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Introduction

Electrical Impedance Tomography is an imaging technique that aims to

reconstruct the inner conductivity distribution of a medium starting from a

set of measured voltages registered by a series of electrodes that are posi-

tioned on the surface of the medium. As Bayford reports in [5], such tech-

nique was used for the �rst time in geological studies in 1930 and then applied

to industrial procedures such as detection of air bubbles in pipes or monitor-

ing of mixing processes. The �rst clinical use of EIT dates back to 1987. The

promising advantages of this imaging procedure over X-Ray, CT and MRI

are the fact that the device can be brought to the patient and no exposition

to radiation is required for data collection. Examples of clinical applica-

tions where EIT has been applied are: lung ventilation imaging, detection

of pulmunary emboli in lungs, cardiac output measuring, detection of breast

cancer, localization of epilectic foci and imaging of functional activity in hu-

man brain. In 2018 Wu et alia validated the use of EIT in tissue engineering

as an imaging and monitoring tool for cell distribution (cell growth, di�eren-

tiation and tissue formation) in 3D sca�olds [38]. The main advantages are

the possibiliy to monitor tissue formation with no need to cut, �x or operate

histology staining on the sample (which would make the sample useless for

further studies) as state of the art techniques require, and a real-time and

label-free valuation of cell growth in large samples.

EIT problem can be split into a Forward and an Inverse problem. The

aim of Forward EIT is to de�ne the set of measured voltages starting from a
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Introduction

known conductivity distribution. The model for the forward problem, known

as Complete Electrode Model, is based on an elliptic partial di�erential equa-

tion subject to a set of constraints and Neumann boundary conditions that

account for the �tting with real data, discreteness of the electrodes and the

extra parameters de�ned by the measuring devices. Existence and Unique-

ness for the forward problem have been proved by Sommersalo, Cheney and

Isaacson [31]. If the forward problem is characterized by a nonlinear mapping,

called Forward Operator, from the conductivity distribution to the measured

voltages, inverse EIT consists of inverting the Forward Operator. This leads

to an ill-posed problem which requires regularization, either in the model

or in the numerical method that is applied to de�ne the solution. The in-

verse problem is modelled as a Nonlinear Least Squares problem, where one

seeks to minimize the mismatch (generally de�ned as the L2 norm of the

di�erence) beetween the measured voltages and the ones generated by the

reconstructed conductivity. Some applications demand the reconstruction of

a small conductivity change between two states and they therefore rely on

a linearized version of the problem. Reconstruction techniques require the

introduction of a regularization term which forces the reconstructed data to

stick to certain prior information. Such terms can either be linear or nonlin-

ear. Common choices in the former case are the L2 norm of the conductivity

or L2 norm of a partial di�erential operator L applied to conducitivity; the

most common choice in the latter case is the Total Variation functional.

In this dissertation, some state-of-the-art regularization methods are an-

alyzed and compared via EIDORS [4], a speci�c software for EIT prob-

lems. In particular a Newton one-step algorithm for nonlinear EIT problem

(NOSER,[15]), the Gauss-Newton's method with di�erent linear regulariza-

tion terms, a Primal (IRLS, [8]) and a Primal-Dual (PD-IPM, [9]) approach to

Total Variation regularization are considered. The aim is to reconstruct the

variation in conductivity within a 2D section of a 3D sca�old. Furthermore

a variational formulation on a 2D mesh for a space-variant regularization is
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proposed, based on a combination of high order and nonconvex operators,

which respectively seek to recover piecewise inhomogeneous and piecewise

linear regions.

Keywords: Electrical Impedance Tomography, Inverse Conduc-

tivity Problem, Finite Elements, Regularization Methods, Total

Variation, Medical Imaging, Tissue Engineering, EIDORS, Alter-

nating Direction Method of Multipliers





Chapter 1

Applications of EIT

Electrical Impedance Tomography (EIT) is an imaging tecnique that aims

to reconstruct the inner conductivity distribution of a medium starting from

a set of measured voltages registered by a series of electrodes that are posi-

tioned on the surface of the medium. Electrical impedance is de�ned as the

measure of the opposition that a circuit presents to a current when a voltage

is applied. EIT is therefore a nondestructive testing technique, meaning that

it allows to analyse the property of a material or structure without causing

damage. If compared to other tomography techniques, EIT provides lower

spatial resolution outputs, but data can be acquired relatively fast (EIT tem-

poral resolution is estimated in the order of millisecond [5]) and the apparatus

is more manageable. Its name was agreed in 1986 during the �rst She�eld

meeting, after electrical impedance measurements being the source data for

the images, even though it can be considered a tomographic modality only

due the fact that it generates images of the internal features of a body: the

di�use propagation of electric current does not allow for independent slice by

slice imaging (as on the contrary holds for true tomographic imaging meth-

ods) since a change in conductivity anywhere inside the medium in�uences

all measurements.

The �rst recorded use of EIT was in geology and dates back to 1930,
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1. Applications of EIT

when Stefanesco in [32] studied the problem of the distribution of potentials

inside horizontal, homogeneous and isotropic layers of land around a punc-

tual electrical grounding. Modern examples of EIT application in geophysics

are described in [22]. Rock impedance varies of several orders depending on

the rock nature, its porosity and water content: this allows to image the

inner structures of geological objects and study e.g. the impact of excava-

tion on clay properties or the hydtrothermal conduits inside volcanoes. The

di�erent electrical properties of the components of a multiphase �ow let EIT

be exploited in industrial applications, such as the detection of air bubbles in

process pipes or the monitoring of mixing processes. Despite its low spatial

resolution, EIT proved to be more suitable than other tomographic tech-

niques in these �elds because of the rapidity of data collection, given the

necessity to observe a temporally evolving medium.

In this thesis the focus is on the application of EIT in biomedical imaging,

based on the measurement of biological tissues impedance. Thsee measure-

ments are dependant on the amount of body �uids on one side and cell size,

orientation and membrane thickness on the other. Measurements can be

made over a range of low (20 Hz) to high (1 MHz) frequencies and di�erent

physiological mechanism can be identi�ed depending on the frequency range.

When current is applied to the electrodes, an electric �eld is induced inside

the biological medium and this causes ions to move: as shown in Figure 1.1,

at low frequencies ions travel around cell membranes whereas at high frequen-

cies they move across those membranes at a variety of scales that depend on

the wavelength of the �eld [36]. Hence, the state of the art applications of

EIT in biomedical imaging range from clinical imaging for organ monitoring

to cell monitoring in tissue engineering.

The �rst clinical use of EIT was performed in 1987 by the She�eld group

to produce images of pulmonary function [13]. The promising advantages of

this imaging technique over X-Ray, CT and MRI are the fact that the device

can be brought to the patient and no exposition to radiation is required
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Figure 1.1: Low-frequency (a) and high-frequency (b) current �ows

through a biological medium following di�erent paths according to the

wavelength of the electric �eld.

for data collection. Bayford summarises in [5] the main clinical application

where EIT has been exploited with varying degrees of success:

� Pulmonary Functions: EIT can be used to image lung ventilation, to

detect blood clots in the lungs or pulmonary emboli and to monitor the

drainage of a pnuemothorax (abnormal collection of air in the pleural

space between the lung and the chest wall) caused by pulmonary lesions;

� Breast Tumors: the electrical properties of many tumors, especially

those presenting malignancy, di�er from the surrounding tissues;

� Gastrointestinal Function: monitoring gastric emptying allows to

diagnose many functional disorders of the gastrointestinal tract without

using radioactive isotopes as required by gamma scintigraphy or make

the patient swallow a nasogastric tube as required by intubation;

� Brain Imaging: EIT can be used to accurately localize the epilec-

tic focus before surgical excision in patients su�ering from intractable

epilepsy and to image functional activity in human brain.

Tissue egineering investigates how to generate arti�cial tissues and organs

in order to restore or replace damaged tissues in body. Part of the research

is to assess cell viability and proliferation in samples with dimensions at the
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millimiter scale. Some of the most popular techniques in this �eld are Scan-

ning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM)

and Micro Computed Tomography. The problem with them is that they re-

quire to work on the tissue in a way that make it useless for further research.

On the other side, alternative tecnhiques that avoid this issue are time con-

suming and make use of �uorescent or radioactive labels. One technique for

cell di�erentiation and growth monitoring that meets the requirements of

being noninvasive and label-free is Dielectric Spectroscopy (DS): it exploits

the electrical properties of cells, form which it is possible to infer cell viabil-

ity, but it su�er from low spatial resolution since it only provides a lumped

impedance value for a whole sample of a cellular culture. Sharing the same

theory of DS, EIT was �rstly introduced for in vitro experiments in tissue

engineering in 2006 to monitor cell migration and epithelial strati�cation

[23]. In 2018 Wu et alia validated the use of EIT in tissue engineering as an

imaging and monitoring tool for sparse cell distribution, growth and tissue

formation [38].

In 2019 EIT was suggested for the monitoring of the mineralization and

for the non-invasive characterization of tissue engineered bone surrogates as

the deposition of calcium during osteogenic di�erentiation a�ects the electric

properties of the tissues [17]. Figure 1.2 shows a comparison between an anal-

ysis conducted via Alizarin red (an existing destructive staining technique for

quantifying calcium deposition) and a simulation with EIT: increasing values

of Alizarin red concentration showed to re�ect a decrease in average conduc-

tivity.
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Figure 1.2: Conductivity reconstruction and comparison with Alizarin

Red concentration





Chapter 2

Mathematical models in EIT

2.1 Forward problem

Let Ω ⊂ Rd, d = 2, 3 be a bounded simply connected C∞ domain and

σ : Ω→ R

a C2(Ω) function strictly bouned from below by zero (σ(x) > 0). The electric

potential or voltage u in the body Ω ⊂ Rd, d = 2, 3 is governed by the elliptic

partial di�erential equation

∇ · (σ(x)∇u(x)) = 0 on Ω (2.1)

(where σ represents the electric conductivity), x ∈ Ω, and can be constrained

by the following Dirichlet Boundary Condition on the Ω interface (curve or

surface) ∂Ω of the body

u(x) = V (x) on ∂Ω. (2.2)

Currents are applied to electrodes on ∂Ω and these currents produce a current

density j on the Ω interface whose inward pointing component is expressed

11



2. Mathematical models in EIT

as I. Then the Neumann boundary condition is

σ(x)
∂u(x)

∂n
= I(x) on ∂Ω. (2.3)

where −j · n = I on ∂Ω. The current density j and the electric potential u

are related by Ohm's Law

j(x) = −σ(x)∇u(x). (2.4)

Equations (2.1) and (2.3), together with two additional conditions, namely

the conservation of charge ∫
∂Ω

IdS = 0 (2.5)

and the choice of a reference voltage (which ensures the existence of a unique

solution of the Neumann Boundary Problem)∫
∂Ω

udS = 0 (2.6)

de�ne a model for EIT which is known as continuum model. As described

in [7], in this framework a pair of maps, namely the Dirichlet to Neumann

(DtN) map and the Neumann to Dirichlet (NtD) map are de�ned to relate

V (x) and I(x). The DtN map Λσ : H
1
2 (∂Ω)→ H−

1
2 (∂Ω) is de�ned as

ΛσV (x) = σ(x)
∂u(x)

∂n
on ∂Ω (2.7)

and has a nullspace N (Λσ) = {V = constant}. On the other side the NtD

map is the generalized inverse of the DtN map (Λσ)−1 : I→ H
1
2 (∂Ω) de�ned

as

(Λσ)−1I(x) = u(x) on ∂Ω (2.8)

where I = {I ∈ H−
1
2

(∂Ω)|
∫
∂Ω
IdS = 0} is the set of admitted current, in

accordance to (2.6).
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The problem with the continuum model is that j is unknown, which makes

it unuseful for real experiments. One attempt to overcome this issue is the so

called, shunt model, where two e�ects are accounted for: the �rst one is the

discreteness of the L electrodes, which are modelled as a family of subsets of

∂Ω:

� Boundary with electrodes

Γ =
L⋃
l=1

El ⊂ ∂Ω, (2.9)

� Boundary without electrodes

Γ̃ = ∂Ω \
L⋃
l=1

El (2.10)

where El is the measure (length for n = 2 or area for n = 3) of element l of

the boundary δΩ.

