervised learning on
relational databases. This example uses the Acquire Valued Shoppers Challenge
RDB introduced in Section 4.5. Given an RDB and a target column, we first use
RDBToGraph to select the entries from the RDB that are relevant for predicting the
target and assemble them into a directed multigraph. Then we use a graph neural
network to make a prediction of the target value. Computing a differentiable loss
function of the target and the output of gθ lets us train gθ by SGD.
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(Arik and Pfister, 2019). The disadvantages include the combinatorial explosion of
possible aggregated features that must be searched over and the lack of ability to learn
these features end-to-end. These disadvantages mean users must either be judicious
about how many features they wish to engineer or pay a large computational cost.
In addition, a system based on DFS may miss out on potential gains from transfer
learning that are possible with deep methods like GNNs.

(Lam, Thiebaut, et al., 2017) and (Lam, Minh, et al., 2018) both extend (Kanter and
Veeramachaneni, 2015), the former by expanding the types of feature quantizations
and embeddings used, and the latter by using Recurrent Neural Networks as the
aggregation functions rather than functions like MAX and SUM.

A more loosely related area of prior work is Statistical Relational Learning (Getoor
and Taskar, 2007), specifically Probabilistic Relational Models (PRMs) (Koller et al.,
2007). PRMs define a joint probability distribution over the entities in an RDB
schema. Learning a PRM amounts to estimating parameters for this joint model
from the contents of a particular RDB. Supervised learning on RDBs is somewhat
similar to learning in PRMs, except we are only interested in learning one particular
conditional distribution (that of the target conditional on other entries in the RDB)
rather than learning a joint model of all the entities in the RDB schema.

Work on modeling heterogeneous networks (Shi et al., 2016) is also relevant.
Heterogeneous networks are examples of directed multigraphs, and thus techniques
applicable to modeling them, including recent GNN-based techniques (X. Wang
et al., 2019), may prove useful for supervised learning on RDBs, though we do not
explore them in this chapter.

4.5 Datasets
Despite the ubiquity of supervised learning problems on data from relational
databases, there are few public RDB datasets available to the machine learning
research community. This is a barrier to research into this important area.

Included with this dissertation and online4 we provide code for converting data
from three public Kaggle5 competitions into relational databases. The datasets
are the Acquire Valued Shoppers Challenge, the KDD Cup 2014, and the Home
Credit Default Risk Challenge. All are binary classification tasks with competition

4https://github.com/mwcvitkovic/Supervised-Learning-on-Relational-
Databases-with-GNNs

5http://www.kaggle.com/

https://github.com/mwcvitkovic/Supervised-Learning-on-Relational-Databases-with-GNNs
https://github.com/mwcvitkovic/Supervised-Learning-on-Relational-Databases-with-GNNs
http://www.kaggle.com/
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performance measured by the area under the receiver operating characteristic curve
(AUROC).

Basic information about the datasets is given in Table 4.2. Detailed information
about each dataset is given in Appendix 4.10.

Table 4.2: Dataset summary information

Acquire Valued
Shoppers
Challenge

Home Credit
Default Risk KDD Cup 2014

Train datapoints 160,057 307,511 619,326
Tables/Node types 7 7 4
Foreign keys 10 9 4

Feature types Categorical,
Scalar, Datetime

Categorical,
Scalar

Categorical,
Geospatial,

Scalar, Textual,
Datetime

4.6 Experiments
We compare the performance of GNN-based methods of the type proposed in Section
4.3 to state-of-the-art tabular models and feature engineering approaches. Tables 4.3
and 4.4 give AUROC and accuracy results, respectively.

The tabular models we use in our baselines are logistic regression (LogReg), a
2-hidden-layer multilayer perceptron (MLP), and the LightGBM6 gradient boosted
tree algorithm (Ke et al., 2017) (GBDT). “Single-table” means the tabular model was
trained only on data from the RDB table that contains the target column, ignoring the
other tables in the RDB. “DFS” means that the Deep Feature Synthesis method of
(Kanter and Veeramachaneni, 2015), as implemented in the featuretools7 library,
was used to engineer features from all the tables in the RDB for use by the tabular
model.

The standard GNNmodels we use as the learned part gθ of Equation 4.2 are the Graph
Convolutional Network of (Kipf and Welling, 2016) (GCN), the Graph Isomorphism
Network of (Xu et al., 2019) (GIN), and the Graph Attention Network of (Veličković
et al., 2018) (GAT). Additionally, inspired by (Luzhnica, Day, and Liò, 2019), we
compare against a baseline called PoolMLP, which does no message passing and

6https://lightgbm.readthedocs.io
7https://docs.featuretools.com/

https://lightgbm.readthedocs.io
https://docs.featuretools.com/
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computes the output merely by taking the mean of all node hidden states (h0
v in the

notation of Section 3.3) and passing this through a 1-hidden-layer MLP.

Thorough details about model and experiment implementation are in Appendix 4.9.

Table 4.3: AUROC of baseline (above the line) and our GNN-based (below the line)
learning algorithms on three supervised learning problems on RDBs. Values are
the mean over 5 cross-validation splits, plus or minus the standard deviation. Bold
values are those within one standard deviation of the maximum in the column. Larger
values are better.

Acquire Valued
Shoppers
Challenge

Home Credit
Default Risk KDD Cup 2014

Single-table LogReg 0.686 ± 0.002 0.748 ± 0.004 0.774 ± 0.002
Single-table MLP 0.685 ± 0.002 0.750 ± 0.004 0.788 ± 0.002
Single-table GBDT 0.690 ± 0.002 0.754 ± 0.004 0.801 ± 0.002
DFS + LogReg 0.696 ± 0.001 0.771 ± 0.005 0.778 ± 0.002
DFS + MLP 0.694 ± 0.001 0.764 ± 0.005 0.781 ± 0.002
DFS + GBDT 0.689 ± 0.003 0.777 ± 0.004 0.801 ± 0.003
PoolMLP 0.678 ± 0.004 0.773 ± 0.005 0.736 ± 0.002

GCN 0.684 ± 0.002 0.768 ± 0.005 0.745 ± 0.002
GIN 0.655 ± 0.079 0.767 ± 0.003 0.754 ± 0.002
GAT 0.717 ± 0.008 0.772 ± 0.005 0.759 ± 0.004

4.7 Discussion
The results in Tables 4.3 and 4.4 bear out that GNNs are a viable and potentially
valuable modeling strategy for supervised learning on RDBs. While they do not
indicate that GNNs are a surefire replacement for baseline methods, they suggest
that GNN-based strategies merit further research. The GNN models we used in this
chapter were originally developed for modeling things like networks and molecular
structures, and it is likely that GNNs tailored to RDBs could achieve improved
performance. We also note that the GNN methods are faster than the DFS baseline
methods provided one has access to a GPU.

Interestingly, as one can see from the RDB schema diagrams of the datasets in
Appendix 4.10, the more tables and foreign key relationships an RDB has, the better
GNN-based methods seem to perform on it, with the KDD Cup 2014 dataset being
the least “relational” of the datasets and the one on which GNNs seem to offer no
benefit.
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Table 4.4: Percent accuracy of baseline (above the line) and our GNN-based (below
the line) learning algorithms on three supervised learning problems on RDBs. Values
are the mean over 5 cross-validation splits, plus or minus the standard deviation.
Bold values are those within one standard deviation of the maximum in the column.
Larger values are better.

Acquire Valued
Shoppers
Challenge

Home Credit
Default Risk KDD Cup 2014

Guess Majority Class 72.9 91.9 94.07
Single-table LogReg 73.1 ± 0.2 91.9 ± 0.1 94.07 ± 0.07
Single-table MLP 73.2 ± 0.2 91.9 ± 0.1 94.07 ± 0.07
Single-table GBDT 73.3 ± 0.2 91.9 ± 0.1 94.06 ± 0.07
DFS + LogReg 73.5 ± 0.2 91.9 ± 0.1 94.07 ± 0.07
DFS + MLP 73.6 ± 0.3 91.9 ± 0.1 94.07 ± 0.07
DFS + GBDT 73.4 ± 0.3 92.0 ± 0.1 94.06 ± 0.07
PoolMLP 73.2 ± 0.3 91.9 ± 0.1 94.04 ± 0.05

GCN 73.4 ± 0.3 91.9 ± 0.2 94.04 ± 0.05
GIN 73.8 ± 0.2 91.9 ± 0.1 94.07 ± 0.07
GAT 75.2 ± 0.3 91.9 ± 0.1 94.03 ± 0.06

The strong performance of the Single-Table models in the Acquire Valued Shoppers
Challenge and the KDD Cup 2014 suggests that a key determinant of the performance
of our GNN-based models is how they process the tabular data from each node in
the graph. Inspired by this, the next chapter focuses on deep models for tabular data.

4.8 Acknowledgments
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4.9 Appendix: Experiment Details
Software and Hardware
The LightGBM8 library (Ke et al., 2017) was used to implement the GBDT models.
All other models were implemented using the PyTorch9 library (Paszke et al., 2019).
GNNs were implemented using the DGL10 library (M. Wang et al., 2019). All
experiments were run on an Ubuntu Linux machine with 8 CPUs and 60GB memory,
with all models except for the GBDTs trained using a single NVIDIA V100 Tensor
Core GPU. Creating the DFS features was done on an Ubuntu Linux machine with

8https://lightgbm.readthedocs.io
9https://pytorch.org/
10https://www.dgl.ai/

https://lightgbm.readthedocs.io
https://pytorch.org/
https://www.dgl.ai/
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48 CPUs and 185GB memory.

GNN Implementation
Adopting the nomenclature from Section 3.3, once the input graph has been assembled
by RDBToGraph, the initialization function S for converting the features xv of each
vertex v into a real–valued vector in Rd proceeded as follows: (1) each of the vertex’s
features was encoded as real-valued vector, either by scaling to zero mean and unit
variance in the case of scalar features or one-hot encoding in the case of categorical
features, (2) these vectors were concatenated, (3) the concatenated vector was passed
through a linear mapping with output dimension Rd .

After obtaining h0
v = S(xv) for all vertices v, all models ran 2 rounds of message

passing (T = 2), except for the GCN which ran 1 round. Dropout regularization of
probability 0.3 was used in all models, applied at the layers specified in the paper that
originally introduced the model. Most models used a hidden state size of d = 256,
except for a few exceptions when necessary to fit things onto the GPU. Full details
are in the scripts in the code included with this dissertation.

The readout function R for all GNNs was mean pooling all hidden states followed by
a linear transform to obtain logits followed by a softmax layer. The cross entropy
loss was used for training, and the AdamW optimizer (Loshchilov and Hutter, 2017)
was used to update the model parameters. All models used early stopping based on
the performance on a validation set.

Other Model Implementation
The Single-table LogReg and MLP models used the same steps (1) and (2) for
initializing their input data as the GNN implementation in the previous section.
We did not normalize the inputs to the GBDT model, as the LightGBM library
handles this automatically. The MLP model contained 2 hidden layers, the first with
dimension 4x the number of inputs, the second with dimension 2x the number of
inputs. LogReg and MLP were trained with weight decay of 0.01, and MLP also
used dropout regularization with probability 0.3. The cross entropy loss was used for
training, and for LogReg and MLP the AdamW optimizer (Loshchilov and Hutter,
2017) was used to update the model parameters. All models used early stopping
based on the performance on a validation set.

DFS features were generated using as many possible aggregation primitives and
transformation primitives as offered in the featuretools library, except for the
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Home Credit Default Risk dataset, which had too many features to make this
possible with our hardware. For that dataset we used the same DFS settings that the
featuretools authors did when demonstrating their system on that dataset.11

Hyperparameter Optimization and Evaluation
No automatic hyperparameter optimization was used for any models. We manually
looked for reasonable values of the following hyperparameters by comparing, one-
at-a-time, their effect on the model’s performance on the validation set of the first
cross-validation split:

• Number of leaves (in a GBDT tree)

• Minimum number of datapoints contained in a leaf (in a GBDT tree)

• Weight decay

• Dropout probability

• Whether to one-hot encode embeddings

• Whether to oversample the minority class during SGD

• Readout function

• Whether to apply Batch Normalization, Layer Normalization, or no normaliza-
tion

• Number of layers and message passing rounds

Additionally, to find a learning rate for the models trained with SGD, we swept
through one epoch of training using a range of learning rates to find a reasonable
value, in the style of the FastAI (Howard et al., 2018) learning rate finder.

Full hyperparameter specifications for every model and experiment can be found in
the experiment scripts in the code released with this dissertation.

Every model was trained and tested on the same five cross-validation splits. 80% of
each split was used for training, and 15% of that 80% was used as a validation set.
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Table 4.5: Acquire Valued Shoppers Challenge dataset summary information.
(www.kaggle.com/c/acquire-valued-shoppers-challenge)

Train datapoints 160057
Test datapoints 151484
Total datapoints 311541
Dataset size (uncompressed, compressed) 47 GB, 15 GB

Node types 7
Edge types (not including self edges) 10
Output classes 2
Class balance in training set 116619 negative, 43438 positive
Types of features in dataset Categorical, Scalar, Datetime

Figure 4.3: Acquire Valued Shoppers Challenge database schema.

4.10 Appendix: Dataset Information
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Table 4.6: Home Credit Default Risk dataset summary information. (www.kaggle.
com/c/home-credit-default-risk )

Train datapoints 307511
Test datapoints 48744
Total datapoints 356255
Dataset size (uncompressed, compressed) 6.6 GB, 1.6 GB

Node types 7
Edge types (not including self edges) 9
Output classes 2
Class balance in training set 282686 negative, 24825 positive
Types of features in dataset Categorical, Scalar, Geospatial

(indirectly), Datetime (indirectly)

Table 4.7: KDD Cup 2014 dataset summary information. (www.kaggle.com/c/
kdd-cup-2014-predicting-excitement-at-donors-choose)

Train datapoints 619326
Test datapoints 44772
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History Chain Offer Transaction Brand Company Category

Figure 4.4: Acquire Valued Shoppers Challenge example datapoint.
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Figure 4.5: Acquire Valued Shoppers Challenge dataset graph size histogram. The
horizontal axis ranges from the minimum number of nodes in any datapoint to the
maximum; likewise with number of edges for the vertical axis. Thus the distribution
of graph sizes in the dataset varies over six orders of magnitude, even if the histogram
bins are too small to see in the plot.
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Figure 4.6: Home Credit Default Risk database schema.
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Figure 4.7: Home Credit Default Risk example datapoint.
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Figure 4.8: Home Credit Default Risk dataset graph size histogram. The horizontal
axis ranges from the minimum number of nodes in any datapoint to the maximum;
likewise with number of edges for the vertical axis. Thus the distribution of graph
sizes in the dataset varies hugely, even if the histogram bins are too small to see in
the plot.
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Figure 4.9: KDD Cup 2014 database schema.
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Figure 4.10: KDD Cup 2014 example datapoint.
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Figure 4.11: KDDCup 2014 dataset graph size histogram. The horizontal axis ranges
from the minimum number of nodes in any datapoint to the maximum; likewise with
number of edges for the vertical axis. Thus the distribution of graph sizes in the
dataset varies hugely, even if the histogram bins are too small to see in the plot.
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C h a p t e r 5

STRENGTHS AND WEAKNESSES OF DEEP LEARNING FOR
TABULAR DATA

5.1 Introduction
Tabular data refers to data about which we have no prior knowledge regarding the
structure or relationships between their features.1 Typically stored in a table, hence
their name, with datapoints as rows and features as columns, tabular data are widely
used in practical machine learning and data science, as evidenced by their abundance
on sites like Kaggle.2

The established wisdom among data scientists is that decision tree-based models,
especially gradient boosted decision trees (GBDTs), are the best choice for supervised
learning on tabular data (Goldbloom, 2017). While it is surprising that a category
as broad as tabular data would be dominated by a single type of model, reasonable
explanations have been given, including that GBDTs are built to find low-order
feature interactions and avoid overfitting (Arik and Pfister, 2019), which would make
them well suited to data defined by the lack of known relationships between their
features.

Despite the dominance of GBDTs for tabular data, much effort has gone into
developing deep models for tabular data. Indeed, most papers presenting new deep
models for tabular data give evidence that they outperform GBDTs, or do not bother
to compare to them at all; see the Related Work below. Yet it is notable that none has
gone on to supplant GBDTs as the method of choice for tabular data.

This gap between published results and practice raises the question of whether
machine learning researchers are assessing the performance of deep methods for
tabular a useful way. In a benchmark-driven field like machine learning, it is notable
that there is no standard benchmark for supervised learning on tabular data.

To address this issue, in Section 5.3 below we introduce a new benchmark consisting
of 20 binary classification tasks on tabular data. We use this benchmark to present
the first, as far as we are aware, large-scale, evenly-matched comparison of deep

1Confusingly, given this definition, tabular data are sometimes known as “structured data” in the
literature.

2https://www.kaggle.com/

https://www.kaggle.com/
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models for tabular data. Giving the same hyperparameter tuning budget to each of six
types of deep models for tabular data, along with GBDTs and logistic regression, we
find that while deep models can often match the performance of GBDTs, they almost
never outperform it, and simple MLPs often perform as well as models designed for
tabular data.

Deep models do have some comparative advantages over tree-based models, however.
In the context of this dissertation, deep models for tabular data are of interest as a way
to improve the performance of the GNN-based methods presented in the previous
chapter. The initial features from each table in an RDB can be passed through a deep
model before passing through the GNN. So improvements to deep models tabular
data might improve performance on supervised learning on RDBs. (Q.v. Chapter 7.)

Of more general interest, though, is that deep models allow us to leverage unlabeled
data and data from other sources to improve performance on our dataset of interest,
a feat which has proved difficult for tree-based models (Tanha, Someren, and
Afsarmanesh, 2017). Variants of this idea include unsupervised pretraining (Caron
et al., 2019), semi-supervised learning (Stretcu et al., 2019), transductive learning
(Elezi et al., 2018), and transfer learning (Devlin et al., 2019).

As a demonstration of the utility that deep learning methods can have for tabular
data, in Section 5.4 below we introduce a variant of semi-supervised learning called
subset-restricted finetuning and show that training techniques adapted from natural
language processing lead deep models to generally outperform GBDTs in this regime.

5.2 Related Work
Standard multilayer perceptrons (MLPs) have been applied to tabular data for many
years, sometimes to good effect (De Brébisson et al., 2015). More modern deep
learning techniques like batch normalization and learnable embeddings for categorical
features can significantly improve the performance of MLPs for tabular data (Howard
et al., 2018).

The major problem when using MLPs for tabular data is overfitting. A number of
methods for combating overfitting in MLPs have been tried at least partly on tabular
data, notably sparsification and pruning methods (Hassibi et al., 1993; Mocanu et al.,
2018) and information bottleneck-based methods (Tishby, Pereira, and Bialek, 2000;
Strouse and Schwab, 2015).

In terms of deep models designed specifically for tabular data, many “deep versions”
of non-deep-learning-based machine learning algorithms have been proposed. These
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include deep versions of factorization machines (Guo et al., 2018; Xiao et al., 2017),
extensions of these based on transformers and multi-head attention (Song et al., 2019;
Li et al., 2020; Sun et al., 2019), and deep versions of decision-tree-based algorithms
(Ke, Zhang, et al., 2019; Yang, Morillo, and Hospedales, 2018).

Other models have been designed around the purported properties of tabular data
such as low-order and sparse feature interactions. These include Deep & Cross
Networks (Wang et al., 2017), Wide & Deep Networks (Cheng et al., 2016), and
TabNets (Arik and Pfister, 2019).

5.3 Benchmarking Deep Models for Tabular Data
We assembled 20 publicly available tabular, binary classification datasets from the
UCI repository (Dua and Graff, 2017), the AutoML Challenge (Guyon et al., 2019),
and Kaggle.com. As shown in Table 5.1, the number of datapoints and number of
features in the datasets vary over 3 orders of magnitude, and include a mix of scalar
and categorical features along with some missing values. We annotated each column
in each dataset as to whether it contains a scalar or categorical variable, though it
is up to the model how to use this information in preprocessing. Full details on
each dataset is in Appendix Tables 5.2 and 5.3. In order to encourage adoption of
the benchmark, we provide code with this dissertation to automatically obtain all
datasets and convert them into a common format.

For the benchmark, each dataset is divided into 5 cross-validation splits, each with
80% of the datapoints available for training and 20% for testing. 15% of this 80% is
then split off as a validation set. All these splits are obtained with a fixed random seed
so that every model tested receives exactly the same training and testing conditions.

The diversity of datasets in the benchmark makes it critical to perform hyperparameter
optimization (HPO) for each model. Equally critical is giving each model the same
HPO budget to make the comparison fair. In our experiments, each model was
given 10 HPO rounds on each of the 5 cross-validation splits for each dataset, with
the best-performing model among these 10 HPO rounds then evaluated on the test
set. All models used early stopping on the validation set to identify the best set of
parameters in each training run.

The models tested are logistic regression, GBDT as implemented in the LightGBM
library (Ke, Meng, et al., 2017), multilayer perceptron (MLP), a transformer-style
model (Tfmr) (Vaswani et al., 2017) modified for use on tabular data in the style
of (Song et al., 2019; Li et al., 2020; Sun et al., 2019), a novel, heterogeneous



60

transformer-style model using different parameters for each feature in the tabular
dataset (HetTfmr), a sparsifying/pruning MLP (Prune) in the style of (Morcos
et al., 2019), the TabNet model of (Arik and Pfister, 2019), and the Variational
Information Bottleneck model (VIB) of (Alemi, Fischer, Dillon, and Murphy, 2017).
We reimplemented all algorithms for consistency of preprocessing. In cases where
there exist published results for a model we test on a dataset used in our benchmark,
our results are close to the published results. More details on all these models and
the hyperparameters tested are in Appendix 5.7.

Table 5.1: Benchmark datasets. All datasets are binary classification problems.
Positive:Total is the fraction of datapoints that are the positive class.

Dataset Name N Datapts N Feats Positive:Total

1995_income 32561 14 0.241
adult 34190 25 0.854
albert 425240 79 0.5
bank_marketing 45211 16 0.117
blastchar 7043 20 0.265
dota2games 92650 117 0.527
fabert 8237 801 0.113
hcdr_main 307511 120 0.081
htru2 17898 8 0.092
insurance_co 5822 85 0.06
jannis 83733 55 0.02
jasmine 2984 145 0.5
online_shoppers 12330 17 0.155
philippine 5832 309 0.5
qsar_bio 1055 41 0.337
seismicbumps 2583 18 0.066
shrutime 10000 11 0.204
spambase 4601 57 0.394
sylvine 5124 20 0.5
volkert 58310 181 0.127

Results
Results in terms of accuracy and AUROC are presented in Figures 5.1 and 5.2,
respectively. Since each dataset in the benchmark has a different class balance and
(unknown) maximum possible performance, Figures 5.1 and 5.2 show performance
relative to logistic regression, and in terms of log2 improvement to the metric. In
other words, if a model achieves 0.95 accuracy on a dataset, and logistic regression
achieves 0.9 accuracy on that dataset, Figure 5.1 will show this as equivalent to if a
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model achieves 0.75 accuracy on a dataset for which logistic regression achieves 0.5
accuracy. Raw results are given in Appendix Tables 5.4 and 5.5. The comparisons
between each model and logistic regression are done within each cross-validation
split and then aggregated, since for some datasets the variance in performance
between cross-validation splits is larger than the variance of performance between
algorithms.

The results in Figures 5.1 and 5.2 show deep models performing as well as GBDTs
on about half of datasets, but significantly outperforming them on only two. This
confirms the common wisdom among practitioners that GBDTs are the model of
choice for tabular data, but also shows that deep models are not inherently ill-suited
for tabular data. (In terms of computational complexity, however, GBDTs are clearly
preferable.) Among deep models, simple MLPs perform comparably to complex
models. Notably, on four out of twenty datasets no model significantly outperforms
logistic regression. This is an important reminder of the diversity of tabular problems
and why simple baseline algorithms must always be included in comparisons.

5.4 Subset-Restricted Finetuning with Deep Models
Having tempered our expectations for deep models on standard supervised learning
problems on tabular data given the benchmark results above, we turn to a domain of
problems on tabular data for which deep models are better suited.

In semi-supervised learning we are given some labeled data and some unlabeled
data, and our goal is to train a model that performs well on an unseen test set.
Most semi-supervised learning methods require access to the full partially-labeled
dataset during training (Chapelle, Scholkopf, and Zien, 2009; Oliver et al., 2018;
Stretcu et al., 2019). But in many practical scenarios such as edge computing
(Murshed et al., 2019) or mass model personalization (Schneider and Vlachos,
2019), labels are obtained after the model has already had access to the unlabeled
data, and it is impractical or impossible to train the model from scratch using the
now-partially-labeled dataset.

To distinguish this scenario from semi-supervised learning and general unsupervised
pretraining, we introduce subset-restricted finetuning (SRF). In SRF, a model can
perform unrestricted, unsupervised pretraining on a (large) set of unlabeled data, but
at finetuning time can only access the (small) labeled subset of the full dataset.

Most methods for semi-supervised learning are not applicable to SRF, while any
method for unsupervised pretraining is potentially applicable to SRF. In what follows,
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Figure 5.1: log2 improvement in prediction error relative to logistic regression. For
example, a value of 1.0 means the algorithm’s test set error was half that of logistic
regression. Higher is better.
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Figure 5.2: log2 improvement in AUROC relative to logistic regression. For example,
a value of 1.0 means the algorithm’s test set error was half that of logistic regression.
Higher is better.
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we compare the performance of several methods for unsupervised pretraining on
SRF.

We are aware of only one unsupervised pretraining method explicitly designed
for deep models on tabular data: the swap noise denoising autoencoder (DAE)
method for pretraining MLPs of (Jahrer, 2018). However the recent application of
transformer-style models to tabular data (Song et al., 2019; Li et al., 2020; Sun et al.,
2019) suggests that porting unsupervised pretraining ideas from NLP to the SRF
regime may be fruitful. We compare the masked language modeling (TfrMLM)
method (Devlin et al., 2019) and the related replaced token detection (TfrRTD)
method (Clark et al., 2020). As MLM and RTD are methods originally developed for
transfer learning, we also attempt to see whether pretraining a transformer model on
all 20 benchmark datasets with MLM or RTD (XfrMLM and XfrRTD, respectively)
offers an advantage over the SRF task of pretraining only on the dataset of interest.

More details on all these models and the hyperparameters tested are in Appendix 5.7.

Results
Figure 5.3 presents the test set AUROC for models trained in the SRF regime on the
8 datasets in the benchmark introduced above that contain more than 30,000 samples.
The finetuning subset for all datasets contained 500 labeled datapoints.

DAE pretrained MLPs never outperformed untrained MLPs — in other words, DAE
pretraining did not allow the MLP model to effectively exploit information from the
unlabeled pretraining dataset. However, MLM and RTD pretraining for transformer
models was highly effective. And the larger the unsupervised training dataset, the
larger the effect (and the largest savings by using SRF instead of full semi-supervised
learning).

Transfer learning from other datasets, the Xfr models, does not seem to offer any
advantages, contrary to what is observed in natural language processing (Devlin
et al., 2019). This is unsurprising given the diverse nature of the datasets in the
benchmark, though it does not rule out transfer learning for tabular data that might
exploit properties of the column contents that are not present in the transformer
architecture we used.

5.5 Discussion
Despite the suggestions in much of the literature on the topic, the large-scale
benchmark experiments in this chapter suggest that deep models do not offer a
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Figure 5.3: log2 improvement in AUROC relative to a baseline model (a non-
pretrained transformer) on 8 datasets in the SRF regime. Each dataset contained
between 30,000 and 450,000 unlabeled datapoints (seeAppendix for precise numbers),
and each finetuning subset contained 500 labeled datapoints. Error bars show the
standard deviation across 5 cross-validation splits. Higher is better.

meaningful performance benefit over GBDT models for standard supervised learning
on tabular data. This is particularly disappointing for strongly theoretically motivated
methods like those based on the information bottleneck. We explore this disconnect
between theory and practice further in the next chapter.

However there are regimes, like subset-restricted finetuning, that let deep learning
play to its strengths. As the variance in performance between the MLM and RTD
pretraining methods in Figure 5.3 suggests, there remains much to explore regarding
unsupervised methods for deep models on tabular data.

5.6 Acknowledgments
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5.7 Appendix: Experiment and Model Details
The LightGBM3 library (Ke, Meng, et al., 2017) was used to implement the GBDT
models. All other models were implemented using the PyTorch4 library (Paszke
et al., 2019). All experiments were run on an Ubuntu Linux machine with 8 CPUs

3https://lightgbm.readthedocs.io
4https://pytorch.org/

https://lightgbm.readthedocs.io
https://pytorch.org/
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and 60GB memory, with all models except for the GBDTs trained using a single
NVIDIA V100 Tensor Core GPU.

All scalar features were normalized to zero median and unit interquartile range5 and
had a binary flag appended for missing values.

Exact values for all hyperparameter searches can be found in the scripts in the code
included with this dissertation.

Benchmark Experiments
The cross entropy loss was used for training, and for all deep models the AdamW
optimizer (Loshchilov and Hutter, 2017) was used to update the model parameters.
All models used early stopping based on the performance on the validation set.

The hyperparameters tuned for the GBDT model were the number of leaves in the
trees, the minimum number of datapoints required to split a leaf in the trees, the
boosting learning rate, and the number of trees used for boosting.

The MLP had varying numbers of hidden units and layers, but all used SELU
activations (Klambauer et al., 2017) followed by batch normalization followed by
dropout in each layer. The hyperparameters tuned were the weight decay factor,
the learning rate, the dropout probability, whether to one-hot encode categorical
variables or train learnable embeddings for each, and the number of layers and hidden
unit sizes (relative to the input size).

The transformer models we used (Tfmr and HetTfmr) were simplified versions of the
various flavors of multi-head attention-based models described in the Related Work
section above. The model was implemented as described in (Vaswani et al., 2017),
though the position encoding was not used and instead separate embeddings were
learned for each feature in the dataset. In order to convert scalar features into the
categorical embeddings required by a transformer, scalar features were discretized
into 8 quantiles and an embedding learned for each quantile. The HetTfmr model
was identical to the transformer model except it maintained different parameters for
the multihead attention and linear mappings for each column. This increased the
parameter count of the model significantly, but not its computational complexity.

The hyperparameters tuned were the weight decay factor, the dropout probability,
whether to learn an additional embedding for each column’s embeddings, the number

5https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
RobustScaler.html

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html
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of attention heads, the hidden dimension, the number of layers, and what type
of readout to use for producing a prediction from the hidden state output of the
transformer (taking the mean, using a readout embedding, or the concat pool method
of (Howard and Ruder, 2018)).

The sparsifyingMLP (Prune)was the same as theMLP except at every k epochs during
training the fraction p of weights with the smallest magnitude were permanently set
to zero The hyperparameters tuned were the weight decay factor, the learning rate,
the number of layers and hidden unit sizes (relative to the input size), k and p.

The TabNet model was implemented exactly as described in (Arik and Pfister, 2019),
though we also added the option to use a softmax attention instead of a sparsemax
attention, and did not include the sparsification term in the loss function. The
hyperparameters tuned were the weight decay factor, the learning rate, the number of
layers, the hidden dimension, and the attention function.

The VIB model was implemented as described in (Alemi, Fischer, and Dillon, 2018).
We used a diagonal covariance, with 10 samples from the variational distribution
during training and 20 during testing. The hyperparameters tuned were the learning
rate, the number of layers and hidden unit sizes (relative to the input size), the β
coefficient, and the number of mixture components in the mixture of gaussians used
in the marginal distribution.

Subset-Restricted Finetuning
All models and hyperparameter searches were implemented as described above,
except each model was given 20 rounds of HPO instead of 10, and for pretrained
models HPO included searching over two learning rates: one for the new last fully
connected layer, and one for the rest of the model parameters.

DAE pretraining used swap noise as described in (Jahrer, 2018). MLM pretraining
used the protocol described in (Devlin et al., 2019), though separate parameters were
used to make predictions from each final hidden state since each hidden state had a
different categorical input. RTD pretraining was carried out as described in (Clark
et al., 2020), except using random noise instead of a generator model.

5.8 Appendix: Benchmark Dataset Information
References

Alemi, Alexander A., Ian Fischer, and Joshua V. Dillon (2018). “Uncertainty
in the Variational Information Bottleneck”. In: arXiv:1807.00906 [cs, stat].
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C h a p t e r 6

MINIMAL ACHIEVABLE SUFFICIENT STATISTIC LEARNING:
ADDRESSING ISSUES IN THE INFORMATION BOTTLENECK

6.1 Introduction
The representation learning approach to machine learning focuses on finding a
representation Z of an input random variable X that is useful for predicting a random
variable Y (Goodfellow, Y. Bengio, and Courville, 2016).