The quantity σ ∂u
∂n
|∂Ω represents the current density on the boundary. We

then replace (2.3) by two weaker conditions∫
El

σ
∂u

∂n
dS = Il, l = 1, . . . , L on Γ (2.11)

and since j = 0 for the current density on the boundaries between the elec-

trodes (on Γ̃) we have

σ
∂u

∂n
= 0 on Γ̃ (2.12)

where Il is the known current that is sent to the lth electrode El.

The second e�ect is the extra conductive material that is added to the

set by the electrodes, which is assumed to be a perfect conductor so that the
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potential on the electrode is constant

u = Vl on El, l = 1, . . . , L. (2.13)

The problem with this second model is that it gives results that do not

agree with experimental data: the reason is that there is an extra resistance

(due to an electrochemical e�ect) between the electrode and the tank that

has not been accounted for yet, id est the formation of a thin, highly resis-

tive layer. The impedance of the layer for the lth electrode is de�ned by a

parameter zl that is called e�ective contact impedance. Equation (2.13) is

therefore replaced by Robin boundary conditions

u+ zlσ
∂u

∂n
= Vl on El l = 1, . . . , L. (2.14)

Eventually the two additional conditions (2.15) and (2.16) that complete

the model can be discretely formulated as conservation of charge

L∑
l=1

Il = 0 (2.15)

and choice of a reference voltage

L∑
l=1

Vl = 0. (2.16)

The resulting model, composed by (2.1), (2.11), (2.12),(2.14),(2.15) and

(2.16) is known as complete electrode model (CEM) [31].

We notice that I and V are experimentally connected by a linear relation

V = RI

where matrix R ∈ RL×L is de�ned as resistance matrix [31].
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2.1.1 Existence and Uniqueness

Sommersalo, Cheney and Isaacson proved in [31] the existence and unique-

ness of the solution to problem (CEM). Such solution needs to be searched in

speci�c functional space that accounts for both the electric potential inside

Ω and the voltages on ∂Ω:

H = H1(Ω)⊕ CL.

For functions in H it is possible to de�ne a sesquilinear form B : H×H → C

B((u, U), (v, V )) =

∫
Ω

σ∇u · ∇v̄dΩ +
L∑
l=1

1

zl

∫
El

(u− Ul)(v̄ − V̄l)dS,

for which holds the following result:

Proposition 2.1. (u, U) ∈ H satis�es

B((u, U), (v, V )) =
L∑
l=1

IlV̄l

for any (v, V ) ∈ H if and only if u is a weak solution of (2.1) and (u, U)

satis�es the constraints of the problem (2.14).

In order to get uniqueness and existence, Lax-Milgram lemma needs to

be applied. To such end it is necessary to remark that voltages are de�ned

up to a constant and that B((u, U), (u, U)) = 0 does not imply (u, U) = 0

but u = const = U1 = · · · = UL, which advise to consider a quotient space

Ḣ = H/C

where two equivalent norms can be de�ned: the usual quotient norm

‖(u, U)‖ = inf
c∈C

(‖u− c‖2
H1(Ω) + ‖U − c‖2

CL)1/2 (N1)

and a norm which makes it easier to prove that B satis�es Lax-Milgram's
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hypothesis

‖(u, U)‖∗ = (‖∇u‖L2(Ω) +
L∑
l=1

∫
El

|u(x)− Ul|2dS)1/2 (N2)

Theorem 2.2. Suppose that there are strictly positive constants σ0 and σ1

and Z such that

|σ| ≤ σ1, (2.17)

Reσ ≥ σ0, (2.18)

and

Rezl > Z for l = 1, . . . , L. (2.19)

Then for a given current pattern (Il)
L
l=1 satisfying (2.15) there is a unique

(u, U) in Ḣ satisfying

B((u, U), (v, V )) =
L∑
l=1

IlV̄l (2.20)

for all (v, V ) ∈ Ḣ

Corollary 2.3. If the hypothesis in the previous Theorem are satis�ed and

if
L∑
l=1

Ul = 0,

then the complete electrode model has a unique solution.

2.1.2 Stimulation Patterns

The stimulation pattern is the strategy that chooses on which electrodes

pairs current injection and voltage measurements are performed in order to

de�ne the boundary conditions of the CEM. The pairs of electrodes in which

current is injected are de�ned as driving or injection pairs and the ones on

which the voltages are measured are de�ned as measurement pairs. Aimig to
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provide as much information as possible for the retrieval of the inner conduc-

tivity distribution, which is the target of the EIT inverse problem that will

be presented in the coming sections, one should consider that reconstruction

is better where current density is higher: when current is injected among two

opposite electrodes, the procedure is de�ned as opposite injection protocol

and the maximum current density is found in the centre of the body Ω, while

when current is injected among two neighbouring electrodes, the procedure

is de�ned as adjacent injection protocol and the maximum current density

is found near the electrodes on ∂Ω.

The same choices of electrode pairs can be applied in the process of acqui-

sition of voltage measurements, yielding the so called opposite and adjacent

measurement protocols. When a pair of electrodes is chosen as driving pair,

it is usually excluded from the available measuring pairs. Combining the

described injection and measurements protocol generates the following stim-

ulation patterns, with di�erent e�ects on the reconstruction:

� opposite injection - opposite measurement: it is not often used

because it generates mirror images when target conductivity variations

are not positioned in the centre of Ω;

� opposite injection - adjacent measurement: works �ne for the

reconstruction of regions that are far from the measuring electrodes;

� adjacent injection - opposite measurement: not often used but

equivalent to the previous pattern;

� adjacent injection - adjacent measurement: it works well for the

reconstruction of regions that are close to the electrodes.

Figures 2.1a-2.1b show a typical 2D EIT sensor array with L = 16 elec-

trodes, opp inj / adj meas and adj inj/adj meas stimulation patterns in case

Ω has a circular shape and L=16, where I is the injected current and the V 's

are the measured voltages.
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(a) (b)

Figure 2.1: EIT sensor arrays with L = 16 electrodes. Opposite injec-
tion - adjacent measurement protocol (a); Adjacent injection - adjacent
measurement protocol (b).

2.1.3 The Forward Operator and the Sensitivity

The forward problem can be restricted to a relation between the inner

conductivity and the boundary voltages and modelled by a mapping which

is referred to as Forward Operator :

F̃ : S→ H (2.21)

σ 7→ (u, U) (2.22)

where S = {σ ∈ L∞(Ω) | σ∇u = 0}. We notice that the operator F̃ is

Fréchet di�erentiable, as stated by Theorem 2.4 from [21]

Theorem 2.4. The operator F̃ that maps σ ∈ S to the solution of the

Forward Problem with current vector I is Fréchet di�erentiable, meaning that

lim
‖δσ‖∞→0

‖F̃ (σ + δσ)− F̃ (σ)− F̃ ′(σ)δσ‖H
‖δσ‖∞

= 0

If δσ ∈ L∞(Ω) is such that σ + δσ ∈ S, then F̃ ′(σ)δσ = (w,W ) satis�es
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the variational problem

b((w,W ), (v, V )) = −
∫

Ω

δσ∇u0∇vdΩ

for all (v, V ) ∈ H where (u0, U0) = F̃ (σ).

This in particular shows that the mapping σ 7→ U is Fréchet Di�erentiable

for being the second argument of a di�erentiable mapping [21]. For a given

stimulation pattern that yields a total number of measurements nm, we can

therefore de�ne the following experimental version of the Forward Operator:

F : S→ Rnm (2.23)

σ 7→ Vm[σ] (2.24)

where Vm[σ] is de�ned as the vector of the measured voltages, whose dimen-

sion nm depends on the choice of a measurement protocol. An adjacent pro-

tocol for both measurement and injection is now considered (see Figure 2.1b)

Let the dth injection current be considered, and ud be the potential sub-

ject to it; then ud satis�es (2.1) and∫
Ed

σ
∂ud
∂n

dS = I = −
∫
Ed+1

σ
∂ud
∂n

dS,

where the Neumann boundary conditions are zero for all the boundary regions

that are not touched by the driving electrodes. The mth boundary voltage

di�erence related to the dth injection is

Vd,m =
1

|Em|

∫
Em

uddS −
1

|Em+1|

∫
Em+1

uddS (2.25)

and as a result one can obtain∫
Ω

σ∇ud · ∇umdΩ =

∫
∂Ω

σud
∂um
∂n

dS = Vd,m (2.26)
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where clearly Vd,m = Vm,d: this is due to the reciprocal property of the electric

�eld, for which if {d,m} is a data collection pattern, its reciprocal, consit-

ing of interchanged current injection and voltage measurement terminals, is

{m, d}. This property can be helpful for avoiding redundant measurements.

In conclusion Vm is uniquely de�ned by the distribution of σ. The Forward

Operator then, for L = 16, is

F (σ) :=
[
V1,3 V1,4 . . . V1,15 V2,4 V2,5 . . . V16,14

]T
∈ Rnm . (2.27)

where nm = L(L− 3) = 16 · 13 = 208.

Any change in σ in�uences all potential values and the boundary volt-

ages are then entangled with the global structure of the conductivity in a

nonlinear way [29]. The in�uence of a conductivity change in a region of

the domain on the potential in another region is weaker and weaker as the

distance increases, but is also a�ected by the conductivity changes in all the

other regions.

The sensitivity of a boundary voltage to a change in conductivity can be

estimated by means of a perturbation procedure, as described in [28]. Let σ

be the conductivity distribution on domain Ω that generates the measured

data F (σ), and σ0 be a reference conductivity distribution wich generates the

computed data F (σ0) and minimizes ‖F (σ) − F (σ0)‖2. If the same current

is assumed to be injected in the two domains, then δσ = σ − σ0 satis�es∫
Ω

δσ∇um · ∇u0
ddΩ =

∫
Ω

σ∇um · ∇u0
ddx−

∫
Ω

σ0∇um · ∇u0
ddΩ =

=

∫
∂Ω

σ
∂um
∂n

u0
ddS −

∫
∂Ω

σ0um
∂u0

d

∂n
dS =

= −(Vd,m[σ]− Vm,d[σ0]) =

= −(Vd,m[σ]− Vd,m[σ0]).

We therefore de�ned in this way the Fréchet derivative of the measured
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voltages on the electrodes with respect to a perturbation in conductivity.