What makes a representation Z “useful” is much debated, but a common assertion
is that Z should be a minimal sufficient statistic of X for Y (Adragni, Kofi P. and
Cook, R. Dennis, 2009; Shamir, Sabato, and Tishby, 2010; James, Mahoney, and
Crutchfield, 2017; Achille and Soatto, 2018b). That is:

1. Z should be a statistic of X . This means Z = f (X) for some function f .

2. Z should be sufficient for Y . This means p(X |Z,Y ) = p(X |Z).

3. Given that Z is a sufficient statistic, it should be minimal with respect to X .
This means for any measurable, non-invertible function g, g(Z) is no longer
sufficient for Y .1

In other words: a minimal sufficient statistic is a random variable Z that tells
you everything about Y you could ever care about, but if you do any irreversible
processing to Z , you are guaranteed to lose some information about Y . Such
a representation would be extremely desirable in machine learning, as it would
(essentially by definition) preclude overfitting by excluding any information not
relevant to the task.

Minimal sufficient statistics have a long history in the field of statistics (Lehmann and
Scheffe, 1950; Dynkin, 1951). But the minimality condition (3, above) is perhaps
too strong to be useful in machine learning, since it is a statement about any function
g, rather than about functions in a practical hypothesis class like the class of deep
neural networks. As we will discuss below, this strictness erodes the mathematical

1This is not the most common phrasing of statistical minimality, but we feel it is more under-
standable. For the equivalence of this phrasing and the standard definition see Section 6.8.
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justification for the popular Information Bottleneck method (Tishby, Pereira, and
Bialek, 2000).

Instead, in this chapter we consider minimal achievable sufficient statistics: sufficient
statistics that are minimal among some particular set of functions.

Definition 1 (Minimal Achievable Sufficient Statistic). Let Z = f (X) be a sufficient
statistic of X for Y . Z is minimal achievable with respect to a set of functions F if
f ∈ F and for any Lipschitz continuous, non-invertible function g where g ◦ f ∈ F,
g(Z) is no longer sufficient for Y .

In this chapterwe introduceConservedDifferential Information (CDI), an information-
theoretic quantity that, unlike mutual information, is meaningful for deterministically-
dependent continuous random variables, such as the input and output of a deep
network. We also introduce Minimal Achievable Sufficient Statistic Learning
(MASS Learning), a training objective based on CDI for finding minimal achievable
sufficient statistics that achieves competitive performance on supervised learning
and uncertainty quantification benchmarks.

6.2 Conserved Differential Information
Before we present MASS Learning, we need to introduce Conserved Differential
Information (CDI), on which MASS Learning is based.

CDI is an information-theoretic quantity that addresses an oft-cited issue in machine
learning (Bell and Sejnowski, 1995; Amjad and Geiger, 2018; Saxe et al., 2018; Nash,
Kushman, and Williams, 2018; Goldfeld et al., 2018), which is that for a continuous
random variable X and a continuous, non-constant function f , the mutual information
I(X, f (X)) is infinite. (See Section 6.8 for details.) This makes I(X, f (X)) unsuitable
for use in a learning objective when f is, for example, a standard deep network.

The infinitude of I(X, f (X)) has been circumvented in prior works by two strategies.
One is to discretize X and f (X) (Tishby and Zaslavsky, 2015; Shwartz-Ziv and
Tishby, 2017), though this is controversial (Saxe et al., 2018). Another is to use a
random variable Z with distribution p(Z |X) as the representation of X rather than
using f (X) itself as the representation (Alemi, Fischer, Dillon, and Murphy, 2017;
Kolchinsky, Tracey, and Wolpert, 2017; Achille and Soatto, 2018b). In this latter
approach, p(Z |X) is usually implemented by adding noise to a deep network that
takes X as input.
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These are both reasonable strategies for avoiding the infinitude of I(X, f (X)). But
another approach would be to derive a new information-theoretic quantity that
is better suited to this situation. To that end we present Conserved Differential
Information:

Definition 2. For a continuous random variable X taking values inRd and a Lipschitz
continuous function f : Rd → Rr , the Conserved Differential Information (CDI)
is

C(X, f (X)) := H( f (X)) − EX
[
log

(
J f (X)

) ]
(6.1)

where H denotes the differential entropy

H(Z) = −
∫

p(z) log p(z) dz

and J f is the Jacobian determinant of f

J f (x) =

√√√
det

(
∂ f (x)
∂xT

(
∂ f (x)
∂xT

)T
)

with ∂ f (x)
∂xT ∈ Rr×d the Jacobian matrix of f at x.

Readers familiar with normalizing flows (Rezende andMohamed, 2015) or Real NVP
(Dinh, Sohl-Dickstein, and S. Bengio, 2017) will note that the Jacobian determinant
used in those methods is a special case of the Jacobian determinant in the definition
of CDI. This is because normalizing flows and Real NVP are based on the change of
variables formula for invertible mappings, while CDI is based in part on the more
general change of variables formula for non-invertible mappings. More details on
this connection are given in Section 6.8. The mathematical motivation for CDI based
on the recent work of (Koliander et al., 2016) is provided in Section 6.8. Figure 6.1
gives a visual example of what CDI measures about a function.

The conserved differential informationC(X, f (X)) between deterministically-dependent,
continuous random variables behaves much like mutual information does between
discrete random variables. For example, when f is invertible, C(X, f (X)) = H(X),
just like with the mutual information between discrete random variables. Most
importantly for our purposes, though, C(X, f (X)) obeys the following data processing
inequality:

Theorem 1 (CDI Data Processing Inequality). For Lipschitz continuous functions f

and g with the same output space,

C (X, f (X)) ≥ C (X, g( f (X)))
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Figure 6.1: CDI of two functions f1 and f2 of the random variable X . Even though
the random variables f1(X) and f2(X) have the same distribution, C(X, f1(X)) is
different from C(X, f2(X)). This is because f1 is an invertible function, while f2 is
not. CDI quantifies, roughly speaking, “how non-invertible” f2 is.

with equality if and only if g is invertible almost everywhere.

The proof is in Section 6.8.

6.3 MASS Learning
With CDI and its data processing inequality in hand, we can give the following
optimization-based characterization of minimal achievable sufficient statistics:

Theorem 2. Let X be a continuous random variable,Y be a discrete random variable,
and F be any set of Lipschitz continuous functions with a common output space (e.g.
different parameter settings of a deep network). If

f ∈ arg min
S∈F

C(X, S(X))

s.t. I(S(X),Y ) = max
S′

I(S′(X),Y )

then f (X) is a minimal achievable sufficient statistic of X for Y with respect to F.

Proof. First note the following lemma (Cover and Thomas, 2006).

Lemma 1. Z = f (X) is a sufficient statistic for a discrete random variable Y if and
only if I(Z,Y ) = maxS′ I(S′(X),Y ).
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Lemma 1 guarantees that any f satisfying the conditions in Theorem 2 is sufficient.
Suppose such an f was not minimal achievable. Then by Definition 1 there would
exist a non-invertible, Lipschitz continuous g such that g( f (X)) was sufficient. But
by Theorem 1, it would then also be the case that C(X, g( f (X))) < C(X, f (X)),
which would contradict f minimizing C(X, S(X)). �

We can turn Theorem 2 into a learning objective over functions f by relaxing the
strict constraint into a Lagrangian formulation with Lagrange multiplier 1/β for
β > 0:

C(X, f (X)) − 1
β

I( f (X),Y )

The larger the value of β, the more our objective will encourage minimality over
sufficiency. We can then simplify this formulation using the identity I( f (X),Y ) =
H(Y ) − H(Y | f (X)), which gives us the following optimization objective:

LM ASS( f ) := H(Y | f (X)) + βH( f (X))
− βEX[log J f (X)].

(6.2)

We refer to minimizing this objective asMASS Learning.

Practical implementation
In practice, we are interested in using MASS Learning to train a deep network fθ
with parameters θ using a finite dataset {(xi, yi)}Ni=1 of N datapoints sampled from
the joint distribution p(x, y) of X and Y . To do this, we introduce a parameterized
variational approximation qφ( fθ(x)|y) ≈ p( fθ(x)|y). Using qφ, we minimize the
following empirical upper bound to LM ASS:

LM ASS ≤ L̂M ASS(θ, φ) :=
1
N

N∑
i=1
− log qφ(yi | fθ(xi))

− β log qφ( fθ(xi))
− β log J fθ (xi),

where the quantity qφ( fθ(xi)) is computed as
∑

y qφ( fθ(xi)|y)p(y) and the quantity
qφ(yi | fθ(xi)) is computed with Bayes rule as qφ( fθ (xi)|yi)p(yi)∑

y qφ( fθ (xi)|y)p(y) . When Y is discrete
and takes on finitely many values, as in classification problems, and when we choose
a variational distribution qφ that is differentiable with respect to φ (e.g. a multivariate
Gaussian), then we can minimize L̂M ASS(θ, φ) using stochastic gradient descent
(SGD).
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To perform classification using our trained network, we use the learned variational
distribution qφ and Bayes rule:

p(yi |xi) ≈ p(yi | fθ(xi)) ≈
qφ( fθ(xi)|yi)p(yi)∑
y qφ( fθ(xi)|y)p(y)

.

Computing the J fθ term in L̂M ASS for every sample in an SGD minibatch is too
expensive to be practical. For fθ : Rd → Rr , doing so would require on the order of r

times more operations than in standard training of deep networks by, since computing
the J fθ term involves computing the full Jacobian matrix of the network, which, in
our implementation, involves performing r backpropagations. Thus to make training
tractable, we use a subsampling strategy: we estimate the J fθ term using only a 1/r
fraction of the datapoints in a minibatch. In practice, we have found this subsampling
strategy to not noticeably alter the numerical value of the J fθ term during training.

Subsampling for the J fθ term results in a significant training speedup, but it must
nevertheless be emphasized that, even with subsampling, our implementation of
MASS Learning is roughly eight times as slow as standard deep network training.
(Unless β = 0, in which case the speed is the same.) This is by far the most
significant drawback of (our implementation of) MASS Learning. There are many
easier-to-compute upper bounds or estimates of J fθ that one could use to make
MASS Learning faster, and one could also potentially find non-invertible network
architectures which admit more efficiently computable Jacobians, but we do not
explore these options.

6.4 Related Work
Connection to the Information Bottleneck
The well-studied Information Bottleneck learning method (Tishby, Pereira, and
Bialek, 2000; Tishby and Zaslavsky, 2015; Strouse and Schwab, 2015; Alemi,
Fischer, Dillon, and Murphy, 2017; Saxe et al., 2018; Amjad and Geiger, 2018;
Goldfeld et al., 2018; Kolchinsky, Tracey, and Van Kuyk, 2019; Achille and Soatto,
2018b; Achille and Soatto, 2018a) is based on minimizing the Information Bottleneck
Lagrangian

LIB(Z) := βI(X, Z) − I(Y, Z)

for β > 0, where Z is the representation whose conditional distribution p(Z |X) one
is trying to learn.

The LIB learning objective can be motivated based on pure information-theoretic
elegance. But some works like (Shamir, Sabato, and Tishby, 2010) also point out
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the connection between the LIB objective and minimal sufficient statistics, which is
based on the following theorem:

Theorem 3. Let X be a discrete random variable drawn according to a distribution
p(X |Y ) determined by the discrete random variableY . LetF be the set of deterministic
functions of X to any target space. Then f (X) is a minimal sufficient statistic of X

for Y if and only if

f ∈ arg min
S∈F

I(X, S(X))

s.t . I(S(X),Y ) = max
S′∈F

I(S′(X),Y ).

The LIB objective can then be thought of as a Lagrangian relaxation of the optimiza-
tion problem in this theorem.

Theorem 3 only holds for discrete random variables. For continuous X it holds
only in the reverse direction, so minimizing LIB for continuous X has no formal
connection to finding minimal sufficient statistics, not to mention minimal achievable
sufficient statistics. See Section 6.8 for details.

Nevertheless, the optimization problems in Theorem 2 and Theorem 3 are extremely
similar, relying as they both do on Lemma 1 for their proofs. And the idea of
relaxing the optimization problem in Theorem 2 into a Lagrangian formulation to get
LM ASS is directly inspired by the Information Bottleneck. So while MASS Learning
and Information Bottleneck learning entail different network architectures and loss
functions, there is an Information Bottleneck flavor to MASS Learning.

Jacobian Regularization
The presence of the J fθ term in L̂M ASS is reminiscent of contrastive autoencoders
(Rifai et al., 2011) and Jacobian Regularization (Sokolic et al., 2017; Ross and Doshi-
Velez, 2018; Varga, Csiszárik, and Zombori, 2017; “Sensitivity and Generalization
in Neural Networks” 2018; Jakubovitz and Giryes, 2018). Both these techniques are
based on the notion that minimizing EX[‖D f (X)‖F], where D f (x) = ∂ f (x)

∂xT ∈ Rr×d is
the Jacobian matrix, improves generalization and adversarial robustness.

This may seem paradoxical at first, since by applying the AM-GM inequality to the
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eigenvalues of D f (x)D f (x)T we have

EX[‖D f (X)‖2r
F ] = EX[Tr(D f (X)D f (X)T)r]
≥ EX[rr det(D f (X)D f (X)T)]
= EX[rr J f (X)2]
≥ logEX[rr J f (X)2]
≥ 2EX[log J f (X)] + r log r

and EX[log J f (X)] is being maximized by L̂M ASS. So L̂M ASS might seem to be
optimizing for worse generalization according to the Jacobian regularization literature.
However, the entropy term in L̂M ASS strongly encourages minimizing EX[‖D f (X)‖F].
So overall L̂M ASS seems to be seeking the right balance of sensitivity (dependent on
the value of β) in the network to its inputs, which is precisely in alignment with what
the Jacobian regularization literature suggests.

6.5 Experiments
In this section we compare MASS Learning to other approaches for training deep
networks. Code to reproduce all experiments is available online.2 Full details on all
experiments is in Section 6.8.

We use the abbreviation “SoftmaxCE” to refer to the standard approach of training
deep networks for classification problems by minimizing the softmax cross entropy
loss

L̂So f tmaxCE (θ) := − 1
N

N∑
i=1

(
log softmax( fθ(xi))yi

)
where softmax( fθ(xi))yi is the yith element of the softmax function applied to the
outputs fθ(xi) of the network’s last linear layer. As usual, softmax( fθ(xi))yi is taken
to be the network’s estimate of p(yi |xi).

We also compare against the Variational Information Bottleneck method (Alemi,
Fischer, Dillon, and Murphy, 2017) for representation learning, which we abbreviate
as “VIB”.

We use two networks in our experiments. “SmallMLP” is a feedforward network
with two fully-connected layers of 400 and 200 hidden units, respectively, both with
elu nonlinearities (Clevert, Unterthiner, and Hochreiter, 2015). “ResNet20” is the
20-layer residual network of (He et al., 2016).

2https://github.com/mwcvitkovic/MASS-Learning

https://github.com/mwcvitkovic/MASS-Learning
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We performed all experiments on the CIFAR-10 dataset (Krizhevsky, 2009) to ensure
consistency with previously published results and implemented all experiments using
PyTorch (Paszke et al., 2017).

Classification Accuracy and Regularization
We first confirm that networks trained by MASS Learning can make accurate
predictions in supervised learning tasks. We compare the classification accuracy
of networks trained on varying amounts of data to see the extent to which MASS
Learning regularizes networks.

Classification accuracies for the SmallMLP network are shown in Table 6.1, and for
the ResNet20 network in Table 6.2. For the SmallMLP network, MASS Learning
performs slightly worse than SoftmaxCE and VIB training. For the larger ResNet20
network, MASS Learning performs equivalently to the other methods. It is notable
that with the ResNet20 network VIB and MASS Learning both perform well when
β = 0, and neither perform significantly better than SoftmaxCE. This may be because
the hyperparameters used in training the ResNet20 network, which were taken directly
from the original paper (He et al., 2016), are specifically tuned for SoftmaxCE
training and are more sensitive to the specifics of the network architecture than to the
loss function.

Uncertainty Quantification
We also evaluate the ability of networks trained by MASS Learning to properly
quantify their uncertainty about their predictions. We assess uncertainty quantification
in two ways: using proper scoring rules (Lakshminarayanan, Pritzel, and Blundell,
2017), which are scalar measures of how well a network’s predictive distribution
p(y | fθ(x)) is calibrated, and by assessing performance on an out-of-distribution
(OOD) detection task.

Tables 6.3 through 6.8 show the uncertainty quantification performance of networks
according to two proper scoring rules: the Negative Log Likelihood (NLL) and the
Brier Score. The entropy and test accuracy of the predictive distributions are also
given, for reference.

For the SmallMLP network in Tables 6.3, 6.4, and 6.5, VIB provides the best
combination of high accuracy and low NLL and Brier score across all sizes of
training set, despite SoftmaxCE with weight decay achieving the best scoring rule
values. For the larger ResNet20 network in Tables 6.6 and 6.7, MASS Learning
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Table 6.1: Test-set classification accuracy (percent) on CIFAR-10 dataset using
the SmallMLP network trained by various methods. Full experiment details are in
Section 6.8. Values are the mean classification accuracy over 4 training runs with
different random seeds, plus or minus the standard deviation. Emboldened accuracies
are those for which the maximum observed mean accuracy in the column was within
one standard deviation. WD is weight decay; D is dropout.