The computation of the Jacobian matrix require a discretization of the

conductivity. Let then Ω be discretized into nT subdomains {Tj}nT
j=1 and let

σ, σ0 and δσ be assumed constant on each of them, so that σ, σ0 and δσ ∈
RnT , and the previous identity can be assembled into matrix form as

J δσ = −(F (σ)− F (σ0)) (2.28)

where J ∈ Rnm×nT is the Jacobian Matrix which is de�ned as

{J}i,j =
∂Vd,m
∂σj

=

∫
Tj

∇ud · ∇umdΩ. (2.29)

Index i of the rows of the matrix is de�ned by the stimulation pattern and

depends on the indices of the driving and measuring pair {d,m}. Index j of
the columns of the matrix corresponds to the subdomain Tj.

2.2 Inverse problem

EIT inverse problem aims to de�ne the conductivity σ inside the body Ω

starting from the measured voltages Vm on the boundary ∂Ω. Considering

the nonlinear relation among Vm and σ de�ned by the Forward Operator, the

simplest way to �t the data is to consider the so called least squares approach

[19]

σ∗ = argmin
σ

f(σ), f(σ) :=
1

2
‖F (σ)− Vm‖2

2 (EIT-NL)

which consists in minimizing the �delity term f(σ). Being F a nonlinear

operator Gauss-Newton method is the �rst method that one might consider

to solve (EIT-NL) as a nonlinear least squares problem.

The issue with such technique is that (EIT-NL) is ill posed due to its

instability, since small errors in the measured data may generate large errors
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in the reconstructed conductivity, as described by Calderon in [14], where the

uniqueness of the EIT inverse problem was discussed for the �rst time. Such

behaviour is caused by the combination of high sensitivity of the measure-

ments to changes in the conductivity in the areas near the surface and, on the

other side, low sensitivity to changes in areas deep within the body. It can

be labeled as a severly ill-posed problem (according to the de�nition given

by [19] based on the decay of the singular values of the operator), which can

be seen by considering the behaviour of the singular values of the discrete

linear approximation of the Forward Operator. In order to regularize the

solution, a penalty term G(σ) needs to be added to the objective function so

that highly oscillatory conductivities can be handled:

σ∗ = argmin
σ

{
f(σ) + αG(σ)

}
(EIT-NL-R)

This new formulation can be addressed to as the regularized problem, where

α > 0 is the regularization parameter that controls the trade-o� amidst data

�tting and bounding the derivatives of σ. The penalty term can also be seen

as including a priori information about the conductivity, so it is generally

de�ned as prior. A possible choice for the prior is a linear term within a

quadratic norm framework

G(σ) = ‖L(σ − σref )‖2
2 (RL)

where L is a matrix that approximates a partial di�erential operator and

σref a prior estimate of the conductivity distribution. If one assumes in-

dipendence for image elements and the same expected value for magnitude,

then matrix L turns into an identity matrix I, which yields a zeroth-order

Tikhonov regularization [1]. Vauhkonen in [35] suggested to consider a dis-

crete Laplacian �lter if it is desired to model image smoothness, so that a

penalty for nonsmooth regions in the conductivity is gained. A third choice

for L could be a discrete high pass Gaussian Filter for spacial frequencies, as

suggested by Adler and Guardo in [3]. By doing so, one penalizes high fre-



2. Mathematical models in EIT 23

quency components, thus gaining better conditioning, but at the same time

worse resolution for the reconstructed image.

The regularization operator can also be chosen to be nonlinear, where the

most common choice in this case is the Total Variation (TV ) functional as

suggested by Borsic [8]:

G(σ) = TV (σ). (RNL)

The Total Variation functional of a conductivity function σ is de�ned as

TV (σ) =

∫
Ω

|∇σ|dΩ.

The use of Total Variation as a l1 regularization penalty term allows to pre-

serve discontinuities in the reconstructed conductivity. As described in [9],

such discontinuities can be found in almost every �eld where EIT has been

applied: in medicine, where they are de�ned by intern organ boundaries, as

each organ has di�erent electric features, or in process tomography where

they are de�ned by the di�erent phase interfaces of a multiphasic �uid. This

precision and allowance for discontinuous pro�les is though gained at the

cost of losing di�erentiability for the objective function, since penalty term

includes an absolute value. Such a framework forces to consider nonsmooth

optimization methods.

A linear model for the inverse problem can be built considering the lin-

earization of the nonlinear Forward Operator F for a small change about an

initial conductivity distribution σ0 (which may di�er from σref ) δσ := σ−σ0:

F (σ) ≈ F (σ0) +∇σF (σ0)δσ,

where ∇σF (σ0) is the Jacobian matrix at σ0 J(σ0) de�ned in (2.29). By

de�ning δVm := F (σ0) − Vm the nonlinear Least Squares model (EIT-NL)

can be approximated by the following linear Least Squares model
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δσ∗ = argmin
δσ

f̄(δσ), f̄(δσ) :=
1

2
‖Jδσ − δVm‖2

2. (EIT-L)

It is important to highlight the fact that the linearization of the problem

yields an underdetermined system of equations, which is by de�nition ill-

posed as it either lacks of a solution or allows in�nitely many solutions.

Regularization is then required. The regularized associated model with lin-

earized �delity f̄(δσ) is:

δσ∗ = argmin
δσ

{
f̄(δσ) + αG(δσ)

}
, (2.30)

which can be classi�ed into two optimization models according to the penalty

term being linear

δσ∗ = argmin
δσ

{
‖Jδσ − δVm‖2

2 + α‖Lδσ − Lσref‖2
2

}
(EIT-L (RL))

or nonlinear

δσ∗ = argmin
δσ

{
‖Jδσ − δVm‖2

2 + αTV (δσ)

}
(EIT-L (RNL))

Remark 2.5. The di�erent notation σ and δσ aims to underline the fact

that the former represents an absolute conductivity distribution while the

latter represents a relative change of conductivity distribution at a poste-

rior state with respect to an initial state with conductivity distribution σ0.

Linearized models are generally involved in the reconstruction of such con-

ductivity change δσ. The idea of computing the di�erence in conductivity

between two states might be of interest to many applications, as in medi-

cal problems. This is known as di�erence imaging and the contrast might

though be larger than required by linear approximation [24]. The solution

to such issue may be found in iteratively solving a regularized linear ap-

proximation of the problem, where at each iteration a small conductivity

change δσn = σn+1 − σn is sought and a new computation for the Jacobian
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is performed.

Remark 2.6. From this point onwards only di�erence imaging will be con-

sidered and for simplicity of notation σ will be regarded to as conductivity

di�erence and Vm as voltage di�erence.

2.2.1 On the conditioning of the linear inverse problem

The ill-posed nature of the linearized problem arises from the fact that

for a given injection current, the number of measurements is limited and

generally smaller than the number of subdomains, which corresponds to the

number of components of the unknown vector σ. Furthermore, some mea-

surements might be redundant because some of the voltages might be de�ned

by reciprocity and thus be bounded by linear relation. These two facts re-

sult in the problem being undercdetermined and the jacobian matrix being

rank de�cient. As the number of subdomains increases, the reconstruction

of the conductivity becomes more challenging, so, as stated in [29], given a

number L of electrodes, the amount of information is limited and the e�ort

in improving the spacial resolution generally translates into worsening the

ill-posedness of the problem.

Let us consider the simpli�ed linear model w.r.t. (EIT-L):

δσ∗ = argmin
δσ

1

2
‖Jδσ − δVm‖2

2. (2.31)

The Singular Values Decomposition of J (the conditioning of the matrix J

can be characterized in terms of this decomposition) is of the form

J = UΣV T =
k∑
i=1

uisiv
T
i (2.32)

where U = (U1, . . . , Um) and V = (V1, . . . , Vn) are orthonormal matrices

UTU = Im, V
TV = In and Σ = diag(λ1, . . . , λn) is a diagonal matrix with
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nonnegative entries ordered such that

s1 ≥ s2 ≥ · · · ≥ sn ≥ 0.

Let r be the rank of J , r ≤ n. The ill-posedness of the problem is shown by

the singular values rapidly decaing to zero without any particular gap in the

singular values. We have

s1 ≥ · · · ≥ sr ≥ ε ≥ sr+1 ≥ · · · ≥ sn ≥ 0.

If ε denotes the threshold for which the singular values are numerically

zeros, then singular values {sr+1, . . . , sn} are in practice null. This indicates

rank de�ciency in the matrix J . Additional information is needed to in-

vert data uniquely. A quantitative measure of ill-posedness is given by the

condition number of J

cond(J) =
s1

sk

(where sk is the smallest nonzero singular value of J) which assumes large

values for ill-posed problems and tends to in�nity for rank de�cient matrix

J . In this latter case the matrix J is not invertible.

Starting from the previous considerations, the analysis of the singular

values of the Jacobian matrix should yield the following results: only a small

number of them is highly above machine precision (and such number corre-

sponds to the rank of the matrix) and the ratio between the �rst and the

last singular values increases as the number of subdomains gets higher.

Example 1

The 2D test setup was composed of a tank with one ring of 16 electrodes;

opposite drive pair was chosen for both injection and measurement pattern

and 3 di�erent structured meshes were considered to model the tank, with a

di�erent number of elements nT = 1024, 2304, 3136 which increases the num-
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ber of columns of J . The injection pattern for the �rst drive pair is shown

in �gure 2.2 and the relative 14 measurement pattern are described in �gure

2.3. The total number of measurements is then M = 16 × 14 = 224, which

corresponds to the number of rows of the Jacobian matrices.

Figure 2.2: Example 1Opposite Injection Protocol for the �rst driving

pair. From left to right: nT = 1024, 2304, 3136

Figure 2.3: Example 1 Opposite Measurement Protocol for the 14

measurement pairs.

A semicircular object with radius r = 0.6 was inserted in the tank, as

shown in �gure 2.4, with conductivity 1.1 while the background conductivity

was set to 1. Voltage measurements were then simulated and the Jacobian
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matrices of the 3 sets were computed. The singular value decomposition per-

formed by function svd on the Jacobian matrices of the 3 sets yielded the

graphs shown in Figure 2.5 for the singular values. Figure 2.5a shows the

decay of all the 224 singular values, which approach 0 before index 50, while

Figure 2.5b shows the same values in logarithmic scale and exhibits a clear

beforehand jump under machine precision ε = 0.2204×10−16. Function rank

was used to compute the rank of the matrices and yielded rank(JnT
) = 28 for

nT = 1024, 2304, 3136 which corresponds to the last index before singular

values fall below ε. From these results it is possible to conclude that the

number nT of mesh elements does not a�ect the rank of the Jacobian matrix

but it consistently reduces its singular values at it increases.

Figure 2.4: Example 1 Tanks with semicircular element. From left to

right: nT = 1024, 2304, 3136.

The computation of the condition number for the Jacobian matrices of

the 3 sets was carried out by means of MATLAB function cond. Values are

reported in Table 2.1. Clearly the matrices resulted ill-conditioned and in-

creasing conditioning was found to be correlated with increasing number of

elements nT .

For completeness' sake the setup was also tested on an unstructured mesh

with 1108 mesh elements, and for a comparison the third structured mesh

case with 1024 elements was considered. The rank of the matrix remained

unchanged, thus the choice of the geometry does not seem to a�ect this prop-
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(a) (b)

Figure 2.5: Example 1 Singular Values for the structured meshes

Table 2.1: Example 1 Condition numbers

nT Cond(J)

1024 0.1233× 1036

2304 0.2087× 1036

3136 1.9426× 1036

erty of the matrix, while singular values were slightly modi�ed but with no

signi�cant changes. The condition number for the unstructured mesh, esti-

mated by MATLAB function cond, was 0.18044× 1036, which is comparable

to the previous case.