Method Training Set Size
2500 10,000 40,000

SoftmaxCE 34.2 ± 0.8 44.6 ± 0.6 52.7 ± 0.4
SoftmaxCE, WD 23.9 ± 0.9 36.4 ± 0.9 48.1 ± 0.1
SoftmaxCE, D 33.7 ± 1.1 44.1 ± 0.6 53.7 ± 0.3
VIB, β=1e−1 32.2 ± 0.6 40.6 ± 0.4 46.1 ± 0.5
VIB, β=1e−2 34.6 ± 0.4 43.8 ± 0.8 51.9 ± 0.8
VIB, β=1e−3 35.6 ± 0.5 44.6 ± 0.6 51.8 ± 0.8
VIB, β=1e−1, D 29.0 ± 0.6 40.1 ± 0.5 49.5 ± 0.5
VIB, β=1e−2, D 32.5 ± 0.9 43.9 ± 0.3 53.6 ± 0.3
VIB, β=1e−3, D 34.5 ± 1.0 44.4 ± 0.4 54.3 ± 0.2
MASS, β=1e−2 29.6 ± 0.4 39.9 ± 1.2 46.3 ± 1.2
MASS, β=1e−3 32.7 ± 0.8 41.5 ± 0.7 47.8 ± 0.8
MASS, β=1e−4 34.0 ± 0.3 41.5 ± 1.1 47.9 ± 0.8
MASS, β=0 34.1 ± 0.6 42.0 ± 0.6 48.2 ± 0.9
MASS, β=1e−2, D 29.3 ± 1.2 41.7 ± 0.4 52.0 ± 0.6
MASS, β=1e−3, D 31.5 ± 0.6 43.7 ± 0.2 53.1 ± 0.4
MASS, β=1e−4, D 32.7 ± 0.8 43.4 ± 0.5 53.2 ± 0.1
MASS, β=0, D 32.2 ± 1.1 43.9 ± 0.4 52.7 ± 0.0

provides the best combination of accuracy and proper scoring rule performance,
though its performance falters when trained on only 2,500 datapoints in Table and
6.8. These ResNet20 UQ results also show the trend that MASS Learning with larger
β leads to better calibrated network predictions. Thus, as measured by proper scoring
rules, MASS Learning can significantly improve the calibration of a network’s
predictions while maintaining the same accuracy.

Tables 6.9 through 6.14 show metrics for performance on an OOD detection task
where the network predicts not just the class of the input image, but whether the image
is from its training distribution (CIFAR-10 images) or from another distribution
(SVHN images (Netzer et al., 2011)). Following (Hendrycks and Gimpel, 2017) and
(Alemi, Fischer, and Dillon, 2018), the metrics we report for this task are the Area
under the ROC curve (AUROC) and Average Precision score (APR). APR depends on
whether the network is tasked with identifying in-distribution or out-of-distribution
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Table 6.2: Test-set classification accuracy (percent) on CIFAR-10 dataset using the
ResNet20 network trained by various methods. No data augmentation was used —
full details in Section 6.8. Values are the mean classification accuracy over 4 training
runs with different random seeds, plus or minus the standard deviation. Emboldened
accuracies are those for which the maximum observed mean accuracy in the column
was within one standard deviation.

Method Training Set Size
2500 10,000 40,000

SoftmaxCE 50.0 ± 0.7 67.5 ± 0.8 81.7 ± 0.3
VIB, β=1e−3 49.5 ± 1.1 66.9 ± 1.0 81.0 ± 0.3
VIB, β=1e−4 49.4 ± 1.0 66.4 ± 0.5 81.2 ± 0.4
VIB, β=1e−5 50.0 ± 1.1 67.9 ± 0.8 80.9 ± 0.5
VIB, β=0 50.6 ± 0.8 67.1 ± 1.0 81.5 ± 0.2
MASS, β=1e−3 38.2 ± 0.7 59.6 ± 0.8 75.8 ± 0.5
MASS, β=1e−4 49.9 ± 1.0 66.6 ± 0.4 80.6 ± 0.5
MASS, β=1e−5 50.1 ± 0.5 67.4 ± 1.0 81.6 ± 0.4
MASS, β=0 50.2 ± 1.0 67.4 ± 0.3 81.5 ± 0.2

images; we report values for both cases as APR In and APR Out, respectively.

There are different detection methods that networks can use to identify OOD inputs.
One way, applicable to all training methods, is to use the entropy of the predictive
distribution p(y | fθ(x)): larger entropy suggests the input is OOD. For networks
trained by MASS Learning, the variational distribution qφ( fθ(x)|y) is a natural OOD
detector: a small value of maxi qφ( fθ(x)|yi) suggests the input is OOD. For networks
trained by SoftmaxCE, a distribution qφ( fθ(x)|y) can be learned by MLE on the
training set and used to detect OOD inputs in the same way.

For both the SmallMLP network in Tables 6.9, 6.10, and 6.11 and the ResNet20
network in Tables 6.12, 6.13, and 6.14, MASS Learning performs comparably or
better than SoftmaxCE and VIB. However, one should note that MASS Learning
with β = 0 gives performance not significantly different to MASS Learning with
β , 0 on these OOD tasks, which suggests that the good performance of MASS
Learning may be due to its use of a variational distribution to produce predictions,
rather than to the overall MASS Learning training scheme.
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Table 6.3: Uncertainty quantification metrics (proper scoring rules) on CIFAR-
10 using the SmallMLP network trained on 40,000 datapoints. Test Accuracy
and Entropy of the network’s predictive distribution are given for reference. Full
experiment details are in Section 6.8. Values are the mean over 4 training runs with
different random seeds, plus or minus the standard deviation. Emboldened values
are those for which the minimum observed mean value in the column was within one
standard deviation. WD is weight decay; D is dropout. Lower values are better.

Method Test Accuracy Entropy NLL Brier Score

SoftmaxCE 52.7 ± 0.4 0.211 ± 0.003 4.56 ± 0.07 0.0840 ± 0.0005
SoftmaxCE, WD 48.1 ± 0.1 1.500 ± 0.009 1.47 ± 0.01 0.0660 ± 0.0003
SoftmaxCE, D 53.7 ± 0.3 0.606 ± 0.005 1.79 ± 0.02 0.0681 ± 0.0005
VIB, β=1e−1 46.1 ± 0.5 0.258 ± 0.005 5.35 ± 0.15 0.0944 ± 0.0009
VIB, β=1e−2 51.9 ± 0.8 0.193 ± 0.004 5.03 ± 0.19 0.0861 ± 0.0015
VIB, β=1e−3 51.8 ± 0.8 0.174 ± 0.003 5.49 ± 0.20 0.0866 ± 0.0015
VIB, β=1e−1, D 49.5 ± 0.5 0.957 ± 0.005 1.62 ± 0.01 0.0660 ± 0.0003
VIB, β=1e−2, D 53.6 ± 0.3 0.672 ± 0.014 1.69 ± 0.01 0.0668 ± 0.0006
VIB, β=1e−3, D 54.3 ± 0.2 0.617 ± 0.007 1.75 ± 0.02 0.0677 ± 0.0005
MASS, β=1e−2 46.3 ± 1.2 0.203 ± 0.005 6.89 ± 0.16 0.0968 ± 0.0024
MASS, β=1e−3 47.8 ± 0.8 0.207 ± 0.004 5.89 ± 0.21 0.0935 ± 0.0017
MASS, β=1e−4 47.9 ± 0.8 0.212 ± 0.003 5.71 ± 0.16 0.0934 ± 0.0017
MASS, β=0 48.2 ± 0.9 0.208 ± 0.004 5.74 ± 0.20 0.0927 ± 0.0017
MASS, β=1e−2, D 52.0 ± 0.6 0.690 ± 0.013 1.85 ± 0.03 0.0694 ± 0.0005
MASS, β=1e−3, D 53.1 ± 0.4 0.649 ± 0.010 1.82 ± 0.04 0.0684 ± 0.0007
MASS, β=1e−4, D 53.2 ± 0.1 0.664 ± 0.020 1.79 ± 0.02 0.0680 ± 0.0002
MASS, β=0, D 52.7 ± 0.0 0.662 ± 0.003 1.82 ± 0.02 0.0690 ± 0.0003

Does MASS Learning finally solve the mystery of why stochastic gradient de-
scent with the cross entropy loss works so well in deep learning?
We do not believe so. Figure 6.2 shows how the values of the three terms in L̂M ASS

change as the SmallMLP network trains on the CIFAR-10 dataset using either the
SoftmaxCE training or MASS Learning. Despite achieving similar accuracies,
the SoftmaxCE training method does not seem to be implicitly performing MASS
Learning, based on the differing values of the entropy (orange) and Jacobian (green)
terms between the two methods as training progresses.

6.6 Discussion
MASS Learning is a new approach to representation learning that performs well on
classification accuracy, regularization, and uncertainty quantification benchmarks,
despite not being directly formulated for any of these tasks. It shows particularly
strong performance in improving uncertainty quantification.
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Table 6.4: Uncertainty quantification metrics (proper scoring rules) on CIFAR-
10 using the SmallMLP network trained on 10,000 datapoints. Test Accuracy
and Entropy of the network’s predictive distribution are given for reference. Full
experiment details are in Section 6.8. Values are the mean over 4 training runs with
different random seeds, plus or minus the standard deviation. Emboldened values
are those for which the minimum observed mean value in the column was within one
standard deviation. WD is weight decay; D is dropout. Lower values are better.

Method Test Accuracy Entropy NLL Brier Score

SoftmaxCE 44.6 ± 0.6 0.250 ± 0.004 5.33 ± 0.06 0.0974 ± 0.0011
SoftmaxCE, WD 36.4 ± 0.9 0.897 ± 0.033 2.44 ± 0.11 0.0905 ± 0.0019
SoftmaxCE, D 44.1 ± 0.6 0.379 ± 0.007 3.76 ± 0.04 0.0935 ± 0.0012
VIB, β=1e−1 40.6 ± 0.4 0.339 ± 0.011 4.86 ± 0.23 0.1017 ± 0.0016
VIB, β=1e−2 43.8 ± 0.8 0.274 ± 0.004 4.83 ± 0.16 0.0983 ± 0.0017
VIB, β=1e−3 44.6 ± 0.6 0.241 ± 0.004 5.50 ± 0.11 0.0983 ± 0.0005
VIB, β=1e−1, D 40.1 ± 0.5 0.541 ± 0.015 3.22 ± 0.09 0.0945 ± 0.0012
VIB, β=1e−2, D 43.9 ± 0.3 0.413 ± 0.009 3.43 ± 0.09 0.0927 ± 0.0011
VIB, β=1e−3, D 44.4 ± 0.4 0.389 ± 0.004 3.61 ± 0.06 0.0927 ± 0.0004
MASS, β=1e−2 39.9 ± 1.2 0.172 ± 0.008 10.06 ± 0.37 0.1109 ± 0.0020
MASS, β=1e−3 41.5 ± 0.7 0.197 ± 0.005 8.03 ± 0.28 0.1069 ± 0.0016
MASS, β=1e−4 41.5 ± 1.1 0.208 ± 0.008 7.55 ± 0.44 0.1054 ± 0.0023
MASS, β=0 42.0 ± 0.6 0.215 ± 0.009 7.21 ± 0.28 0.1043 ± 0.0015
MASS, β=1e−2, D 41.7 ± 0.4 0.399 ± 0.017 4.21 ± 0.17 0.0974 ± 0.0013
MASS, β=1e−3, D 43.7 ± 0.2 0.412 ± 0.010 3.71 ± 0.07 0.0930 ± 0.0006
MASS, β=1e−4, D 43.4 ± 0.5 0.435 ± 0.011 3.50 ± 0.05 0.0923 ± 0.0005
MASS, β=0, D 43.9 ± 0.4 0.447 ± 0.009 3.40 ± 0.03 0.0913 ± 0.0008

There are several potential ways to improve MASS Learning. Starting at the lowest
level: it is likely that we did not manage to minimize L̂M ASS anywhere close to
the extent possible in our experiments, given the minimal hyperparameter tuning
we performed. In particular, we noticed that the initialization of the variational
distribution played a large role in performance, but we were not able to fully explore
it.

Moving a level higher, it may be that we are effectively minimizing L̂M ASS, but
that L̂M ASS is not a useful empirical approximation or upper bound to LM ASS. This
could be due to an insufficiently expressive variational distribution, or simply that
the quantities in L̂M ASS require more data to approximate well than our datasets
contained.

At higher levels still, it may be the case that the Lagrangian formulation of Theorem
2 as LM ASS is impractical for finding minimal achievable sufficient statistics. Or
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Table 6.5: Uncertainty quantification metrics (proper scoring rules) on CIFAR-10
using the SmallMLP network trained on 2,500 datapoints. Test Accuracy and Entropy
of the network’s predictive distribution are given for reference. Full experiment
details are in Section 6.8. Values are the mean over 4 training runs with different
random seeds, plus or minus the standard deviation. Emboldened values are those
for which the minimum observed mean value in the column was within one standard
deviation. WD is weight decay; D is dropout. Lower values are better.

Method Test Accuracy Entropy NLL Brier Score

SoftmaxCE 34.2 ± 0.8 0.236 ± 0.025 8.14 ± 0.84 0.1199 ± 0.0024
SoftmaxCE, WD 23.9 ± 0.9 0.954 ± 0.017 3.41 ± 0.07 0.1114 ± 0.0013
SoftmaxCE, D 33.7 ± 1.1 0.203 ± 0.006 9.68 ± 0.06 0.1219 ± 0.0013
VIB, β=1e−1 32.2 ± 0.6 0.247 ± 0.007 8.33 ± 0.50 0.1219 ± 0.0013
VIB, β=1e−2 34.6 ± 0.4 0.249 ± 0.004 7.36 ± 0.18 0.1175 ± 0.0005
VIB, β=1e−3 35.6 ± 0.5 0.217 ± 0.008 8.03 ± 0.37 0.1175 ± 0.0012
VIB, β=1e−1, D 29.0 ± 0.6 0.383 ± 0.011 6.32 ± 0.16 0.1219 ± 0.0010
VIB, β=1e−2, D 32.5 ± 0.9 0.260 ± 0.006 7.41 ± 0.25 0.1211 ± 0.0019
VIB, β=1e−3, D 34.5 ± 1.0 0.200 ± 0.002 9.44 ± 0.16 0.1203 ± 0.0020
MASS, β=1e−2 29.6 ± 0.4 0.047 ± 0.002 57.13 ± 1.60 0.1381 ± 0.0007
MASS, β=1e−3 32.7 ± 0.8 0.048 ± 0.004 46.40 ± 3.81 0.1322 ± 0.0018
MASS, β=1e−4 34.0 ± 0.3 0.052 ± 0.002 39.10 ± 1.96 0.1293 ± 0.0009
MASS, β=0 34.1 ± 0.6 0.061 ± 0.003 33.60 ± 1.34 0.1285 ± 0.0012
MASS, β=1e−2, D 29.3 ± 1.2 0.118 ± 0.008 20.51 ± 0.83 0.1349 ± 0.0018
MASS, β=1e−3, D 31.5 ± 0.6 0.145 ± 0.004 15.65 ± 0.71 0.1289 ± 0.0010
MASS, β=1e−4, D 32.7 ± 0.8 0.185 ± 0.010 11.21 ± 0.66 0.1245 ± 0.0011
MASS, β=0, D 32.2 ± 1.1 0.217 ± 0.008 9.70 ± 0.29 0.1236 ± 0.0021

it may be that the difference between minimal and minimal achievable sufficient
statistics is relevant for performance on machine learning tasks. Or it may simply be
that framing machine learning as a problem of finding minimal sufficient statistics is
not productive. The results of the VIB model in Chapter 5 suggest this in the case of
tabular data.

Finally, while we again note that more work is needed to reduce the computational
cost of our implementation of MASS Learning, we believe the concept of MASS
learning, and the concepts of minimal achievability and Conserved Differential
Information we introduce along with it, are beneficial to the theoretical understanding
of representation learning.
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Table 6.6: Uncertainty quantification metrics (proper scoring rules) on CIFAR-10
using the ResNet20 network trained on 40,000 datapoints. Test Accuracy and Entropy
of the network’s predictive distribution are given for reference. Full experiment
details are in Section 6.8. Values are the mean over 4 training runs with different
random seeds, plus or minus the standard deviation. Emboldened values are those
for which the minimum observed mean value in the column was within one standard
deviation. Lower values are better.