Figure 2.6: Example 1 Tanks with semicircular element.
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Figure 2.7: Example 1 Singular values decay.

Example 2

In this example the in�uence of the number of measurements on the con-

ditioning of matrix JTJ is considered. A stimulation protocol includes the

number of electrodes L, the injection pattern, the measurement pattern, and

the measurement collection protocol: because of the reciprocity binding the

measurements, one might choose to collect only half of them. Di�erent com-

binations of these features yield di�erent numbers of measurements, hence

di�erent numbers of rows for matrix J . For this analysis we consider 6 con-

�gurations, given by L =8, 16, 32 and two collection protocols, half or full,

for each of them. Opposite injection and adjacent measurment protocol are

�xed for all the cases and no measurement is performed on the driving pair.

We work on a mesh with 750 nodes and 1402 triangles, as shown in Figure

2.8, and the Jacobian is computed with respect to a constant conductivity

distribution 1 Sm−1.

The results reported in Table 2.2 show that for L = 8, 16 choosing half

measurments yields better conditioning for the matrix, but this does not hold

for the case L = 32, so it is only partially correct to state that the more mea-

surements one considers, the worse the conditioning of the matrix becomes.
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Figure 2.8: Example 2

Table 2.2: Example 2 Condition numbers for matrix JTJ for di�erent

numbers of measurements.

L Coll. protocol Total meas. Cond(JTJ)

8
half meas. 16 2.53×1020

full meas 32 1.89×1021

16
half meas. 96 2.61×1020

full meas 192 6.26×1020

32
half meas. 448 7.30×1021

full meas 896 1.53×1021

In general one could infer that L = 16 is the least ill conditioned case.

In conclusion, the results on the conditioning of matrix J suggest that

one should consider to adopt a regularization technique when tackling the

inverse EIT problem in order to obtain reliable solutions.





Chapter 3

Numerical Methods for EIT

3.1 The spatial domain discretization

Let Ω ⊂ Rd, d = 2, 3 be the region where the conductivity has to be

reconstructed. In order to solve the forward and inverse EIT problems one

needs to discretize the spatial domain Ω with a suitable geometric structure.

A common choice is a 2D/3D meshM = (V , T , E) that can be represented

by a graph structure with a set of vertices

V = {v1, . . . , vnv}, vi ∈ R2/R3,

a set of edges

E = {e1, . . . , ene}, ei ∈ V × V ,

and a set of polygonal or polyhedral elements (e.g. triangles in 2D, tetrahedra

in 3D) connecting them

T = {T1, . . . , TnT
}, Ti ∈ V × V × V(×V).

Once the surface mesh is de�ned, it is important to choose a proper data

structure to store and handle the geometric model, according to both topolog-

ical and algorithm requirements. For the purpose of EIT one should consider

33
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that polygonal or polyhedral elements are the most important features to

which data are attached, therefore a so called face-based data structure is

the most common choice. More speci�cally, We use a indexed face set data

structure, where vertices coordinates are stored in an array and polygons are

stored as sets of indices into this array [11]. The only edges in the 2D case,

or faces in the 3D case, to which data are attached are the ones de�ning

the boundary of the mesh, and for them a speci�c boundary indexed face set

structure is de�ned. The measured voltages Vm are associated to boundary

edges ei. The conductivity σ is described by the piecewise constant elements

Ti.

Remark 3.1. The geometric model is represented in EIDORS object fwd_model,

together with the electrodes model and the stimulation patterns. As reported

by Adler and Lionheart in [4], �eld nodes (nv × d) describes the position of

the vertices, �eld elems (nv × (d+ 1)) describes the polygonal elements and

�eld boundary (nB × d) the edges on the boundary (where nv is the number

of vertices, nT is the number of simplices, nB the number of simplices with

a boundary face and d is the dimension of the model).

3.2 Finite Elements Method (FEM) for forward

EIT problem

The usual approach to forward EIT is based on a FEM model to solve

(2.1), starting from the weak formulation of (2.1)-(2.14) and applying Green's

Identity ∫
Ω

σ∇u · ∇wdΩ =

∫
∂Ω

wσ
∂u

∂n
dS (3.1)

where w is a test function in a suitable space. As de�ned in [25], the domain

Ω is discrretized by a mesh which consists of nv vertices xi ∈ Ω, i = 1, . . . , nv,

and nT triangles Tk, k = 1, . . . , nT , such that

� intersection of two triangles is only allowed to be within faces, i.e. the
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convex hull of a set of three vertices the triangles share,

� union ∪kTk needs to be a polyhedral approximation of Ω.

Basis functions φi(x) are chosen to be piecewise linear and such that

φi(xj) = δij for i, j = 1, . . . , nv.

The piecewise linear approximation of the potential is

u(x) ≈ uV (x) =
nv∑
i=1

uiφi(x) for ui ∈ R,

and conductivity is a constant positive de�nite value σi on each triangle.

Within such framework, choosing basis functions φi for i = 1, . . . , nv as

test functions yields

∫
Ω

σ∇u · ∇φidΩ =

∫
Ω

σ
nv∑
j=1

uj∇φj · ∇φidΩ =

=

nT∑
k=1

σk

nv∑
j=1

uj∇φj · ∇φi|Tk| = (NUM)

=
∑

k:{xi,xj}⊂Tk

ujσk∇φj · ∇φi|Tk|

so the FEM matrix, known as sti�ness matrix, K ∈ Rnv×nv is de�ned as

Kij =
∑

k:{xi,xj}⊂Tk

∇φi · σk∇φj|Tk|

where |Tk| is the measure of the volume of the considered simplex and ∇φi is
assumed to be constant. Clearly the third identity in (NUM) is given by the

fact that basis functions are both nonzero if and only if their nodes belong

to the same triangle. This results in matrix K being sparse and having zero
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elements for each indices pair {i, j} de�ning a couple of vertices that do

not belong to the same triangle. A way to build K, as described in [19],

is to de�ne a gradient operator D ∈ RdnT×nv (where d corresponds to the

dimension of the problem) which associates the vector of vertex values of a

piecewise linear function φ with the vector of its gradient∇φ on each simplex.

One then de�nes the following matrix by means of Kronecker product

Σ(σ) = diag(σk|Tk|)⊗ Id

where Id is the d × d identity matrix. Thus, the main block of the system

matrix is de�ned as

K(σ) = DTΣ(σ)D. (3.2)

Considering the RHS in (3.1), the choice of φi i = 1, . . . , nv as test

functions yields

Ii =

∫
∂Ω

σ∇u · nφidS,

so I ∈ Rnv is the current vector. The linear system arising from this formu-

lation is then

Ku = I. (3.3)

In order to obtain a unique solution an additional condition is needed,

since one can only determine the voltage up to a constant. The easiest way

to do this is to elect a vertex ig as the gounded vertex and force uig = 0 by

removing from the system the corrisponding row and column.

System (3.3) implements the shunt model and is equivalent to Ohm's and

Kirkcho�'s law for a resitor network where nodes i and j are connected by a

resistor if the corresponding vertices in the mesh structure share a common

edge [2].

The implementation of the CEM requires to take the boundary condition

into account: (2.14) can be rearranged into

σ
∂u

∂n
=

1

zl
(Vl − u) on El l = 1, . . . , L,
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thus, if zl is assumed to be constant on El

Ii =

∫
∂Ω

σ∇u · nφidS =

=
L∑
l=1

∫
El

1

zl
(Vl − u)φidS =

=
L∑
l=1

∫
El

Vl
zl
φidS −

L∑
l=1

∫
El

1

zl
φi(

nv∑
j=1

ujφj)dS =

=
L∑
l=1

Vl
zl

∫
El

φidS −
L∑
l=1

nv∑
j=1

uj
1

zl

∫
El

φiφjdS =

= AWi V − AZi u

where AWi and AZi are the ith rows of matrices AW ∈ Rnv×L and AZ ∈ Rnv×nv

such that

AWi,l =
1

zl

∫
El

φiφjdS

AZi,j =
L∑
l=1

1

zl

∫
El

φiφjdS

then [
K + AZ −AW

]
·

[
u

V

]
= 0

The known total current is

Il =

∫
El

1

zl
(Vl − u)dS =

=

∫
El

1

zl
VldS −

V∑
i=1

ui

∫
El

1

zl
φidS =

=
1

zl
|El|Vl −

1

zl

V∑
i=1

ui

∫
El

φidS =

= [ADV ]l − [(AW )Tu]l
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where AD is the diagonal matrix AD = diag( |El|
zl

). Then

[
−(AW )T AD

]
·

[
u

V

]
= I

The FEM system for the Complete Electrode Model is then[
K + AZ −AW

−(AW )T AD

]
·

[
u

V

]
=

[
0

I

]
.

3.3 Compute of the Jacobian Matrix in EIDORS

The calculation of the Jacobian Matrix in EIDORS, as described in [18], is

based on the idea of using the system matrixK in (3.3) arising from the FEM

for the forward problem as the matrix Y (σ) ∈ Rnv×nv which associates each

FEM element k = 1, . . . , nT to its conductivity σk and its nodes and is known

as admittance matrix. The Neumann Boundary conditions can be stored into

a matrix Q ∈ Rnv×L such that each column de�nes which electrodes inject

current into the medium and the matrix product

V = Y −1(σ)Q (3.4)

generates matrix V ∈ Rnv×L known as nodal potential di�erence matrix from

which voltage measurements in Vm can be de�ned by means of elementwise

subtractions. Equation (3.4) can be considerd as a discrete version of the

Neumann to Dirichlet map (2.8).

A variation in the voltages due to a change in the conductivity yields the

computation of
∂V

∂σk
=

∂

∂σk

(
Y −1Q

)
=

∂

∂σk

(
Y −1

)
Q. (3.5)
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The derivative of the inverse matrix can be computed as follows:

∂

∂σk

(
Y −1

)
= −Y −1 ∂Y

∂σk
Y −T =

= −Y −1 ∂

∂σk

(
DTΣ(σ)D

)
Y −T =

= −Y −1DT ∂Σ(σ)

∂σk
DY −T =

= −Y −1DT ∂Σ(σ)

∂σk
DY −T =

= −Y −1DT ∂

∂σk

(
diag(σ)⊗ I(d)

)
DY −T =

= −Y −1DT ∂

∂σk
(diag(σ))⊗ I(d)DY

−T ,

where a decomposition similar to (3.2), Y (σ) = DTΣ(σ)D with Σ(σ) =

diag(σ)⊗ Id is considered. By de�ning Ξk = ∂
∂σk

(diag(σ)) ∈ Rnv×nv , i.e. the

matrix with only one nonzero element s.t. (Ξk)k,k = 1, Equation (3.5) can

be rewritten as

∂V

∂σk
= −Y −1DTΞk ⊗ IdDY −TQ = −Y −1DTΞk ⊗ IdDV. (3.6)

Given matrix in (3.6), the Jacobian matrix is assembled de�ning a sub-

component Jj ∈ RM×nT 1 ≤ j ≤ L for each stimulation pattern (M corre-

sponds to the stated number of measurement per injection pattern as speci-

�ed in the measurement protocol):

J =


J1

...

JL

 (3.7)

where the sensitivity matrix for each stimulation j is de�ned using column j

of (3.6) for all elements k = 1, . . . , nT , and the jth subcomponent of the Ja-

cobian is obtained by means of an operatorM which selects the jacobian rows

corresponding to an available pair of electrodes during the jth stimulation,



3. Numerical Methods for EIT

as stated in the measurement protocol:

Jj = M
[
∂Vj
∂σ1

, . . . ,
∂Vj
∂σT

]
. (3.8)

3.4 Numerical Methods for inverse EIT prob-

lem

3.4.1 Truncated Singular Value Decomposition (TSVD)

A commonly used numerical method in linear inverse problems resolution

is the Truncated Singular Value Decomposition. It is designed to solve a lin-

ear least squares problem and allows to de�ne a regularized solution when the

coe�cient involved matrix is ill-conditioned and rank de�cient. In EIT it can

be used to solve the linearized problem (EIT-L) model. The method is based

on the fact that matrix J ∈ RM×nT allows a Singular Value Decomposition

J = UΣV T =
r∑
i=1

siuiv
T
i ,

where r = min(M,N), from which the minimum norm solution of the least

squares problem (EIT-L) can be de�ned as

σ =
r∑
i=1

〈ui, Vm〉
si

vi. (SVD)

As Holder describes in [19], singular vectors vi can be intepreted as stating

the components 〈vi, σ〉 of a conductivity change become more and more hard

to determine as i increases, because they produce voltage changes si〈ui, σ〉.
A relative error ε in the measured voltages allows to rieliably recover the

components 〈vi, σ〉 of the image only when si/s1 > ε. The procedure of

TSVD requires to stop the assembling of the solution in (SVD) to an index

k ≤ r up to which the components can be reliably recovered and si's are not
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small enough to generate high oscillations:

σk =
k∑
i=1

〈ui, Vm〉
si

vi. (TSVD)

The number k of admitted singular values si represents in TSVD the regu-

larization parameter.

3.4.2 The Gauss-Newton method for NLLS

By means of the Gauss-Newton method for nonlinear least squares (NLLS)

one seeks to minimize a nonlinear objective function [27]

f(x) =
1

2

m∑
k=1

r2
k(x) = ‖r(x)‖2

2

where x ∈ Rn, n is the number of variables and r(x) is a vector of residuals

r : Rn → Rm, where m ≥ n. For r(x) = Ax − b this reduces to linear least

squares. For a nonlinear r(x), by de�ning the Jacobian matrix of r(x)

[J(x)]i,j =
∂ri(x)

∂xj

one has gradient and Hessian respectively

∇f(x) =
∑
k

rk(x)∇rk = J(x)T r(x)

∇2f(x) =
∑
n

∇rk(x)∇rk(x)T +
∑
k

rk(x)∇2rk(x) =

= J(x)TJ(x) +
∑
k

rk(x)∇2rk(x) ≈

≈ J(x)TJ(x).
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From considering the second-order Taylor approximation of function f(x):

f(x+ p) = f(x) +∇f(x)Tp+
1

2
pT∇2f(x)p, (3.9)

and imposing optimality condition

∂f(x+ p)

∂p
= ∇f(x)T +∇2f(x)p = 0, (3.10)

follows

p = −(∇2f(x))−1∇f(x). (3.11)

The search direction pNR is given by

∇2f(x)pNR = −∇f(x). (Newton-Raphson)

When the search direction p is obtained by dropping the second order term∑
k rk(x)∇2rk(x) from ∇2f(x) we get

JTJpGN = −JT r(x). (Gauss-Newton)

GN method is an iterative method which, starting from an initial guess x0,

computes xk+1 at the iteration k + 1 as

xk+1 = xk + pGNk = xk − (JTk Jk)
−1JTk r(xk) (3.12)

Matrix JTk Jk is invertible only for m ≥ n. The reason behind dropping∑
k rk(x)∇2rk(x) is that as a minimum is approached the second derivative

becomes neglegible.

3.4.3 Discretization of the Total Variation penalty term

The use of total variation as a regularization term involves the minimiza-

tion of TV functional, which means that optimality condition (vanishing
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of the partial derivatives) needs to be met [8]. It is possible to show that

gradient of TV functional is

∇TV (σ) = −∇ · ∇σ
|∇σ|

(3.13)

which is clearly nonlinear and nondi�erentiable. As described in detail by

Borsic in [8], many modi�cation to the choice of the absolute value have been

suggested to overcome the nondi�erentiability of TV , and the most recurring

one (which is also going to be used in this dissertation) is

TVβ(σ) =

∫
Ω

√
|∇σ|2 + βdx (3.14)

for a small β parameter.

For what concerns the discretization of the TV term

TV (σ) =

∫
Ω

|∇σ|dΩ,

since conductivity is de�ned as piecewise constant elements, the TV operator

of a 2D function can be discretized on a meshM whereM = (V , T ) (T is

the set of elements and V the set of vertices) via a weighted summation of

the total variation of each edge k in the mesh, where each weight is de�ned

as the length lk of the corresponding edge:

TV (σ) =
∑
k

lk|σm(k) − σn(k)|

where index k ranges over all the edges, while m(k) and n(k) represent the

indices of the mesh elements on the opposite sides of the considered edge.

In order to gain a more compact de�nition, it is possible to build a sparse

matrix D such that each row Dk has two nonzero elements, lk and −lk, whose
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column indices are m(k) and n(k):

TV (σ) =
∑
k

|Dkσ| = ‖Dσ‖1 (3.15)

The generalization to the 3D case is straiaghtforward, one only needs to con-

sider that the weights correspond to the areas of the faces connecting two

adjacent tetrahedra instead of the lengths of the edges, index k is applied to

faces and m(k) and n(k) represent the indices of the mesh elements on the

opposite sides of the considered face.

The use of absolute value guarantees convexity (positivity) but makes

the penalty function non-di�erentiable whenever σm(k) − σn(k) = 0. The

correction, similarly to (3.14), in this case is

TVβ(σ) =
∑
k

√
|Dkσ|2 + β

Remark 3.2. Matrix D which discretizes the regularized operator de�ned

in (3.14) can be de�ned in EIDORS by setting TV priors : it is indeed a

model-regularization matrix.

3.4.4 Solving Model EIT-L (RL)

The least squares method applied to problem (EIT-L (RL)) where the

�delity term is linearized and optimization is run on the conductivity change,

can easily be de�ned as follows:

JL(σ) := ‖Jσ − Vm‖2
2 + α‖Lσ − Lσref‖2

2 =

=

∥∥∥∥∥
[
J

αL

]
σ −

[
Vm

αLσref

]∥∥∥∥∥
2

2

=

= ‖J̃σ − Ṽm‖2
2.
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Assuming J̃ is full rank, the solution is

σ = (J̃T J̃)−1J̃T Ṽm

that is the regularized least squares solution

(JTJ + α2LTL)σ = (JTV + α2LTLσref ). (3.16)

This kind of approach actually leads to a One-Step Gauss-Newton method

and the optimal conductivity change is directly determined as the solution

of the linear system (3.16).

3.4.5 Solving Model EIT-NL-R

As already mentioned, applying the Gauss-Newton method to problem

(EIT-NL) yields bad solutions due to ill-conditioning of matrix JTJ : as

a matter of fact the solution lies in a long narrow valley of the objective

function, one could instead apply the same method to (EIT-NL-R) where G

as in (RL) is chosen to be a linear operator, since it is possible to assume

that for a well chosen G the residual function

JNL(σ) = ‖F (σ)− Vm‖2
2 + α‖L(σ − σref )‖2

2

will have a critical point corresponding to the minimum, for which∇JNL(σ) =

0 [19]. Gradient and Jacobian matrix of the objective function JNL are re-

spectively:

∇JNL(σ) = J(σ)T (F (σ)− Vm) + αLTL(σ − σref )

∇2JNL(σ) = ∇2F (σ)(F (σ)− Vm) + J(σ)TJ(σ) + αLTL

In order to implement Gauss Newton methods the second order term

in the Hessian of the objective function needs to be neglected and search
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direction pGN is to be de�ned at the nth iteration as the solution of:

(JTk Jk + αLTL)pGNk = −J(σk)
T (F (σk)− Vm)− αLTL(σk − σref )

= J(σk)
T (Vm − F (σk)) + αLTL(σref − σk) (3.17)

so that

σk+1 = σk + pGNk (3.18)

In order to solve the nonlinear problem EIT-NL-R with nonlinear regulariza-

tion term (RNL)

JNL(σ) := ‖F (σ)− Vm‖2
2 + αTV (σ)

the idea is to set the gradient of the objective function JNL to zero:

∇JNL(σ) = JT (F (σ)− Vm)− α∇ · ∇σ√
|∇σ|2 + β

=

= JT (F (σ)− Vm) + αLβ(σ)σ =

= 0

where Lβ(σ) is the Di�usion operator regularized by a small parameter β > 0

that is de�ned as

Lβ(σ)v = ∇ · ∇v√
|∇σ|2 + β

.

Since F (σ) ≈ Jσ is linearized, the equation can then be rearranged into the

form

(JTJ + αLβ(σ))σ = JTVm

from which the �xed point iteration at the iterative step k follows

σk+1 = [JTJ + αLβ(σk)]
−1JTVm.

Under speci�c conditions on J , such as linearity, bounded condition number,

injectivity [8], this iteration converges to the minimum. The name Lagged



3. Numerical Methods for EIT 47

Di�usivity comes from the fact that each iteration involves the evaluation of

the di�usion operator at the preceding step.

In [8] Borsic describes an equivalent numerical method that results in a

IRLS (Iterative reweighted least squares) method which can be derived from

the Newton's Method by dropping the negative semide�nte matrix L′β(σ)

from the Hessian matrix of the objective function:

∇2JNL(σ) = JTJ + αLβ(σ) + αL′β(σ)σ

where

L′β(σ)v = ∇ · ∇σ · ∇v√
(|∇σ|2 + β)3

∇σ.

The Gauss-Newton iteration is then

σk+1 = σk + pGNk

where pGNk is obtained by solving the linear system

(JTJ + αLβ(σk))p
GN
k = ∇JNL(σk). (3.19)

3.4.6 Newton One-Step Error Reconstruction (NOSER)

One of the earliest methods speci�cally designed to address the nonlinear

inverse conductivity problem as formulated in (EIT-NL) is NOSER (Newton

One-step Error Reconstructor) [15]. It was designed for two dimensional

problems where the body Ω ⊂ R2 is a disk of radius r0 and an even number

L of electrode is used.

The idea behind the method is similar to the one that leads to the Gauss-

Newton's method for NLLS, because the nonlinear system of N equations in

N variables is solved by means of one step of a modi�ed version of Newton-

Raphson's Method, starting from an assumption of constant conductivity
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σ0:

σ = σ0 − [∇2f(σ0)]−1∇f(σ0)

The di�erence with Gauss-Newton's method is that the second order term

arising in ∇2f(σ) is not simply dropped but substitued in order to gain pos-

itive de�niteness for the matrix. To such end the authors in [15] considered

the fact that the elements on the diagonal of matrix JTJ are all positive

and thus generate a well conditioned diagonal matrix. In conclusion the

regularization matrix of NOSER method is

L = diag(diag(JTJ)) (3.20)

and the Gauss-Newton metohd (3.12) is regularized as follows

σ = σ0 − (JTJ + αL)−1JT (F (σ)− Vm)

where α is the regularization term and is supposed to be chosen as small as

possible, but at the same time large enough to make the modi�ed matrix not

only diagonally dominant but also positive de�nite, which results in improved

conditioning.