Method Test Accuracy Entropy NLL Brier Score

SoftmaxCE 81.7 ± 0.3 0.087 ± 0.002 1.45 ± 0.04 0.0324 ± 0.0005
VIB, β=1e−3 81.0 ± 0.3 0.089 ± 0.003 1.51 ± 0.04 0.0334 ± 0.0005
VIB, β=1e−4 81.2 ± 0.4 0.092 ± 0.002 1.46 ± 0.05 0.0331 ± 0.0007
VIB, β=1e−5 80.9 ± 0.5 0.087 ± 0.005 1.58 ± 0.08 0.0339 ± 0.0008
VIB, β=0 81.5 ± 0.2 0.079 ± 0.001 1.70 ± 0.06 0.0331 ± 0.0007
MASS, β=1e−3 75.8 ± 0.5 0.139 ± 0.003 1.66 ± 0.07 0.0417 ± 0.0011
MASS, β=1e−4 80.6 ± 0.5 0.109 ± 0.002 1.33 ± 0.02 0.0337 ± 0.0008
MASS, β=1e−5 81.6 ± 0.4 0.095 ± 0.003 1.36 ± 0.03 0.0320 ± 0.0005
MASS, β=0 81.5 ± 0.2 0.092 ± 0.000 1.43 ± 0.04 0.0325 ± 0.0004

Table 6.7: Uncertainty quantification metrics (proper scoring rules) on CIFAR-10
using the ResNet20 network trained on 10,000 datapoints. Test Accuracy and Entropy
of the network’s predictive distribution are given for reference. Full experiment
details are in Section 6.8. Values are the mean over 4 training runs with different
random seeds, plus or minus the standard deviation. Emboldened values are those
for which the minimum observed mean value in the column was within one standard
deviation. Lower values are better.

Method Test Accuracy Entropy NLL Brier Score

SoftmaxCE 67.5 ± 0.8 0.195 ± 0.011 2.19 ± 0.06 0.0557 ± 0.0012
VIB, β=1e−3 66.9 ± 1.0 0.193 ± 0.008 2.26 ± 0.13 0.0570 ± 0.0017
VIB, β=1e−4 66.4 ± 0.5 0.197 ± 0.009 2.30 ± 0.02 0.0577 ± 0.0007
VIB, β=1e−5 67.9 ± 0.8 0.166 ± 0.010 2.49 ± 0.13 0.0561 ± 0.0011
VIB, β=0 67.1 ± 1.0 0.162 ± 0.009 2.64 ± 0.11 0.0578 ± 0.0016
MASS, β=1e−3 59.6 ± 0.8 0.252 ± 0.007 2.61 ± 0.11 0.0688 ± 0.0014
MASS, β=1e−4 66.6 ± 0.4 0.209 ± 0.009 2.18 ± 0.05 0.0570 ± 0.0005
MASS, β=1e−5 67.4 ± 1.0 0.192 ± 0.007 2.22 ± 0.07 0.0561 ± 0.0017
MASS, β=0 67.4 ± 0.3 0.189 ± 0.004 2.30 ± 0.08 0.0562 ± 0.0007
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Table 6.8: Uncertainty quantification metrics (proper scoring rules) on CIFAR-10
using the ResNet20 network trained on 2,500 datapoints. Test Accuracy and Entropy
of the network’s predictive distribution are given for reference. Full experiment
details are in Section 6.8. Values are the mean over 4 training runs with different
random seeds, plus or minus the standard deviation. Emboldened values are those
for which the minimum observed mean value in the column was within one standard
deviation. Lower values are better.

Method Test Accuracy Entropy NLL Brier Score

SoftmaxCE 50.0 ± 0.7 0.349 ± 0.005 2.98 ± 0.06 0.0833 ± 0.0012
VIB, β=1e−3 49.5 ± 1.1 0.363 ± 0.005 3.10 ± 0.11 0.0836 ± 0.0020
VIB, β=1e−4 49.4 ± 1.0 0.372 ± 0.016 3.02 ± 0.10 0.0833 ± 0.0016
VIB, β=1e−5 50.0 ± 1.1 0.306 ± 0.021 3.48 ± 0.15 0.0849 ± 0.0013
VIB, β=0 50.6 ± 0.8 0.271 ± 0.019 3.80 ± 0.15 0.0850 ± 0.0007
MASS, β=1e−3 38.2 ± 0.7 0.469 ± 0.012 3.75 ± 0.08 0.1010 ± 0.0017
MASS, β=1e−4 49.9 ± 1.0 0.344 ± 0.001 3.24 ± 0.08 0.0837 ± 0.0017
MASS, β=1e−5 50.1 ± 0.5 0.277 ± 0.008 3.81 ± 0.11 0.0859 ± 0.0005
MASS, β=0 50.2 ± 1.0 0.265 ± 0.009 3.96 ± 0.15 0.0861 ± 0.0020

Figure 6.2: Estimated value of each term in the MASS Learning loss function,
LM ASS( f ) = H(Y | f (X)) + βH( f (X)) − βEX[log J f (X)], during training of the
SmallMLP network on the CIFAR-10 dataset. The MASS training was performed
with β = 0.001, though the plotted values are for the terms without being multiplied
by the β coefficients. The values of these terms for SoftmaxCE training are estimated
using a distribution qφ( fθ(x)|y), with the distribution parameters φ being estimated
at each training step by MLE over the training data.
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6.8 Appendix: Omitted Proofs
Standard Definition of Minimal Sufficient Statistics
The most common phrasing of the definition of minimal sufficient statistic is:

Definition 3 (Minimal Sufficient Statistic). A sufficient statistic f (X) forY isminimal
if for any other sufficient statistic h(X) there exists a measurable function g such that
f = g ◦ h almost everywhere.

Some references do not explicitly mention the “measurability” and “almost every-
where” conditions on g, but since we are in the probabilistic setting it is this definition
of f = g ◦ h that is meaningful.

Our preferred phrasing of the definition of minimal sufficient statistic, which we use
in our Introduction, is:

Definition 4 (Minimal Sufficient Statistic). A sufficient statistic f (X) forY isminimal
if for any measurable function g, g( f (X)) is no longer sufficient for Y unless g is
invertible almost everywhere (i.e. there exist a measurable function g−1 and a set A
such that g−1(g(x)) = x for all x ∈ A and the event {X ∈ Ac} has probability zero).

The equivalence of Definition 3 and Definition 4 is given by the following lemma:

Lemma 2. Assume that there exists a minimal sufficient statistic h(X) for Y by
Definition 3. Then a sufficient statistic f (X) is minimal in the sense of Definition 3 if
and only if it is minimal in the sense of Definition 4.

Proof. We first assume that f (X) is minimal in the sense of Definition 3. Let g be
any measurable function such that g( f (X)) is sufficient for Y . By the minimality
(Def. 3) of f there must exist a measurable function g̃ such that g̃(g( f (x))) = f (x)
almost everywhere. This proves that f is minimal in the sense of Definition 4.

Now assume that f (X) is minimal in the sense of Definition 4 and let f̃ (X) be
another sufficient statistic. Because h is minimal (Def. 3), there exist g1 such that
h = g1 ◦ f̃ almost everywhere and g2 such that h = g2 ◦ f almost everywhere.
Because f is minimal (Def. 4), g2 must be one-to-one almost everywhere, i.e. there
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exists a g̃2 such that g̃2 ◦ h = g̃2 ◦ g2 ◦ f = f almost everywhere. In turn, we obtain
that g̃2 ◦ g1 ◦ f̃ = f almost everywhere, and since f̃ was arbitrary this proves the
minimality of f in the sense of Definition 3. �

The Mutual Information Between the Input and Output of a Deep Network is
Infinite
Typically the mutual information between continuous random variables X and Y is
given by

I(X,Y ) =
∫

p(x, y) log
p(x, y)

p(x)p(y)dxdy,

but this quantity is only defined when the joint density p(x, y) is integrable, which
it is not in the case that Y = f (X). (The technical term for p(x, y) in this case is a
“singular distribution”.) Instead, to compute I(X, f (X)) we must refer to the “master
definition” of mutual information (Cover and Thomas, 2006), which is

I(X,Y ) = sup
P,Q

I([X]P, [Y ]Q), (6.3)

where P and Q are finite partitions of the range of X and Y , respectively, and [X]P
is the random variable obtained by quantizing X using partition P, and analogously
for [Y ]Q .

From this definition, we can prove the following Lemma:

Lemma 3. If X and Y are continuous random variables, and there are open sets OX

and OY in the support of X and Y , respectively, such that y = f (x) for x ∈ OX and
y ∈ OY , then I(X,Y ) = ∞.

This includes all X and Y where Y = f (X) for an f that is continuous somewhere on
its domain, e.g. any deep network (considered as a function from an input vector to
an output vector).

Proof. Suppose X and Y satisfy the conditions of the lemma. Let OX and OY be
open sets with f (OX) = OY and P[X ∈ OX] =: δ > 0, which exist by the lemma’s
assumptions. Then let Pn

OY
be a partition of OY into n disjoint sets. Because Y is

continuous and hence does not have any atoms, we may assume that the probability of
Y belonging to each element of Pn

OY
is equal to the same nonzero value δ/n. Denote

by Pn
OX

the partition of OX into n disjoint sets, where each set in Pn
OX

is the preimage
of one of the sets in Pn

OY
. We can construct partitions of the whole domains of X and
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Y as Pn
OX
∪Oc

X and Pn
OY
∪Oc

Y , respectively. Using these partitions in equation 6.3,
we obtain

I(X,Y )

≥ (1 − δ) log(1 − δ) +
∑

A∈[X]Pn
OX

P[X ∈ A,Y ∈ f (A)] log
P[X ∈ A,Y ∈ f (A)]
P[X ∈ A]P[Y ∈ f (A)]

= (1 − δ) log(1 − δ) + n
δ

n
log

δ
n
δ
n
δ
n

= (1 − δ) log(1 − δ) + δ log
n
δ
.

By letting n go to infinity, we can see that the supremum in Eq. 6.3 is infinity. �

The Change of Variables Formula for Non-invertible Mappings
The change of variables formula is widely used in machine learning and is key to
recent results in density estimation and generative modeling like normalizing flows
(Rezende and Mohamed, 2015), NICE (Dinh, Krueger, and Y. Bengio, 2014), and
Real NVP (Dinh, Sohl-Dickstein, and S. Bengio, 2017). But all uses of the change of
variables formula in the machine learning literature that we are aware of use it with
respect to bijective mappings between random variables, despite the formula also
being applicable to non-invertible mappings between random variables. To address
this gap, we offer the following brief tutorial.

The familiar form of the change of variables formula for a random variable X with
density p(x) and a bijective, differentiable function f : Rd → Rd is∫

Rd
p(x)J f (x) dx =

∫
Rd

p( f −1(y)) dy. (6.4)

where J f (x) =
�� det ∂ f (x)

∂xT

��.
A slightly more general phrasing of Equation 6.4 is∫

f −1(B)
g(x)J f (x) dx =

∫
B
g( f −1(y)) dy. (6.5)

where g : Rd → R is any non-negative measurable function, and B ⊆ Rd is any
measurable subset of Rd .

We can extend Equation 6.5 to work in the case that f is not invertible. To do this,
we must address two issues. First, if f is not invertible, then f −1(y) is not a single
point but rather a set. Second, if f is not invertible, then the Jacobian matrix ∂ f (x)

∂xT
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may not be square, and thus has no well defined determinant. Both issues can be
resolved and lead to the following change of variables theorem (Krantz and Parks,
2009), which is based on the so-called coarea formula (Federer, 1969).

Theorem 4. Let f : Rd → Rr with r ≤ d be a differentiable function, g : Rd → R
a non-negative measurable function, B ⊆ Rd a measurable set, and J f (x) =√

det
(
∂ f (x)
∂xT

(
∂ f (x)
∂xT

)T
)
. Then

∫
f −1(B)

g(x)J f (x) dx =
∫
B

∫
f −1(y)

g(x) dH d−r(x) dy. (6.6)

where H d−r is the (d − r)-dimensional Hausdorff measure (one can think of this as
a measure for lower-dimensional structures in high-dimensional space, e.g. the area
of 2-dimensional surfaces in 3-dimensional space).3

We see in Theorem 4 that Equation 6.6 looks a lot like Equations 6.4 and 6.5, but
with f −1(y) replaced by an integral over the set f −1(y), which for almost every y is a
(d − r)-dimensional set. And if f in Equation 6.6 happens to be bijective, Equation
6.6 reduces to Equation 6.5.

We also see that the Jacobian determinant in Equation 6.5 was replaced by the
so-called r-dimensional Jacobian√√√

det

(
∂ f (x)
∂xT

(
∂ f (x)
∂xT

)T
)

in Equation 6.6. A word of caution is in order, as the r-dimensional Jacobian does
not have the same nice properties for concatenated functions as does the Jacobian
in the bijective case. In particular, we cannot calculate J f2◦ f1 based on the values

of J f1 and J f2 because the product
∂ f2(x)
∂xT

∂ f1(x)
∂xT

(
∂ f2(x)
∂xT

∂ f1(x)
∂xT

)T
does not decompose

into a product of ∂ f2(x)
∂xT

(
∂ f2(x)
∂xT

)T
and ∂ f1(x)

∂xT

(
∂ f1(x)
∂xT

)T
. In other words, the trick used

in techniques like normalizing flows and NICE to compute determinants of deep
networks for use in the change of variables formula by decomposing the network’s
Jacobian into the product of layerwise Jacobians does not work straightforwardly in
the case of non-invertible mappings.

3In what follows, we will sometimes replace g by g/Jf such that the Jacobian appears on the
right-hand side. Furthermore, we will not only use non-negative g. This can be justified by splitting g
into positive and negative parts provided that either part results in a finite integral.
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Motivation for Conserved Differential Information
First, we present an alternative definition of conditional entropy that is meaningful
for singular distributions (e.g. the joint distribution p(X, f (X)) for a function f ).
More information on this definition can be found in (Koliander et al., 2016).

Singular Conditional Entropy

Assume that the random variable X has a probability density function pX(x) on Rd .
For a given differentiable function f : Rd → Rr (r ≤ d), we want to analyze the
conditional differential entropy H(X | f (X)). Following (Koliander et al., 2016), we
define this quantity as:

H(X | f (X)) =

−
∫
Rr

p f (X)(y)
∫

f −1(y)
θd−r
Pr{X∈·| f (X)=y}(x) log

(
θd−r
Pr{X∈·| f (X)=y}(x)

)
dH d−r(x) dy

(6.7)

where H d−r denotes (d − r)-dimensional Hausdorff measure. The function p f (X) is
the probability density function of the randomvariable f (X). Although θd−r

Pr{X∈·| f (X)=y}
can also be interpreted as a probability density, it is not the commonly used density
with respect to Lebesgue measure (which does not exist for X | f (X) = y) but a
density with respect to a lower-dimensional Hausdorff measure. We will analyze the
two functions p f (X) and θd−r

Pr{X∈·| f (X)=y} in more detail. The density p f (X) is defined
by the relation ∫

f −1(B)
pX(x) dx =

∫
B

p f (X)(y) dy , (6.8)

which has to hold for every measurable set B ⊆ Rr . Using the coarea formula (or
the related change-of-variables theorem), we see that∫

f −1(B)
pX(x) dx =

∫
B

∫
f −1(y)

pX(x)
J f (x)

dH d−r(x) dy , (6.9)

where J f (x) =
√

det
(
∂ f (x)
∂xT

(
∂ f (x)
∂xT

)T
)
is the r-dimensional Jacobian determinant.

Thus, we identified

p f (X)(y) =
∫

f −1(y)

pX(x)
J f (x)

dH d−r(x) . (6.10)

The second function, namely θd−r
Pr{X∈·| f (X)=y}, is the Radon-Nikodym derivative of

the conditional probability Pr{X ∈ ·| f (X) = y} with respect to H d−r restricted
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to the set where X | f (X) = y has positive probability (in the end, this will be
the set f −1(y)). To understand this function, we have to know something about
the conditional distribution of X given f (X). Formally, a (regular) conditional
probability Pr{X ∈ ·| f (X) = y} has to satisfy three conditions:

• Pr{X ∈ ·| f (X) = y} is a probability measure for each fixed y ∈ Rr .

• Pr{X ∈ A| f (X) = ·} is measurable for each fixed measurable set A ⊆ Rd .