Remark 3.3. EIDORS does not distinguish between model-regularization ma-

trices, i.e. the ones that are de�ned within the construction of a regularized

model, as in (EIT-L (RL)), and method-regularization matrices, i.e. the ones

that arise in the constructionon of the numerical method, as in NOSER: this

is why they are all generally de�ned as priors.

NOSER prior, which corresponds to the diagonal matrix in (3.20), can

then also be used as a regularization term for a One-step Gauss-Newton

(OGN) solver such as @inv_solve_diff_GN_one_step, which is though used

when the linearized problem is concerned.

The proper way to implement the algorithm for the nonlinear problem
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is to manually de�ne the reconstruction matrix and generate a solution by

means of a matrix-vector multiplication:

RM = (JTJ + αL)−1JT

σ − σ0 = RM(F (σ)− Vm)

with L de�ned in (3.20). This latter multiplication can be carried out by

means of function @solve_use_matrix.

3.4.7 A Primal Method with TV: Lagged Di�usivity

The discretized form of the Di�usion operator is de�ned as follows:

Lβ(σ) = DTE−1D

where D is de�ned as in 3.15 and E = diag(ηi), ηi =
√
|Diσ|2 + β. Then the

discrete Quasi-Newton iteration is

σk+1 = σk − pk

where pk is obtained by solving the linear system

[JTJ + αDTE−1D]pk = [JT (F (σ)− Vm) + αDTE−1Dσk].

Remark 3.4. This reminds of the normal equations of problem (EIT-L (RL)),

with the fundamental di�erence that E depends on σ, which makes the equa-

tion nonlinear.

It is though possible to think this Newton's iteration as an IRLS method

applied to the penalty term TV [8]. IRLS is an iterative method that allows

to solve lp-norm problems such as

min
x

1

p
‖Ax− y‖pp
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by considering the following set of nonlinear normal equations

ATWAx = ATWy

where weighting matrix W depends on x and is updated at each iteration.

3.4.8 A Primal-Dual method with TV: PD-IPM

The Primal Dual Interior Point Method was designed to address problems

that can be modelled as a Minimization of a Sum of Norms (MSN) [9] [26]. It

is based on the idea of considering two equivalent formulations for the prob-

lem, a primal problem (P ), which is a minimization problem with speci�c

primal variables and primal feasible region, and a dual problem, which is a

maximization problem with speci�c dual variables and dual feasible region.

The di�erence between primal and dual objective function is called primal-

dual gap, it involves both primal and dual variables , it is always nonnegative

and vanishes only for optimal points for both the primal and dual problem,

in case a speci�c condition, called complementary conditon is satis�ed. Pri-

mal feasibility condition, dual feasibility condition and the complementary

condition de�ne the set of equation that need to be solved in order to solve

the problem.

For the inverse problem with linearized Forward perator and discretized

TV operator

TV (x) =
∑
k

|Dkx| = ‖Dx‖1, (3.21)

the primal problem is

min
x

1

2
‖Ax− b‖+ α‖Dx‖1 (P)

and the dual can be derived from (P) by considering ‖Dx‖1 := maxy:‖y‖≤1 y
TDx

max
y:‖y‖≤1

min
x

1

2
‖Ax− b‖+ αyTDx. (D1)
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The optimal point for the minimization problem in (D1) is given by the

�rst order condition AT (Ax−b)+αDTy = 0, so (D1) can be written deleting

the minimization part and imposing a new constraint on x and y

max
y:‖y‖≤1

AT (Ax−b)+αDT y=0

1

2
‖Ax− b‖+ αyTDx. (D2)

The primal-dual gap for (P) and (D2) is then ‖Dx‖ − yTDx, which van-

ishes when Dx = 0 or when y = Dx
‖Dx‖ ; this second case leads to the comple-

mentary condition

Dx− ‖Dx‖y = 0

which is not di�erentiable for Dx = 0 so ‖Dx‖ is generally replaced by

(‖Dx‖2 + β)
1
2 . By de�ning E = diag(

√
|Dis|2 + β), the set of equation of

the PDIPM is then

‖y‖ ≤ 1 (C1)

AT (Ax− b) + αDTy = 0 (C2)

Dx− Ey = 0 (C3)

As declared in [19] and [9], this method was implemented for inverse

problems with linear Forward Operators, but with small modi�cation it was

possible to apply it to the EIT inverse problem (EIT-NL-R) with G(σ) =

TV (σ). To this end, the primal and dual EIT problems are formulated as

min
σ

1

2
‖F (σ)− Vm‖+ α‖Dσ‖1 (EIT P)

max
y:‖y‖≤1

JT (F (σ)−Vm)+αDT y=0

1

2
‖F (σ)− Vm‖+ αyTDσ. (EIT D)

The system of nonlinear equations is

‖y‖ ≤ 1 (EIT C1)
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JT (F (σ)− Vm) + αDTy = 0 (EIT C2)

Dσ − Ey = 0, (EIT C3)

and it can be solved by means of Newton's Method, for which partial di�er-

ential of (EIT C2) and (EIT C3) are needed:

∂

∂σ
(JT (F (σ)− Vm) + αDTy) = JTJ

∂

∂σ
(Dσ − Ey) = D − E−1D diag(yiDiσ)

∂

∂y
(JT (F (σ)− Vm) + αDTy) = αDT

∂

∂y
(Dσ − Ey) = −E.

In order to update σ and y the following system is to be considered:[
JTJ αDT

HD −E

][
σ

δy

]
=

[
JT (F (σ)− Vm) + αDTy

Dσ − Ey

]

where H = I − diag(yiDiσ)
Ei,i

Remark 3.5. The original PDIPM requires the update of the Jacobian matrix

at every iteration, but the authors in [9] suggest not to follow this procedure

because it only increases the computational time without yielding any better

result.

Remark 3.6. The PDIPM scheme is general and allows to use the method

even for 3D EIT problems.

3.5 Numerical Methods in EIDORS

EIDORS o�ers a variety of functions that implement the previously de-

scribed numerical methods. They are constantly reviewed and updated and

an online documentation can be consulted. For the purposes of this work
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functions in Table 3.1 have been used.

Table 3.1: Numerical Methods in Eidors

Model Reg Method Function
EIT-NL none NOSER @solve_use_matrix

EIT-NL-R LR IGN @inv_solve_gn

NLR IRLS
PD-IPM

@inv_solve_TV_irls

@inv_solve_abs_pdipm

EIT-L none TSVD @inv_solve_TSVD

EIT-L-R LR OGN @inv_solve_diff_GN_one_step

NLR PD-IPM @inv_solve_diff_pdipm

@inv_solve_TV_PDIPM





Chapter 4

Numerical Tests

4.1 The 2D setup

The case tests consisted of a circular tank of radius r0 = 1 with 1 ring

of 16 electrodes; the chosen current pattern was opposite injection and ad-

jacent measurement with no measurements performed on current carrying

electrodes, which results in 12 measuring pairs for each driving pair and

yields 192 total measurements. Drive current level in Ampere was set to 0.1.

The conductivity of the background liquid was set to 1 Sm−1. This �rst

setting was named Empty Measurement Chamber and was used as a baseline

for time di�erence reconstruction. Di�erent kinds of inclusions inside the

sca�old were then considered in order to test the di�erent performances of

the methods: piecewise constant, smooth and piecewise smooth.

E-test A sca�old of radius r1 = 0.8 and conductivity σ = 1.1 Sm−1 was posi-

tioned in the middle of the measurement chamber and this represented

the �rst executive model, called Empty Sca�old, on which time di�er-

ence reconstruction was performed with respect to the Empty Measure-

ment Chamber model.

PC-test The Piecewise Constant (PC) phantom consists of

� a small circular shape of conductivity σ = 1.05 Sm−1 (0.05 Sm−1

55
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below sca�old level) with centre at (0.4, 0.2), radius r2 = 0.03;

� a large squared shape of conductivity σ = 1.15 Sm−1 (0.05 Sm−1

above sca�old level) with edge length l = 0.4 and corners in (0,-

0.2), (-0.4,-0.2), (-0.4,-0.6), (0,-0.6).

SM-test The Smooth (SM) phantom included 2 circular shapes of radius r3 =

0.03 generated by means of a Gaussian density function with standard

deviation s = 0.19

� one with centre in (0.4,0.2) and smoothly decreasing conductivity

(w.r.t sca�old level) to σ = 1.05 Sm−1;

� one with centre in (-0.4,-0.2) and smoothly increasing conductivity

(w.r.t sca�old level) to σ = 1.15 Sm−1.

PS-test The Piecewise Smooth (PS) phantom consists of a circular shape with

radius r3 = 0.65 and centre corresponding to the centre of the sca�old.

The conductivity distribution was generated by considering a Gaussian

distribution with centre at (0,0) (which was scaled so that the central

conducitivity peak reached value σ = 1.150Sm−1) and then adding

0.02Sm−1 to all the values within a central squared region with edge

length 0.6.

PCSM-test The Piecewise Constant & Smooth (PCSM) phantom consists of:

� a circular shape of smoothly decreasing (w.r.t the sca�fold level)

conductivity down to value σ = 1.075 Sm−1, with centre in

(0, 0.25), radius r2 = 0.4, generated by a Gaussian distribution

with standard deviation s = 0.4 ;

� a rectangular shape of constant conductivity σ = 1.15 Sm−1 with

corners in (-0.3,-0.6), (-0.3,-0.3), (0.3,-0.6), (0.3,-0.3).

The con�gurations are shown in Table 4.1, both as EIDORS images (�rst

column) and bivariate functions (where z-axis represents the conductivity
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E-test

PC-test

SM-test

PS-test

PCSM-test

Table 4.1
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value), to better visualize the di�ference between the piecewise constant

inclusions and the smooth ones. The di�erent meshes were generated by

means of MATLAB pdetoolbox which allowed to design the ad hoc geome-

tries. This was purposely arranged in order to provide the methods with the

prior information they needed to exactly reconstruct the di�erent features of

the inclusions, as a way to test their performance. For each phantom, two

meshes were generated: a coarse mesh, which was used for the resolution of

the inverse problem, and a �ne mesh, which was used as a framework for a

Forward Operator in order to calculate the electric potentials and simulate

the data for the inverse calculation. The �ne mesh was generated by ap-

plying MATLAB function refinemesh to the coarse mesh with re�nement

method regular which divides each triangle into four triangles of the same

shape.

4.2 Error Metric

In order to assess the performance of the di�erent algorithms and the

goodness of the results, a notion of relative error with respect to a ground

truth conductivity distribution needed to be de�ned. Ground Truth (GT)

for the Empty Sca�old phantom is the di�erence between the conductivity

distribution of the phantom itself and the conductivity distribution of the

Empty Measurement Chamber phantom, while for the remaining tests GT

is given by the di�erence between the conductivity distribution of the phan-

toms and the conductivity distribution of the Empty Sca�old phantom. Two

metrics have been de�ned to compute the relative error, that are going to be

adressed to as Slice metric and Coarse-to-�ne metric.

� Slice Metric is based on EIDORS function calc_slices which de�nes

the slices of an EIDORS image structure by means of a rendering algo-

rithm which turns it into a 64 × 64 matrix of doubles. By doing so it

is possible to compare the results of the reconstruction algorithms and
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the corresponding GT even if they are de�ned on two di�erent meshes.

Relative error is then de�ned as the ratio among the Frobenius norm of

the mismatch slice-matrix and the Frobenius norm of the GT. If GTslice

is the slice of the ground truth and Islice is the slice of the reconstructed

conductivity, then relative error εslice is:

εslice =
‖GTslice − Islice‖2

F

‖GTslice‖2
F

.

� Coarse-to-�ne metric uses the coarse-to-�ne linear transformation that

allows to map a coarse �nite elements mesh onto a �ner one. Matrix

CF of the transformation is computed by EIDORS function

@mk_coarse_fine_mapping so that CFi,j is the fraction of element i

of the �ner mesh which is contained in element j of the coarser mesh.

This is used to map from data on the reconstruction mesh to the �ner

mesh as

σfine = CFσ∗.

Relative error is then de�ned as the ratio among the norm 2 of the

mismatch-between-elements-data vector and the norm 2 of the Ground

Truth elements data vector. If σGT is the elements data vector of the

Ground Truth on the �ner mesh and σ∗ is the reconstructed image

elements data vector on the coarse mesh, the relative error εc2f is:

εc2f =
‖σGT − CFσ∗‖2

2

‖σGT‖2
2

.

A third metric which only involved the available data in a realistic simulation

could be considered. At this aim, EIDORS function @calc_solution_error

was considered, as it calculates the residual error for a solution σ∗. If Vs are

the simulated voltage measurements based on the calculated solution and Vm

are the given voltage measurements, the relative solution error εsol is de�ned
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as:

εsol =
‖Vm − Vs‖2

2

‖Vm‖2
2

.

4.3 Experimental results

The set of tests was conducted with no additional noise on measured

voltages. The considered methods are:

OGNT One-step Gauss-Newton with Tikhonov priors, which belongs to class

EIT-L-LR; (see (3.16) where L = In with In identity matrix);

IGNL Iterative Gauss-Newton with Laplace priors, which belongs to class

EIT-NL-LR (see (3.17)-(3.18) with L =Laplace operator);

NOSER Newton One-Step Error Reconstruction which belongs to class EIT-NL;

PDIPM Primal-Dual Interior Point Method which is an iterative method be-

longing to class EIT-L-NLR;

IRLS Iterative Reweighted Least Squares, which belongs to class EIT-NL-

NLR (see (3.19) with TV regularizer).

The regularization parameters for each method and each test were manu-

ally chosen among integer powers of 10 as the ones that generated the average

best solution according to the considered norms.

The stopping criterion for the three iterative methods is based on the

relative change of the linearized objective function J (σ) between two itera-

tions. All methods were assigned tollerance 10−16 and the maximum number

of iterations was set to 20 for PDIPM, 10 (default) for IGNL and 1000 for

IRLS. PDIPM always converged right before the 20th iteration, while IGNL

always converged before the 5th iteration. The EIDORS built-in function for

IRLS does not provide any information about the iterations.
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The Empty Sca�old phantom

All models managed to reconstruct the circular shape of the sca�old,

but PD-IPM was the only one to reproduce the step change in conductivity,

while all the others performed a quite smooth reconstruction. As far as

conductivity magnitude is concerned, all algorithms performed well with no

signi�cant loss, but if the precise value is to be considered, all tended to

de�ne a solution that oscillates around the ground truth, a shown inf Figure

4.1. This resulted in an annulus of values higher than 0.1 and a central

concavity of values smaller than 0.1. PD-IPM solution was the only one

which remained steadily below the Ground Truth level.

Figure 4.1: 1D section of the 3D surface of the reconstruction of the

Empty Sca�old
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E: OGNT
α εslices εc2f εsol
0.0001 0.3004 0.3428 0.00686
1.0e-5 0.3001 0.3388 0.006729
1.0e-6 0.3218 0.3592 0.006755
1.0e-7 1.679 1.571 0.0523
1.0e-8 2.971 2.782 0.2319

E: IGNL
α εslices εc2f εsol
0.0001 0.2394 0.294 0.0005302
1.0e-5 0.2426 0.2953 0.0001627
1.0e-6 0.2589 0.3141 0.0001576
1.0e-7 0.9628 1.086 0.0001621

E:NOSER
α εslices εc2f εsol
0.01 320.7 520.8 16.38
0.001 0.2522 0.3369 0.009631
0.0001 0.2358 0.2854 0.006568
1.0e-5 0.2435 0.292 0.006548

E:PDIPM
α εslices εc2f εsol
1.0e-7 0.2479 0.354 0.06874
1.0e-8 0.08929 0.1005 0.0692
1.0e-9 0.08622 0.09078 0.06935
1.0e-10 0.08638 0.09031 0.06938

E: IRLS
α εslices εc2f εsol
1.0e-5 0.3302 0.451 0.06922
1.0e-6 0.249 0.3294 0.06708
1.0e-7 0.2337 0.3232 0.0668
1.0e-8 0.236 0.3304 0.06683

Table 4.2: Model E
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OGNT

IGNL

NOSER

PDIPM

IRLS

Table 4.3: Reconstruction for the E-test case.
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The Piecewise Constant phantom

All methods fail to reconstruct the small circular negative variation and

tend to delete it, though a certain subsidence in all reconstructions (as can be

seen in Figure 4.2) around that region suggests that some kind of variation

was detected. PD-IPM is again the only method which successfully repro-

duces the step change of the positive inclusion (while all the other methods

provided smoothly increasing solutions). None recover the sharpen shape of

the positive feature.

Figure 4.2: 1D section of the 3D surface reconstruction of the PC model
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PC: OGNT
α εslices εc2f εsol
0.0001 0.585 0.8919 0.00334
1.0e-5 0.5476 0.8821 0.0009172
1.0e-6 0.5401 0.8803 0.001002
1.0e-7 0.539 0.8791 0.00114
1.0e-8 0.5564 0.8824 0.001487

PC: IGNL
α εslices εc2f εsol
0.0001 0.6052 0.8826 0.003167
1.0e-5 0.5567 0.8732 0.0001919
1.0e-6 0.5484 0.8729 1.35e-5
1.0e-7 0.5446 0.8604 6.657e-6
1.0e-8 0.5576 0.858 1.035e-7

PC:NOSER
α εslices εc2f εsol
0.01 0.6407 0.888 0.0145
0.001 0.5658 0.8685 0.001652
0.0001 0.5496 0.8696 0.00134
1.0e-5 0.5442 0.8595 0.001406
1.0e-6 0.5526 0.8495 0.001872

PC:PDIPM
α εslices εc2f εsol
1.0e-7 0.8376 0.9578 0.1689
1.0e-8 0.654 0.9076 0.03926
1.0e-9 0.5509 0.8742 0.01849
1.0e-10 0.4845 0.8523 0.01905
1.0e-11 0.4496 0.8443 0.01962

PC: IRLS
α εslices εc2f εsol
1.0e-6 0.6839 0.8869 0.01993
1.0e-7 0.6485 0.8795 0.01442
1.0e-8 0.5956 0.8828 0.01496
1.0e-9 0.581 0.9038 0.01607
1.0e-10 0.5797 0.9181 0.01634

Table 4.4: Model PC
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OGNT

IGNL

NOSER

PDIPM

IRLS

Table 4.5: Reconstruction for the PC-test case.
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The Smooth Phantom

All methods in this case test managed to detect the correct regions, the

corect shapes and the smooth behaviour of the inclusions. PD-IPM gained

good quantitative values as reported in Table but it actually failed to de-

tect the smoothness of the variations, de�ning a staircase-like solution, and

reduced the highest reconstructed values.

Figure 4.3: 1D section of the 3D surface reconstruction of the SM

model
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SM: OGNT
α εslices εc2f εsol
0.001 0.5818 0.6083 0.06796
0.0001 0.4313 0.4698 0.01311
1.0e-5 0.3895 0.4227 0.01407
1.0e-6 0.3989 0.4302 0.01422
1.0e-7 0.4476 0.461 0.01457

SM: IGNL
α εslices εc2f εsol
0.001 0.5178 0.5182 0.0335
0.0001 0.4045 0.4071 0.002644
1.0e-5 0.3428 0.3382 0.0001599
1.0e-6 0.3371 0.3358 1.834e-5
1.0e-7 0.363 0.3623 4.23e-6

SM:NOSER
α εslices εc2f εsol
0.01 0.443 0.4385 0.01726
0.001 0.34 0.3299 0.01317
0.0001 0.3226 0.3118 0.0138
1.0e-5 0.3406 0.3306 0.01398
1.0e-6 0.4403 0.4086 0.01473

SM:PDIPM
α εslices εc2f εsol
1.0e-10 0.4478 0.4542 0.0149
1.0e-11 0.3904 0.3898 0.01498
1.0e-12 0.3687 0.3698 0.01508
5.0e-13 0.3718 0.3756 0.01511
1.0e-13 0.4161 0.4194 0.0153

SM: IRLS
α εslices εc2f εsol
1.0e-8 0.3829 0.3846 0.01302
1.0e-9 0.3676 0.3789 0.0137
1.0e-10 0.3611 0.3739 0.01384
1.0e-11 0.3508 0.3621 0.01384
1.0e-12 0.355 0.3701 0.01389

Table 4.6: Model SM
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OGNT

IGNL

NOSER

PDIPM

IRLS

Table 4.7: Reconstruction for the SM-test case.
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The Piecewise Smooth Phantom

All methods manage to detect the smooth inclusion with smooth slope,

apart from PDIPM which as expected produces a staircase-like reconstruc-

tion. The inner squared variation was only detected by IGNL, NOSER and

IRLS, as shown in Figure 4.4; PD-IPM only reported a small increase in

the central region and OGNT de�ned an oscillating solution. None of the

methods managed to accurately reconstruct the magnitude of the values of

the conductivity change inside the squared region.

Figure 4.4: 1D section of the 3D surface reconstruction of the PS model
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PS: OGNT
α εslices εc2f εsol
0.01 0.658 0.6734 0.1282
0.001 0.582 0.5764 0.01478
0.0001 0.5294 0.5261 0.00217
1.0e-5 0.5248 0.5225 0.001902
1.0e-6 0.5217 0.5191 0.001903

PS: IGNL
α εslices εc2f εsol
0.01 0.6161 0.6476 0.1581
0.001 0.456 0.4665 0.01116
0.0001 0.3669 0.3777 0.0004056
1.0e-5 0.3646 0.3775 1.004e-5
1.0e-6 0.3645 0.3779 1.087e-6

PS:NOSER
α εslices εc2f εsol
0.1 0.5252 0.5328 0.08515
0.01 0.4143 0.4128 0.006057
0.001 0.3784 0.3847 0.002009
0.0001 0.3779 0.3845 0.001983
1.0e-5 0.3779 0.3845 0.001982

PS:PDIPM
α εslices εc2f εsol
1.0e-8 0.5478 0.552 0.02736
1.0e-9 0.5414 0.5432 0.0274
1.0e-10 0.5393 0.5407 0.02738
1.0e-11 0.5364 0.5371 0.02735
1.0e-12 0.5347 0.5351 0.02734

PS: IRLS
α εslices εc2f εsol
1.0e-5 0.5676 0.6262 0.0315
1.0e-6 0.482 0.4867 0.02598
1.0e-7 0.45 0.4914 0.02639
1.0e-8 0.4473 0.5014 0.02671
1.0e-9 0.4472 0.5028 0.02675

Table 4.8: Model PS
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OGNT

IGNL

NOSER

PDIPM

IRLS

Table 4.9: Reconstruction for the PS-test case.
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The Piecewise Constant & Smooth phantom

The two inclusions were detected by all the algorithms but PD-IPM was

the only one that almost perfectly �tted the solution inside the shapes. As

usual PD-IPM de�ned only piecewise constant values, while all the other

algorithms tended to rather smooth variations. The smooth inclusion was

the better reconstructed one, not only in terms of shape and behaviour but

also in terms of values. Table 4.11 clearly shows that PD-IPM generated

the best reconstruction in terms of mismatch with the conductivity ground

truth, while IGNL de�ned the best �tting to the measured data.