• For measurable sets A ⊆ Rd and B ⊆ Rr , we have

Pr{(X, f (X)) ∈ A × B} =
∫
B
Pr{X ∈ A| f (X) = y}p f (X)(y) dy . (6.11)

In our setting, equation 6.11 becomes∫
A∩ f −1(B)

pX(x) dx =
∫
B
Pr{X ∈ A| f (X) = y}p f (X)(y) dy . (6.12)

Choosing

Pr{X ∈ A| f (X) = y} = 1
p f (X)(y)

∫
A∩ f −1(y)

pX(x)
J f (x)

dH d−r(x) , (6.13)

the right-hand side in equation 6.12 becomes∫
B
Pr{X ∈ A| f (X) = y}p f (X)(y) dy =

∫
B

∫
A∩ f −1(y)

pX(x)
J f (x)

dH d−r(x) dy

=

∫
A∩ f −1(B)

pX(x) dx , (6.14)

where the final equality is again an application of the coarea formula. Thus, we
identified

θd−r
Pr{X∈·| f (X)=y}(x) =

pX(x)
J f (x) p f (X)(y)

. (6.15)

Although things might seem complicated up to this point, they simplify signifi-
cantly once we put everything together. In particular, inserting equation 6.15 into
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equation 6.7, we obtain

H(X | f (X))

= −
∫
Rr

p f (X)(y)
∫

f −1(y)

pX(x)
J f (x) p f (X)(y)

log
(

pX(x)
J f (x) p f (X)(y)

)
dH d−r(x) dy

= −
∫
Rr

∫
f −1(y)

pX(x)
J f (x)

log
(

pX(x)
J f (x) p f (X)(y)

)
dH d−r(x) dy

= −
∫
Rd

pX(x) log
(

pX(x)
J f (x) p f (X)( f (x))

)
dx (6.16)

= H(X) +
∫
Rd

pX(x) log
(
J f (x)p f (X)( f (x))

)
dx

= H(X) +
∫
Rd

pX(x) log
(
p f (X)( f (x))

)
dx +

∫
Rd

pX(x) log
(
J f (x)

)
dx

= H(X) +
∫
Rr

∫
f −1(y)

pX(x)
J f (x)

log
(
p f (X)( f (x))

)
dH d−r(x) dy + E

[
log

(
J f (X)

) ]
(6.17)

= H(X) +
∫
Rr

∫
f −1(y)

pX(x)
J f (x)

dH d−r(x) log
(
p f (X)(y)

)
dy + E

[
log

(
J f (X)

) ]
= H(X) +

∫
Rr

p f (X)(y) log
(
p f (X)(y)

)
dy + E

[
log

(
J f (X)

) ]
= H(X) − H( f (X)) + E

[
log

(
J f (X)

) ]
(6.18)

where equation 6.16 and equation 6.17 hold by the coarea formula.

So, altogether we have that for a random variable X and a function f , the singular
conditional entropy between X and f (X) is

H(X | f (X)) = H(X) − H( f (X)) + E
[
log

(
J f (X)

) ]
. (6.19)

This quantity can loosely be interpreted as being the difference in differential entropies
between X and f (X) but with an additional term that corrects for any “uninformative”
scaling that f does.

Conserved Differential Information

For random variables that are not related by a deterministic function, mutual
information can be expanded as

I(X,Y ) = H(X) − H(X |Y ) (6.20)

where H(X) and H(X |Y ) are differential entropy and conditional differential entropy,
respectively. As we would like to measure information between random variables
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that are deterministically dependent, we can mimic this behavior by defining for a
Lipschitz continuous mapping f :

C(X, f (X)) := H(X) − H(X | f (X)) . (6.21)

By equation 6.18, this can be simplified to

C(X, f (X)) = H( f (X)) − E
[
log

(
J f (X)

) ]
(6.22)

yielding our definition of CDI.

Proof of CDI Data Processing Inequality
CDI Data Processing Inequality (Theorem 1)

For Lipschitz continuous functions f and g with the same output space,

C(X, f (X)) ≥ C(X, g( f (X))

with equality if and only if g is one-to-one almost everywhere.

Proof. We calculate the difference between C(X, f (X)) and C(X, g( f (X))).

C(X, f (X)) − C(X, g( f (X))) (6.23)

= H( f (X)) − EX
[
log J f (X)

]
− H(g( f (X))) + EX

[
log Jg◦ f (X)

]
= H( f (X)) − H(g( f (X))) + EX

[
log

Jg( f (X))J f (X)
J f (X)

]
(6.24)

= −EX[log p f (X)( f (X))] + EX

[
log

∑
z∈g−1(g( f (X)))

p f (X)( f (z))
Jg( f (z))

]
+ EX[log Jg( f (X))]

(6.25)

= EX

log ©«
∑

z∈g−1(g( f (X)))
p f (X)( f (z))

Jg( f (z))
p f (X)( f (X))

Jg( f (X))

ª®¬
 (6.26)

where equation 6.24 holds because the Jacobian determinant Jg◦ f can be decom-
posed as g has the same domain and codomain and equation 6.25 holds because
the probability density function of g( f (X)) can be calculated as pg( f (X))(z) =∑

z∈g−1(g( f (X)))
p f (X)( f (z))

Jg( f (z)) using a change of variables argument. The resulting term in
equation 6.26 is clearly always nonnegative which proves the inequality.

To prove the equality statement, we first assume that equation 6.26 is zero. In
this case,

∑
z∈g−1(g( f (x)))

p f (X)( f (z))
Jg( f (z)) =

p f (X)( f (x))
Jg( f (x)) almost everywhere. Of course, we
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also have that p f (X)( f (x)) > 0 almost everywhere. Thus, there exists a set A of
probability one such that

∑
z∈g−1(g( f (x)))

p f (X)( f (z))
Jg( f (z)) =

p f (X)( f (x))
Jg( f (x)) and p f (X)( f (x)) > 0

for all x ∈ A. In particular, the set g−1(g( f (x))) ∩ A = { f (x)} and hence g is
one-to-one almost everywhere.

For the other direction, assume that there exists g̃ such that g̃(g( f (x))) = f (x) almost
everywhere. We can assume without loss of generality that p f (X)( f (x)) = 0 for all x

that do not satisfy this equation. Restricting the expectation in equation 6.26 to the
values that satisfy g̃(g( f (x))) = f (x) does not change the expectation and gives the
value zero. �

Theorem 3 Only Holds in the Reverse Direction for Continuous X

The specific claim we are making is as follows:

Theorem5. Let X be a continuous random variable drawn according to a distribution
p(X |Y ) determined by the discrete random variableY . Let F be the set of measurable
functions of X to any target space. If f (X) is a minimal sufficient statistic of X for Y

then

f ∈ arg min
S∈F

I(X, S(X))

s.t . I(S(X),Y ) = max
S′∈F

I(S′(X),Y ). (6.27)

However, there may exist a function f satisfying equation 6.27 such that f (X) is not
a minimal sufficient statistic.

Proof. First, we prove the forward direction. According to Lemma 1, Z = f (X) is a
sufficient statistic for Y if and only if I(Z,Y ) = I(X,Y ) = maxS′ I(S′(X),Y ). To show
the minimality condition in equation 6.27 for a minimal sufficient statistic, assume
that there exists S(X) such that I(S(X),Y ) = maxS′∈F I(S′(X),Y ) and I(X, S(X)) <
I(X, f (X)). Because f is assumed to be a minimal sufficient statistic, there exists
g such that f (X) = g(S(X)) and by the data-processing inequality I(X, S(X)) ≥
I(X, f (X)), a contradiction.

Next, we give an example of a function satisfying equation 6.27 such that f (X) is not
a minimal sufficient statistic. The example is the case when I(X, f (X)) is not finite,
as is the case when f is a deterministic function and X is continuous. (See Lemma
3.) In this case, I(X, S(X)) is infinite for all deterministic, sufficient statistics S. Thus
the set arg minS I(X, S(X)) contains not only the minimal sufficient statistics, but all
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deterministic sufficient statistics. As a concrete example, consider two i.i.d. normally-
distributed random variables with mean µ: X = (X1, X2) ∼ N(µ, 1). T(X) = X1+X2

2 is
aminimal sufficient statistic for µ. T ′(X) = ( X1+X2

2 , X1 ·X2) is a non-minimal sufficient
statistic for µ. However, both statistics satisfy T,T ′ ∈ arg minS∈F I(X, S(X)) since
minS∈F I(X, S(X)) = ∞ under the constraint I(S(X),Y ) = maxS′∈F I(S′(X),Y ). �

Experiment Details
Code to reproduce all experiments is available online at https://github.com/
mwcvitkovic/MASS-Learning.

Data

In all experiments above, the models were trained on the CIFAR-10 dataset
(Krizhevsky, 2009). In the out-of-distribution detection experiments, the SVHN
dataset (Netzer et al., 2011) was used as the out-of-distribution dataset. All channels
in all datapoints were normalized to have zero mean and unit variance across their
dataset. No data augmentation was used in any experiments.

Networks

The SmallMLP network is a 2-hidden-layer, fully-connected network with elu
nonlinearities (Clevert, Unterthiner, and Hochreiter, 2015). The first hidden layer
contains 400 hidden units; the second contains 200 hidden units. Batch norm
was applied after the linear mapping and before the nonlinearity of each hidden
layer. Dropout, when used, was applied after the nonlinearity of each hidden layer.
When used in VIB and MASS, the representation fθ(x) was in R15, with the VIB
encoder outputting parameters for a fully-covariant Gaussian distribution in R15. The
marginal distribution in VIB and each component of the variational distribution qφ
(one component for each possible output class) in MASS were both mixtures of 10
full-covariance, 15-dimensional multivariate Gaussians.

The ResNet20 network is the 20-layer residual net of (He et al., 2016). We adapted
our implementation from https://github.com/akamaster/pytorch_resnet_
cifar10, to whose authors we are very grateful. When used in VIB and MASS,
the representation fθ(x) was in R20, with the VIB encoder outputting parameters
for a diagonally-covariant Gaussian distribution in R20. The marginal distribution
in VIB and each component of the the variational distribution qφ (one component

https://github.com/mwcvitkovic/MASS-Learning
https://github.com/mwcvitkovic/MASS-Learning
https://github.com/akamaster/pytorch_resnet_cifar10
https://github.com/akamaster/pytorch_resnet_cifar10
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for each possible output class) in MASS were both mixtures of 10 full-covariance,
20-dimensional multivariate Gaussians.

In experiments where a distribution qφ( fθ(x)|y) is used in conjunction with a function
fθ trained by SoftmaxCE, each component of qφ( fθ(x)|y) was a mixture of 10 full-
covariance, 10-dimensional multivariate Gaussians, the parameters φ of which were
estimated by MLE on the training set.

Training

The SmallMLP network in all experiments and with all training methods was trained
using the Adam optimizer (Kingma and Ba, 2015) with a learning rate of 0.0005
for 100,000 steps of stochastic gradient descent, using minibatches of size 256. All
quantities we report in this chapter were fully-converged to stable values by 100,000
steps. When training VIB, 5 encoder samples per datapoint were used during training,
and 10 during testing. When training MASS, the learning rate of the parameters of
the variational distribution qφ was set at 2.5e−5 to aid numerical stability.

The ResNet20 network in all experiments and with all training methods was trained
using SGD with an initial learning rate of 0.1, decayed by a multiplicative factor
of 0.1 at epochs 100 and 150, a momentum factor of 0.9, and minibatches of size
128. These values were taken directly from the original paper (He et al., 2016).
However, unlike the original paper, we did not use data augmentation in order to keep
the comparison between different numbers of training points more rigorous. This,
combined with the smaller number of training points used, accounts for the around
82% accuracy we observe on CIFAR-10 compared to the around 91% accuracy in
the original paper. We trained the network for 70,000 steps of stochastic gradient
descent. All quantities we report in this chapter were fully-converged to stable values
by 70,000 steps. When training VIB, 10 encoder samples per datapoint were used
during training, and 20 during testing. When training MASS, the learning rate of the
parameters of the variational distribution was the same as those of the network.

The values of β we chose for VIB and MASS were selected so that the largest β value
used in each experiment was much larger in magnitude than the remaining terms in
the VIB or MASS training loss, and the smallest β value used was much smaller than
the remaining terms. We made this choice in the hope of clearly observing the effect
of the β parameter and more fairly comparing SoftmaxCE, VIB, and MASS. But we
note that a finer-tuning of the β parameter would likely result in better performance
for both VIB and MASS. We also note that the reason we omit a β = 0 run for VIB



103

with the SmallMLP network was that we could not prevent training from failing due
to numerical instability with β = 0 with this network.
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Table 6.9: Out-of-distribution detection metrics for SmallMLP network trained on
40,000 CIFAR-10 images, with SVHN as the out-of-distribution examples. Full
experiment details are in Section 6.8. Values are the mean over 4 training runs with
different random seeds, plus or minus the standard deviation. Emboldened values
are those for which the maximum observed mean value in the column was within
one standard deviation. WD is weight decay; D is dropout. Larger values are better.

Training Method Test Acc Detection AUROC APR In APR Out

SoftmaxCE 52.7 ± 0.4 Entropy 0.65 ± 0.01 0.68 ± 0.01 0.61 ± 0.01
maxi qφ(·|yi) 0.38 ± 0.01 0.42 ± 0.01 0.43 ± 0.01

SoftmaxCE, WD 48.1 ± 0.1 Entropy 0.65 ± 0.01 0.69 ± 0.01 0.59 ± 0.01
maxi qφ(·|yi) 0.43 ± 0.01 0.43 ± 0.01 0.48 ± 0.02

SoftmaxCE, D 53.7 ± 0.3 Entropy 0.71 ± 0.01 0.75 ± 0.01 0.65 ± 0.01
maxi qφ(·|yi) 0.33 ± 0.00 0.39 ± 0.00 0.40 ± 0.00

VIB, β=1e−1 46.1 ± 0.5 Entropy 0.62 ± 0.01 0.66 ± 0.01 0.57 ± 0.01
Rate 0.47 ± 0.02 0.49 ± 0.01 0.46 ± 0.01

VIB, β=1e−2 51.9 ± 0.8 Entropy 0.64 ± 0.01 0.67 ± 0.01 0.59 ± 0.01
Rate 0.58 ± 0.03 0.59 ± 0.02 0.55 ± 0.02

VIB, β=1e−3 51.8 ± 0.8 Entropy 0.65 ± 0.00 0.67 ± 0.01 0.61 ± 0.00
Rate 0.52 ± 0.03 0.54 ± 0.03 0.50 ± 0.03

VIB, β=1e−1, D 49.5 ± 0.5 Entropy 0.68 ± 0.01 0.74 ± 0.01 0.60 ± 0.01
Rate 0.34 ± 0.01 0.40 ± 0.01 0.39 ± 0.00

VIB, β=1e−2, D 53.6 ± 0.3 Entropy 0.69 ± 0.02 0.73 ± 0.01 0.62 ± 0.02
Rate 0.50 ± 0.03 0.51 ± 0.02 0.51 ± 0.03

VIB, β=1e−3, D 54.3 ± 0.2 Entropy 0.69 ± 0.01 0.73 ± 0.01 0.62 ± 0.01
Rate 0.45 ± 0.01 0.45 ± 0.01 0.49 ± 0.01

MASS, β=1e−2 46.3 ± 1.2 Entropy 0.64 ± 0.01 0.67 ± 0.01 0.61 ± 0.01
maxi qφ(·|yi) 0.51 ± 0.03 0.56 ± 0.05 0.49 ± 0.01

MASS, β=1e−3 47.8 ± 0.8 Entropy 0.63 ± 0.02 0.65 ± 0.02 0.60 ± 0.02
maxi qφ(·|yi) 0.63 ± 0.07 0.64 ± 0.08 0.60 ± 0.05

MASS, β=1e−4 47.9 ± 0.8 Entropy 0.63 ± 0.02 0.65 ± 0.02 0.60 ± 0.02
maxi qφ(·|yi) 0.57 ± 0.06 0.58 ± 0.05 0.56 ± 0.05

MASS, β=0 48.2 ± 0.9 Entropy 0.63 ± 0.02 0.65 ± 0.02 0.59 ± 0.02
maxi qφ(·|yi) 0.58 ± 0.06 0.58 ± 0.05 0.56 ± 0.05

MASS, β=1e−2,D 52.0 ± 0.6 Entropy 0.73 ± 0.01 0.75 ± 0.01 0.67 ± 0.01
maxi qφ(·|yi) 0.65 ± 0.06 0.70 ± 0.06 0.58 ± 0.05

MASS, β=1e−3,D 53.1 ± 0.4 Entropy 0.71 ± 0.02 0.73 ± 0.01 0.64 ± 0.02
maxi qφ(·|yi) 0.64 ± 0.10 0.66 ± 0.10 0.60 ± 0.09

MASS, β=1e−4,D 53.2 ± 0.1 Entropy 0.73 ± 0.01 0.75 ± 0.01 0.67 ± 0.01
maxi qφ(·|yi) 0.65 ± 0.09 0.65 ± 0.08 0.61 ± 0.08

MASS, β=0,D 52.7 ± 0.0 Entropy 0.71 ± 0.02 0.74 ± 0.01 0.65 ± 0.02
maxi qφ(·|yi) 0.63 ± 0.09 0.65 ± 0.08 0.59 ± 0.09
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Table 6.10: Out-of-distribution detection metrics for SmallMLP network trained
on 10,000 CIFAR-10 images, with SVHN as the out-of-distribution examples. Full
experiment details are in Section 6.8. Values are the mean over 4 training runs with
different random seeds, plus or minus the standard deviation. Emboldened values
are those for which the maximum observed mean value in the column was within
one standard deviation. WD is weight decay; D is dropout. Larger values are better.

Training Method Test Acc Detection AUROC APR In APR Out

SoftmaxCE 44.6 ± 0.6 Entropy 0.62 ± 0.00 0.64 ± 0.01 0.59 ± 0.00
maxi qφ(·|yi) 0.36 ± 0.01 0.40 ± 0.01 0.42 ± 0.00

SoftmaxCE, WD 36.4 ± 0.9 Entropy 0.62 ± 0.02 0.62 ± 0.02 0.60 ± 0.02
maxi qφ(·|yi) 0.30 ± 0.01 0.37 ± 0.00 0.39 ± 0.01

SoftmaxCE, D 44.1 ± 0.6 Entropy 0.66 ± 0.01 0.69 ± 0.01 0.62 ± 0.01
maxi qφ(·|yi) 0.29 ± 0.01 0.37 ± 0.00 0.38 ± 0.00

VIB, β=1e−1 40.6 ± 0.4 Entropy 0.60 ± 0.01 0.64 ± 0.01 0.56 ± 0.01
Rate 0.50 ± 0.02 0.52 ± 0.02 0.48 ± 0.01

VIB, β=1e−2 43.8 ± 0.8 Entropy 0.62 ± 0.00 0.64 ± 0.01 0.59 ± 0.01
Rate 0.55 ± 0.03 0.57 ± 0.02 0.53 ± 0.02

VIB, β=1e−3 44.6 ± 0.6 Entropy 0.62 ± 0.01 0.64 ± 0.01 0.59 ± 0.01
Rate 0.49 ± 0.04 0.52 ± 0.04 0.48 ± 0.03

VIB, β=1e−1, D 40.1 ± 0.5 Entropy 0.62 ± 0.00 0.65 ± 0.01 0.57 ± 0.00
Rate 0.49 ± 0.02 0.51 ± 0.02 0.48 ± 0.01

VIB, β=1e−2, D 43.9 ± 0.3 Entropy 0.67 ± 0.01 0.69 ± 0.01 0.62 ± 0.00
Rate 0.60 ± 0.02 0.61 ± 0.02 0.56 ± 0.01

VIB, β=1e−3, D 44.4 ± 0.4 Entropy 0.67 ± 0.01 0.69 ± 0.01 0.63 ± 0.01
Rate 0.50 ± 0.03 0.53 ± 0.03 0.49 ± 0.02

MASS, β=1e−2 39.9 ± 1.2 Entropy 0.63 ± 0.02 0.64 ± 0.02 0.60 ± 0.01
maxi qφ(·|yi) 0.54 ± 0.03 0.58 ± 0.04 0.50 ± 0.02

MASS, β=1e−3 41.5 ± 0.7 Entropy 0.61 ± 0.02 0.62 ± 0.02 0.59 ± 0.01
maxi qφ(·|yi) 0.59 ± 0.07 0.60 ± 0.06 0.56 ± 0.06

MASS, β=1e−4 41.5 ± 1.1 Entropy 0.60 ± 0.00 0.61 ± 0.01 0.58 ± 0.00
maxi qφ(·|yi) 0.55 ± 0.05 0.56 ± 0.04 0.53 ± 0.04

MASS, β=0 42.0 ± 0.6 Entropy 0.60 ± 0.02 0.61 ± 0.02 0.57 ± 0.01
maxi qφ(·|yi) 0.55 ± 0.06 0.57 ± 0.04 0.54 ± 0.05

MASS, β=1e−2,D 41.7 ± 0.4 Entropy 0.67 ± 0.01 0.68 ± 0.01 0.63 ± 0.01
maxi qφ(·|yi) 0.63 ± 0.04 0.65 ± 0.04 0.57 ± 0.04

MASS, β=1e−3,D 43.7 ± 0.2 Entropy 0.67 ± 0.01 0.68 ± 0.01 0.63 ± 0.01
maxi qφ(·|yi) 0.66 ± 0.05 0.66 ± 0.04 0.61 ± 0.06

MASS, β=1e−4,D 43.4 ± 0.5 Entropy 0.68 ± 0.01 0.69 ± 0.01 0.64 ± 0.02
maxi qφ(·|yi) 0.64 ± 0.07 0.65 ± 0.05 0.59 ± 0.08

MASS, β=0,D 43.9 ± 0.4 Entropy 0.68 ± 0.00 0.69 ± 0.01 0.64 ± 0.00
maxi qφ(·|yi) 0.65 ± 0.04 0.66 ± 0.03 0.60 ± 0.06
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Table 6.11: Out-of-distribution detection metrics for SmallMLP network trained
on 2,500 CIFAR-10 images, with SVHN as the out-of-distribution examples. Full
experiment details are in Section 6.8. Values are the mean over 4 training runs with
different random seeds, plus or minus the standard deviation. Emboldened values
are those for which the maximum observed mean value in the column was within
one standard deviation. WD is weight decay; D is dropout. Larger values are better.

Training Method Test Acc Detection AUROC APR In APR Out

SoftmaxCE 34.2 ± 0.8 Entropy 0.61 ± 0.01 0.62 ± 0.01 0.59 ± 0.01
maxi qφ(·|yi) 0.30 ± 0.02 0.38 ± 0.01 0.39 ± 0.01

SoftmaxCE, WD 23.9 ± 0.9 Entropy 0.70 ± 0.03 0.67 ± 0.03 0.71 ± 0.04
maxi qφ(·|yi) 0.23 ± 0.02 0.36 ± 0.01 0.36 ± 0.01

SoftmaxCE, D 33.7 ± 1.1 Entropy 0.60 ± 0.01 0.62 ± 0.01 0.58 ± 0.01
maxi qφ(·|yi) 0.27 ± 0.01 0.37 ± 0.00 0.37 ± 0.00

VIB, β=1e−1 32.2 ± 0.6 Entropy 0.58 ± 0.01 0.60 ± 0.02 0.56 ± 0.01
Rate 0.52 ± 0.02 0.54 ± 0.02 0.49 ± 0.02

VIB, β=1e−2 34.6 ± 0.4 Entropy 0.60 ± 0.01 0.62 ± 0.01 0.57 ± 0.01
Rate 0.52 ± 0.04 0.55 ± 0.04 0.48 ± 0.03

VIB, β=1e−3 35.6 ± 0.5 Entropy 0.59 ± 0.01 0.60 ± 0.01 0.56 ± 0.01
Rate 0.50 ± 0.04 0.53 ± 0.03 0.48 ± 0.03

VIB, β=1e−1, D 29.0 ± 0.6 Entropy 0.57 ± 0.01 0.60 ± 0.01 0.53 ± 0.01
Rate 0.45 ± 0.02 0.48 ± 0.02 0.46 ± 0.01

VIB, β=1e−2, D 32.5 ± 0.9 Entropy 0.62 ± 0.01 0.63 ± 0.02 0.59 ± 0.01
Rate 0.53 ± 0.05 0.56 ± 0.04 0.52 ± 0.04

VIB, β=1e−3, D 34.5 ± 1.0 Entropy 0.63 ± 0.01 0.64 ± 0.02 0.60 ± 0.01
Rate 0.56 ± 0.05 0.57 ± 0.03 0.54 ± 0.05

MASS, β=1e−2 29.6 ± 0.4 Entropy 0.59 ± 0.01 0.61 ± 0.01 0.56 ± 0.01
maxi qφ(·|yi) 0.43 ± 0.03 0.48 ± 0.03 0.43 ± 0.01

MASS, β=1e−3 32.7 ± 0.8 Entropy 0.57 ± 0.01 0.59 ± 0.02 0.55 ± 0.01
maxi qφ(·|yi) 0.57 ± 0.04 0.59 ± 0.04 0.54 ± 0.03

MASS, β=1e−4 34.0 ± 0.3 Entropy 0.57 ± 0.01 0.57 ± 0.01 0.55 ± 0.01
maxi qφ(·|yi) 0.59 ± 0.03 0.58 ± 0.03 0.57 ± 0.03

MASS, β=0 34.1 ± 0.6 Entropy 0.57 ± 0.01 0.58 ± 0.01 0.55 ± 0.00
maxi qφ(·|yi) 0.61 ± 0.03 0.59 ± 0.04 0.59 ± 0.04

MASS, β=1e−2,D 29.3 ± 1.2 Entropy 0.62 ± 0.02 0.64 ± 0.03 0.59 ± 0.02
maxi qφ(·|yi) 0.50 ± 0.05 0.54 ± 0.05 0.47 ± 0.03

MASS, β=1e−3,D 31.5 ± 0.6 Entropy 0.61 ± 0.02 0.62 ± 0.03 0.58 ± 0.01
maxi qφ(·|yi) 0.62 ± 0.04 0.63 ± 0.04 0.58 ± 0.04

MASS, β=1e−4,D 32.7 ± 0.8 Entropy 0.61 ± 0.02 0.61 ± 0.03 0.59 ± 0.01
maxi qφ(·|yi) 0.65 ± 0.04 0.63 ± 0.04 0.62 ± 0.05

MASS, β=0,D 32.2 ± 1.1 Entropy 0.63 ± 0.01 0.64 ± 0.02 0.61 ± 0.01
maxi qφ(·|yi) 0.65 ± 0.05 0.64 ± 0.05 0.62 ± 0.06
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Table 6.12: Out-of-distribution detection metrics for ResNet20 network trained on
40,000 CIFAR-10 images, with SVHN as the out-of-distribution examples. Full
experiment details are in Section 6.8. Values are the mean over 4 training runs with
different random seeds, plus or minus the standard deviation. Emboldened values
are those for which the maximum observed mean value in the column was within
one standard deviation. Larger values are better.

Training Method Test Acc Detection AUROC APR In APR Out

SoftmaxCE 81.7 ± 0.3 Entropy 0.77 ± 0.02 0.81 ± 0.02 0.70 ± 0.02
maxi qφ(·|yi) 0.59 ± 0.03 0.62 ± 0.03 0.55 ± 0.02

VIB, β=1e−3 81.0 ± 0.3 Entropy 0.74 ± 0.02 0.79 ± 0.02 0.67 ± 0.02
Rate 0.55 ± 0.04 0.57 ± 0.05 0.51 ± 0.03

VIB, β=1e−4 81.2 ± 0.4 Entropy 0.73 ± 0.02 0.76 ± 0.03 0.66 ± 0.02
Rate 0.50 ± 0.02 0.54 ± 0.02 0.48 ± 0.01

VIB, β=1e−5 80.9 ± 0.5 Entropy 0.75 ± 0.02 0.80 ± 0.02 0.67 ± 0.02
Rate 0.18 ± 0.05 0.34 ± 0.01 0.34 ± 0.01

VIB, β=0 81.5 ± 0.2 Entropy 0.79 ± 0.02 0.84 ± 0.02 0.73 ± 0.04
Rate 0.11 ± 0.03 0.32 ± 0.01 0.32 ± 0.01

MASS, β=1e−3 75.8 ± 0.5 Entropy 0.74 ± 0.03 0.77 ± 0.03 0.69 ± 0.03
maxi qφ(·|yi) 0.37 ± 0.04 0.43 ± 0.02 0.42 ± 0.02

MASS, β=1e−4 80.6 ± 0.5 Entropy 0.76 ± 0.04 0.80 ± 0.04 0.70 ± 0.05
maxi qφ(·|yi) 0.48 ± 0.06 0.53 ± 0.05 0.47 ± 0.04

MASS, β=1e−5 81.6 ± 0.4 Entropy 0.77 ± 0.01 0.82 ± 0.01 0.71 ± 0.02
maxi qφ(·|yi) 0.54 ± 0.03 0.58 ± 0.03 0.51 ± 0.02

MASS, β=0 81.5 ± 0.2 Entropy 0.79 ± 0.03 0.83 ± 0.02 0.73 ± 0.03
maxi qφ(·|yi) 0.49 ± 0.04 0.54 ± 0.04 0.47 ± 0.02
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Table 6.13: Out-of-distribution detection metrics for ResNet20 network trained on
10,000 CIFAR-10 images, with SVHN as the out-of-distribution examples. Full
experiment details are in Section 6.8. Values are the mean over 4 training runs with
different random seeds, plus or minus the standard deviation. Emboldened values
are those for which the maximum observed mean value in the column was within
one standard deviation. Larger values are better.

Training Method Test Acc Detection AUROC APR In APR Out

SoftmaxCE 67.5 ± 0.8 Entropy 0.64 ± 0.02 0.68 ± 0.02 0.58 ± 0.02
maxi qφ(·|yi) 0.59 ± 0.03 0.61 ± 0.03 0.57 ± 0.04

VIB, β=1e−3 66.9 ± 1.0 Entropy 0.59 ± 0.02 0.63 ± 0.04 0.54 ± 0.02
Rate 0.72 ± 0.05 0.73 ± 0.05 0.67 ± 0.05

VIB, β=1e−4 66.4 ± 0.5 Entropy 0.59 ± 0.01 0.63 ± 0.02 0.54 ± 0.01
Rate 0.59 ± 0.07 0.60 ± 0.07 0.56 ± 0.06

VIB, β=1e−5 67.9 ± 0.8 Entropy 0.61 ± 0.03 0.65 ± 0.04 0.56 ± 0.03
Rate 0.39 ± 0.07 0.42 ± 0.03 0.43 ± 0.04

VIB, β=0 67.1 ± 1.0 Entropy 0.64 ± 0.01 0.68 ± 0.01 0.58 ± 0.01
Rate 0.32 ± 0.03 0.39 ± 0.01 0.39 ± 0.01

MASS, β=1e−3 59.6 ± 0.8 Entropy 0.59 ± 0.02 0.62 ± 0.03 0.56 ± 0.02
maxi qφ(·|yi) 0.49 ± 0.07 0.46 ± 0.06 0.48 ± 0.08

MASS, β=1e−4 66.6 ± 0.4 Entropy 0.62 ± 0.02 0.67 ± 0.02 0.56 ± 0.03
maxi qφ(·|yi) 0.61 ± 0.05 0.61 ± 0.05 0.60 ± 0.05

MASS, β=1e−5 67.4 ± 1.0 Entropy 0.64 ± 0.02 0.69 ± 0.03 0.58 ± 0.01
maxi qφ(·|yi) 0.61 ± 0.08 0.61 ± 0.06 0.61 ± 0.09

MASS, β=0 67.4 ± 0.3 Entropy 0.64 ± 0.01 0.68 ± 0.02 0.58 ± 0.01
maxi qφ(·|yi) 0.55 ± 0.05 0.56 ± 0.04 0.54 ± 0.05
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Table 6.14: Out-of-distribution detection metrics for ResNet20 network trained
on 2,500 CIFAR-10 images, with SVHN as the out-of-distribution examples. Full
experiment details are in Section 6.8. Values are the mean over 4 training runs with
different random seeds, plus or minus the standard deviation. Emboldened values
are those for which the maximum observed mean value in the column was within
one standard deviation. Larger values are better.

Training Method Test Acc Detection AUROC APR In APR Out

SoftmaxCE 50.0 ± 0.7 Entropy 0.51 ± 0.01 0.52 ± 0.02 0.49 ± 0.01
maxi qφ(·|yi) 0.63 ± 0.04 0.62 ± 0.03 0.63 ± 0.04

VIB, β=1e−3 49.5 ± 1.1 Entropy 0.48 ± 0.05 0.50 ± 0.05 0.47 ± 0.03
Rate 0.68 ± 0.07 0.68 ± 0.05 0.66 ± 0.08

VIB, β=1e−4 49.4 ± 1.0 Entropy 0.47 ± 0.05 0.50 ± 0.05 0.47 ± 0.03
Rate 0.66 ± 0.09 0.65 ± 0.08 0.66 ± 0.09

VIB, β=1e−5 50.0 ± 1.1 Entropy 0.48 ± 0.05 0.49 ± 0.05 0.48 ± 0.03
Rate 0.59 ± 0.10 0.55 ± 0.08 0.61 ± 0.09

VIB, β=0 50.6 ± 0.8 Entropy 0.51 ± 0.07 0.54 ± 0.08 0.50 ± 0.06
Rate 0.52 ± 0.20 0.53 ± 0.15 0.56 ± 0.17

MASS, β=1e−3 38.2 ± 0.7 Entropy 0.48 ± 0.04 0.50 ± 0.04 0.47 ± 0.03
maxi qφ(·|yi) 0.54 ± 0.11 0.48 ± 0.06 0.51 ± 0.08

MASS, β=1e−4 49.9 ± 1.0 Entropy 0.49 ± 0.04 0.51 ± 0.05 0.48 ± 0.03
maxi qφ(·|yi) 0.72 ± 0.08 0.71 ± 0.08 0.73 ± 0.08

MASS, β=1e−5 50.1 ± 0.5 Entropy 0.50 ± 0.06 0.51 ± 0.06 0.49 ± 0.04
maxi qφ(·|yi) 0.69 ± 0.10 0.68 ± 0.10 0.70 ± 0.10

MASS, β=0 50.2 ± 1.0 Entropy 0.51 ± 0.06 0.53 ± 0.06 0.50 ± 0.04
maxi qφ(·|yi) 0.69 ± 0.07 0.68 ± 0.07 0.68 ± 0.07
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C h a p t e r 7

SUPERVISED LEARNING ON RELATIONAL DATABASES
WITH GRAPH NEURAL NETWORKS, PART 2

7.1 Introduction
In this final short chapter, we take lessons learned in Chapters 5 and 6 and apply them
to the GNN models for supervised learning on relational databases from Chapter 4,
yielding noticeable improvement.

7.2 Lessons Learned
The encoding used to prepare tabular features for input into a deep model has a
significant effect on performance. As with all modeling decisions regarding tabular
data, questions of feature encoding matter most in terms of how they affect overfitting.

Options for categorical variables include whether to one-hot encode versus learning
an embedding, what embedding size to use, and how to apply dropout regularization
(whether to drop vector elements or whole embeddings). In our experiments we
found that learned embeddings nearly always improved performance as long as the
cardinality of the categorical variable was significantly less than the number of
datapoints, otherwise the feature was merely a means for the model to overfit.

Options for scalar variables include how to rescale the variable (via quantiles,
normalization, or log scaling) or whether to quantize the feature and treat it like a
categorical variable. In our experiments we found that the best strategy was simply
to use all the different types of encoding in parallel, turning each scalar feature into
three rescaled features and one categorical feature. Unlike learning embeddings for
high-cardinality categorical features, adding potentially-redundant encodings for
scalar variables does not lead to overfitting, but can make the difference between a
feature being useful or not.

For variables encoding specific information like geospatial or datetime information,
converting the feature from a single scalar or categorical representation into a set of
informative features can make a significant impact. See Appendix 4.9 for details.

Normalization was also crucial to experiment with. While batch normalization and
layer normalization are standard practice in deep learning, they must be used with
care in GNNs. Normalization can accelerate training but also make it impossible for
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a GNN to learn functions that are sensitive to the degree of a node, since differences
in absolute magnitudes of hidden state vectors between nodes and datapoints will be
normalized away.

7.3 Experiments
Code to reproduce all experiments may be found online.1

We modified the GNN model implementations introduced in Chapter 4 with all the
lessons discussed in the previous section. In addition, based on the results of the
benchmark in Chapter 5, we added a single-hidden-layer multilayer perceptron to
the initialization function S for each node, using different MLP parameters for each
node type.

Though the heterogeneous transformer model of Chapter 5 did not perform better than
a standard transformer or MLP, it inspired us to try a new type of GNN architecture for
RDBs. Given that each table in an RDB contains different features and each foreign
key encodes a different type of relationship, it seemed reasonable to use GNNs that
maintained different parameters for each node-update and message-passing function,
depending on the node type and edge type respectively. These are in the spirit of
(Schlichtkrull et al., 2018) and (X. Wang et al., 2019), though are different models.
We refer to these as HetGCN, HetGIN, and HetGAT, respectively.

Additionally, inspired by the centrality of overfitting in determining the performance
of deep models for tabular data and the consistently strong performance of GBDTs,
we tested whether a stacking strategy (Wolpert, 1992) would offer any benefit. In
these “Stacked” models, we train a GBDT on a concatenation of single-table features
and the pre-logit activations of a trained GNN. In principle, if the GNN is learning
useful features but overfitting in its final layers, this strategy should ameliorate the
overfitting issue.

All other models are the same as described in Chapter 4. Thorough details about
model and experiment implementation are in Appendix 7.6.

7.4 Results
Table 7.1 shows the AUROC performance of models relative to the best-performing
tabular model on each dataset. We compare relative performance rather than absolute
performance since for some datasets the variance in performance between cross-

1https://github.com/mwcvitkovic/Supervised-Learning-on-Relational-
Databases-with-GNNs

https://github.com/mwcvitkovic/Supervised-Learning-on-Relational-Databases-with-GNNs
https://github.com/mwcvitkovic/Supervised-Learning-on-Relational-Databases-with-GNNs
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validation splits is larger than the variance of performance between algorithms.
Appendix Tables 7.2 and 7.3 give the absolute AUROC and accuracy results.

Table 7.1: Performance of baseline (above the line) and our GNN-based (below the
line) learning algorithms on three supervised learning problems on RDBs. Values
are the AUROC metric relative to the single-table logistic regression baseline; they
are reported as the mean over 5 cross-validation splits, plus or minus the standard
deviation. Bold values are those within one standard deviation of the maximum in
the column. Larger values are better.

Acquire Valued
Shoppers
Challenge

Home Credit
Default Risk KDD Cup 2014

Single-table LogReg 0 ± 0 0 ± 0 0 ± 0
Single-table MLP −0.0007±0.0009 0.0021 ± 0.0007 0.014 ± 0.002
Single-table GBDT 0.0043 ± 0.0008 0.006 ± 0.003 0.027 ± 0.001
DFS + LogReg 0.0106 ± 0.0007 0.023 ± 0.002 0.004 ± 0.002
DFS + MLP 0.0087 ± 0.0009 0.016 ± 0.003 0.007 ± 0.001
DFS + GBDT 0.003 ± 0.001 0.029 ± 0.002 0.027 ± 0.002
PoolMLP 0.006 ± 0.002 0.021 ± 0.003 0.007 ± 0.003
Stacked PoolMLP 0.008 ± 0.002 0.023 ± 0.003 0.016 ± 0.004

GCN 0.038 ± 0.002 0.032 ± 0.002 0.013 ± 0.002
GIN 0.035 ± 0.005 0.027 ± 0.002 0.014 ± 0.001
GAT 0.032 ± 0.003 0.031 ± 0.002 0.013 ± 0.002
HetGCN 0.040 ± 0.002 0.030 ± 0.002 0.013 ± 0.002
HetGIN 0.039 ± 0.002 0.025 ± 0.003 0.015 ± 0.002
HetGAT 0.039 ± 0.001 0.031 ± 0.002 0.015 ± 0.001
Stacked GCN 0.037 ± 0.002 0.030 ± 0.002 0.008 ± 0.004
Stacked GIN 0.033 ± 0.006 0.027 ± 0.002 0.010 ± 0.006
Stacked GAT 0.036 ± 0.002 0.032 ± 0.002 0.012 ± 0.002
Stacked HetGCN 0.038 ± 0.003 0.029 ± 0.002 0.013 ± 0.005
Stacked HetGIN 0.039 ± 0.002 0.027 ± 0.002 0.015 ± 0.005
Stacked HetGAT 0.0379 ± 0.0002 0.030 ± 0.002 0.010 ± 0.005

Thanks to model improvements gleaned from Chapters 5 and 6, the results in Table
7.1 suggest more strongly than those in Chapter 4 that GNN-based methods are a
valuable new approach for supervised learning on RDBs.

GNN-based methods perform significantly better than the best baseline method on
the Acquire Valued Shoppers Challenge dataset and perform moderately better than
the best baseline on the Home Credit Default Risk dataset. They perform worse than
the best baseline on the KDD Cup 2014, however no feature engineering approach of
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any kind offers an advantage on that dataset. The determinant of success on the KDD
Cup 2014 dataset does not seem to be information outside the dataset’s main table.

Though every GNN-based method we tested matches or exceeds the best baseline
method on the Acquire Valued Shoppers Challenge and Home Credit Default
Risk datasets, there is no clearly superior GNN model among them. Neither the
heterogeneous models nor stacking offers a noticeable benefit. But we emphasize
that all our experiments used off-the-shell GNNs or straightforward modifications
thereof — the space of possible RDB-specific GNNs is large and mostly unexplored.

Acknowledgments
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7.5 Appendix: Additional Results
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Table 7.2: AUROC of baseline (above the line) and our GNN-based (below the line)
learning algorithms on three supervised learning problems on RDBs. Values are
the mean over 5 cross-validation splits, plus or minus the standard deviation. Larger
values are better.

Acquire Valued
Shoppers
Challenge

Home Credit
Default Risk KDD Cup 2014

Single-table LogReg 0.686 ± 0.002 0.748 ± 0.004 0.774 ± 0.002
Single-table MLP 0.685 ± 0.002 0.750 ± 0.004 0.788 ± 0.002
Single-table GBDT 0.690 ± 0.002 0.754 ± 0.004 0.801 ± 0.002
DFS + LogReg 0.696 ± 0.001 0.771 ± 0.005 0.778 ± 0.002
DFS + MLP 0.694 ± 0.001 0.764 ± 0.005 0.781 ± 0.002
DFS + GBDT 0.689 ± 0.003 0.777 ± 0.004 0.801 ± 0.003
PoolMLP 0.692 ± 0.001 0.769 ± 0.005 0.781 ± 0.003
Stacked PoolMLP 0.694 ± 0.003 0.771 ± 0.007 0.790 ± 0.005

GCN 0.723 ± 0.002 0.780 ± 0.004 0.787 ± 0.003
GIN 0.721 ± 0.006 0.775 ± 0.005 0.788 ± 0.002
GAT 0.717 ± 0.002 0.778 ± 0.005 0.787 ± 0.002
HetGCN 0.726 ± 0.002 0.778 ± 0.005 0.787 ± 0.003
HetGIN 0.725 ± 0.003 0.773 ± 0.005 0.788 ± 0.002
HetGAT 0.725 ± 0.001 0.779 ± 0.005 0.789 ± 0.002
Stacked GCN 0.722 ± 0.002 0.778 ± 0.003 0.782 ± 0.003
Stacked GIN 0.719 ± 0.007 0.775 ± 0.005 0.784 ± 0.006
Stacked GAT 0.722 ± 0.001 0.779 ± 0.005 0.786 ± 0.003
Stacked HetGCN 0.724 ± 0.003 0.777 ± 0.005 0.786 ± 0.005
Stacked HetGIN 0.725 ± 0.003 0.775 ± 0.006 0.789 ± 0.006
Stacked HetGAT 0.724 ± 0.002 0.778 ± 0.005 0.784 ± 0.006

7.6 Appendix: Experiment Details
Software and Hardware
The LightGBM2 library (Ke et al., 2017) was used to implement the GBDT models.
All other models were implemented using the PyTorch3 library (Paszke et al.,
2019). GNNs were implemented using the DGL4 library (M. Wang et al., 2019). All
experiments were run on an Ubuntu Linux machine with 8 CPUs and 60GB memory,
with all models except for the GBDTs trained using a single NVIDIA V100 Tensor
Core GPU. Creating the DFS features was done on an Ubuntu Linux machine with
48 CPUs and 185GB memory.

2https://lightgbm.readthedocs.io
3https://pytorch.org/
4https://www.dgl.ai/

https://lightgbm.readthedocs.io
https://pytorch.org/
https://www.dgl.ai/
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Table 7.3: Percent accuracy of baseline (above the line) and our GNN-based (below
the line) learning algorithms on three supervised learning problems on RDBs. Values
are the mean over 5 cross-validation splits, plus or minus the standard deviation.
Larger values are better.

Acquire Valued
Shoppers
Challenge

Home Credit
Default Risk KDD Cup 2014

Guess Majority Class 72.9 91.9 94.07
Single-table LogReg 73.1 ± 0.2 91.9 ± 0.1 94.07 ± 0.07
Single-table MLP 73.2 ± 0.2 91.9 ± 0.1 94.07 ± 0.07
Single-table GBDT 73.3 ± 0.2 91.9 ± 0.1 94.06 ± 0.07
DFS + LogReg 73.5 ± 0.2 91.9 ± 0.1 94.07 ± 0.07
DFS + MLP 73.6 ± 0.3 91.9 ± 0.1 94.07 ± 0.07
DFS + GBDT 73.4 ± 0.3 91.96 ± 0.09 94.06 ± 0.07
PoolMLP 73.6 ± 0.1 91.9 ± 0.1 94.07 ± 0.07
Stacked PoolMLP 73.6 ± 0.2 91.9 ± 0.1 94.04 ± 0.08

GCN 75.4 ± 0.1 91.96 ± 0.09 94.07 ± 0.07
GIN 75.4 ± 0.3 91.9 ± 0.1 94.07 ± 0.07
GAT 72.9 ± 0.3 91.1 ± 0.3 94.07 ± 0.07
HetGCN 75.6 ± 0.2 91.9 ± 0.1 94.07 ± 0.07
HetGIN 75.6 ± 0.3 91.9 ± 0.1 94.07 ± 0.07
HetGAT 75.2 ± 0.2 92.0 ± 0.1 94.07 ± 0.07
Stacked GCN 75.5 ± 0.1 91.9 ± 0.1 94.06 ± 0.07
Stacked GIN 75.4 ± 0.3 92.0 ± 0.1 94.04 ± 0.06
Stacked GAT 75.5 ± 0.3 92.0 ± 0.1 94.07 ± 0.07
Stacked HetGCN 75.6 ± 0.3 91.9 ± 0.1 94.02 ± 0.06
Stacked HetGIN 75.6 ± 0.2 91.9 ± 0.1 94.04 ± 0.07
Stacked HetGAT 75.6 ± 0.2 91.9 ± 0.1 94.06 ± 0.07

GNN Implementation
Adopting the nomenclature from Section 3.3, once the input graph has been assembled
by RDBToGraph, the initialization function S for converting the features xv of each
vertex v into a real–valued vector in Rd proceeded as follows: (1) each of the vertex’s
features was vectorized according to the feature’s data type, (2) these vectors were
concatenated, (3) the concatenated vector was passed through an single-hidden-layer
MLP with output dimension Rd . Each node type uses its own single-hidden-layer
MLP initializer. The dimension of the hidden layer was 4x the dimension of the
concatenated features.

To vectorize columns containing scalar data, S normalizes them to zero median and
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unit interquartile range5 and appends a binary flag for missing values. To vectorize
columns containing categorical information, S uses a trainable embedding with
dimension the minimum of 32 or the cardinality of categorical variable. To vectorize
text columns, S simply encodes the number of words in the text and the length of
the text. To vectorize latlong columns, S concatenates the following:

1. cos(lat) ∗ cos(long)

2. y = cos(lat) ∗ sin(long)

3. z = sin(lat)

4. lat/90

5. long/180

And to vectorize datetime columns, S concatenates the following commonly used
date and time features:

1. Year (scalar value)

2. Month (one-hot encoded)

3. Week (one-hot encoded)

4. Day (one-hot encoded)

5. Day of week (one-hot encoded)

6. Day of year (scalar value)

7. Month end? (bool, one-hot encoded)

8. Month start? (bool, one-hot encoded)

9. Quarter end? (bool, one-hot encoded)

10. Quarter start? (bool, one-hot encoded)

11. Year end? (bool, one-hot encoded)

12. Year start? (bool, one-hot encoded)
5https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.

RobustScaler.html

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html
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13. Day of week cos (scalar value)

14. Day of week sin (scalar value)

15. Day of month cos (scalar value)

16. Day of month sin (scalar value)

17. Month of year cos (scalar value)

18. Month year sin (scalar value)

19. Day of year cos (scalar value)

20. Day of year sin (scalar value)

The cos and sin values are for representing cyclic information, and are given by
computing cos or sin of 2π value

period . E.g. “day of week cos” for Wednesday, the third
day of seven in the week, is cos(2π 3

7 ).

After obtaining h0
v = S(xv) for all vertices v, all models ran 2 rounds of message

passing (T = 2), except for the GCN and HetGCN which ran 1 round. Dropout
regularization of probability 0.5 was used in all models, applied at the layers specified
in the paper that originally introduced the model. Most models used a hidden state
size of d = 256, except for a few exceptions where required to fit things onto the
GPU. Full hyperparameter specifications for every model and experiment can be
found in the experiment scripts in the code released with this dissertation.

The readout function R for all GNNs was the Gated Attention Pooling method of (Li
et al., 2016) followed by a linear transform to obtain logits followed by a softmax
layer. The only exception is the PoolMLP model, which uses average pooling of
hidden states followed by a 1-hidden-layer MLP as R. The cross entropy loss was
used for training, and the AdamW optimizer (Loshchilov and Hutter, 2017) was
used to update the model parameters. All models used early stopping based on the
performance on a validation set.
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