Figure 4.5: 1D section of the 3D surface reconstruction of the PCSM

model: piecewise constant (left), smooth (right)
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PCSM: OGNT
α εslices εc2f εsol
1.0e-5 0.5441 0.6247 0.01655
1.0e-6 0.5356 0.6088 0.0168
1.0e-7 0.5278 0.5933 0.01705
1.0e-8 0.5338 0.5931 0.0175
1.0e-9 0.534 0.5932 0.01752

PCSM: IGNL
α εslices εc2f εsol
0.0001 0.539 0.5951 0.003365
1.0e-5 0.4902 0.5388 0.0001818
1.0e-6 0.4829 0.5283 1.703e-5
1.0e-7 0.4749 0.5124 3.749e-6
1.0e-8 0.4822 0.5122 1.101e-7

PCSM:NOSER
α εslices εc2f εsol
0.0001 0.4918 0.5285 0.01927
1.0e-5 0.4845 0.5166 0.0194
1.0e-6 0.4845 0.5098 0.01984
1.0e-7 0.486 0.5105 0.01992
1.0e-8 0.4884 0.5125 0.01993

PCSM:PDIPM
α εslices εc2f εsol
1.0e-10 0.405 0.4386 0.02191
1.0e-11 0.3131 0.3402 0.02421
1.0e-12 0.2791 0.303 0.0247
1.0e-13 0.2664 0.2729 0.02447
1.0e-14 0.2945 0.3107 0.02372

PCSM: IRLS
α εslices εc2f εsol
1.0e-10 0.4959 0.5437 0.01942
1.0e-11 0.4833 0.5279 0.01948
1.0e-12 0.4744 0.5142 0.0196
1.0e-13 0.4662 0.5012 0.01964
1.0e-14 0.4631 0.4923 0.01985

Table 4.10: Model PCSM
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OGNT

IGNL

NOSER

PDIPM

IRLS

Table 4.11: Reconstruction for the PCSM-test case.
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PD-IPM

The iterative algorithm for the PD-IPM method in EIDORS allows to

keep the solution for each iteration, which might be interesting in order to

investigate the properties of the method and its behaviour with respect to

the di�erent case tests. Figure 4.6 shows the evolution of the relative change

for the Linearized Objective Function

J = ‖Jσ − Vm‖2
2 + αTV (σ)

on which the stopping criterion of the algorithm is based. The stopping

tolerance value was set to 10−16 and the maximum number of iterations maxit

was set to 20. All models showed the same pattern for both parameters, with

the �rst two iterations being the ones with highest relative change (100),

then the third iteration lost 2 or 3 orders of magnitude. Starting from this

point, the relative change started to increase until 10−1 (which was reached

around iteration 10) and then slowly degradated until convergence. This

pattern is evident in Figure 4.7 where the slice projections of 12 iterative

solutions for each case test are shown. Clearly the detection of the regions

and the general behaviour of the di�erent conductivity distribution happened

already in the �rst iteration and the successive iterations helped to lead

to piecewise constant solutions and remove artefacts. Shown slices 2 to 5

(corresponding to iterations 2,4,6 and 7) are almost equivalent. Shown slice 6

and 7, corresponding to iteration 9 and 11, represent the steps where artefacts

where almost completely removed and regions de�ned. The last slices are the

ones corresponding to the decrease until convergence of the relative change

and no modi�cation can be visually detected.
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Figure 4.6: Relative change for the Objective Function J (σ) for the

algorithm PDIPM: E-test, PC-test, SM-test, PS-test, PCSM-test.
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Figure 4.7: Evolution of the PDIPM algorithm's solutions: E-test, PC-

test, SM-test, PS-test, PCSM-test.



Chapter 5

A Spatially-Adaptive Variational

Method for EIT

In this chapter we present a new variational method for the resolution

of the EIT inverse problem with di�erence imaging. The model belongs to

the class EIT-L-NLR as it is built on a functional that includes the lin-

earized version of the �delity term and two nonlinear regularization terms.

In particular we consider a smooth convex generalized Tikhonov regulariza-

tion operator, consisting of a L2 norm for the gradient of the conductivity,

and a nonsmooth nonconvex TV-like operator for strong sparsity promotion.

The action of these two penalties is weighted by a space variant function

which locally de�nes whether to favour smoothing or sparsi�cation. This

variational model is nonconvex and nonsmooth so it deserves challenging

solutions. We propose an ADMM-based iterative algorithm for the mini-

mization of the introduced model. The idea behind this method comes from

the Convex-Nonconvex approach [6], whose principle, as described in [20], is

to de�ne a functional which includes both smooth convex and non-smooth

non-convex penalty terms, so that the total cost function is convex. Such re-

sult is achieved by o�setting the negative second derivatives of the nonconvex

penalty term with the positive second derivatives of the convex terms. The

advantage lies in the possibility to promote sparsity more strongly than it

79



5. A Spatially-Adaptive Variational Method for EIT

can be achieved by only including convex terms and simultaneously maintain

convexity of the general problem, so that one can rely on convex minimization

approaches to determine the solution.

5.1 Variational Model

The proposed variational method solves the EIT inverse problem relying

on the following minimization problem:

min
σ
J (σ;λ, η, a) ,

J (σ;λ, η, a) :=
λ

2

∫
Ω

(Jσ − Vm)2dΩ +

∫
Ω

η(x)

2
(∇σ)2 dΩ

+

∫
Ω

(1− η(x))

2
φ (|∇σ|; a) dΩ ,

(5.1)

where λ > 0 is a weighting parameter for the �delity term,

η : Ω ⊂ R2 → [0, 1]

is a space variant function that works as a trade-o� for the smooth convex

quadratic regularization term and the nonconvex nonsmooth regularization

term, ∇σ is the conductivity gradient de�ned on Ω and

φ( · ; a) : [ 0,+∞)→ R

is a parameterized, non-convex penalty function with parameter a ≥ 0, which

controls the degree of non-convexity and will be referred to as the concavity

parameter. As function φ, a rescaled and reparameterized version of the

minmax concave penalty function [37] was chosen, yielding the following

piecewise quadratic function:

φ(t; a) =

−
a

2
t2 +
√

2at for t ∈ [0,
√

2/a)

1 for t ∈ [
√

2/a,∞)
(5.2)
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Figure 5.1: Plots of the penalty φ(t; a) in (5.2) for di�erent a values.

Solid dots indicate points separating, on each penalty graph, the two

pieces associated with sub-domains [0,
√

2/a), [
√

2/a,∞)

Figure 5.1 illustrates φ(t; a) for di�erent values of the concavity parameter

a ∈ {1, 3, 9}. In this setting, function φ assigns a di�erent value to each entry

of the gradient.

5.2 Discretization

LetM = (V , T , E) be the triangle mesh approximating the planar domain

Ω ⊂ R2 which is de�ned in Section 3.1. Conductivity di�erence σ : Ω → R
is approximated by a piecewise constant function which is sampled over the

triangles of the mesh.

The �delity term in (5.1) ∫
Ω

(Jσ − Vm)2dΩ (5.3)

is discretized considering the features of the Forward Operator F described

in section 2.1.3, of which J represents a linear approximation. The �rst
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property to consider is the fact that the Forward Operator relates the inner

conductivity and the boundary voltages, thus de�ning a function that is

nonzero only on the boundary with electrodes Γ as in (2.9) and vanishes

elsewhere. This allows to reformulate (5.3) as:∫
Ω

(Jσ − Vm)2dΩ =

∫
∂Ω

(Jσ − Vm)2dS =

∫
Γ

(Jσ − Vm)2dS. (5.4)

A further consideration is the fact that the image of the Forward Operator

in the CEM is sampled and vectorized following two steps: the �rst one

corresponds to the choice of an opposite injection pair d and the second step

corresponds to the choice of an available adjacent measuring pair md (in the

considered stimulation pattern, electrodes involved in the injection pair are

not included in the measuring pairs). This leads to the following identities:

∫
Γ

(Jσ − Vm)2dS =
L∑
d=1

∫
Γ

([Jσ]d − [Vm]d)
2dS = (5.5)

=
L∑
d=1

M∑
md=1

∫
Γ

([Jσ]d,md
− [Vm]d,md

)2dS. (5.6)

where L = 16 is the number of electrodes and M = 12 corresponds to the

number of measurements for each injecting pair. Notice that the integrand of

every term in the summation in (5.6) is only de�ned on the corresponding pair

of measuring electrodes, on which the functions are assumed to be constant.

Let {Emd
, Emd+1} be the pair of measuring electrodes and Emd

∪ Emd+1 be

their union as a portion of the boundary with electrodes Γ. Assuming |E|
is the measure of each electrode and this is assumed to be equal for all

electrodes, then we can de�ne a factor 2|E| for all d = 1, . . . , L and md =

1, . . . ,M .
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L∑
d=1

M∑
md=1

∫
Γ

([Jσ]d,md
− [Vm]d,md

)2dS =

=
L∑
d=1

M∑
md=1

∫
Gmd

([Jσ]d,md
− [Vm]d,md

)2dS =

=
L∑
d=1

M∑
md=1

2|E|([Jσ]d,md
− [Vm]d,md

)2 =

= 2|E|‖Jσ − Vm‖2
2.

In the respect of the discrete setting, the gradient operator is discretized as

matrix D ∈ Rne×nT which is the same operator de�ned in (3.15) that assigns

to each edge the value of the absolute di�erence between the conductivity

values of the two triangles sharing that edge, weighted by the length of the

edge itself. It can be de�ned as the product of two matrices: a diagonal

matrix Λ ∈ Rne×ne , whose j-th diagonal element is equal to the length of

the corresponding edge, and a matrix D̃ ∈ Rne×nT in which each row dj

corresponding to the jth edge is

dj = (0, . . . ,−1, 0, . . . , 0, 1, . . . , 0),

and the nonzero elements correspond to two adjacent triangles sharing the

jth edge. Hence, in the respect of the discretization, the model is anisotropic.

The Jacobian operator J is discretized with respect to the domain decom-

position and the subsequent piecewise constant approximation of σ, accord-

ing to Equation (2.29). It is computed with respect to an initial guess for

the conductivity distribution and it is not updated throughout the procedure.

Since conductivity is de�ned as piecewise constant on the elements in T
and η(x) is sampled on the edges in E , the discretization for the smooth



5. A Spatially-Adaptive Variational Method for EIT

convex quadratic and the nonconvex nonsmooth penalty terms is∫
Ω

η(x)

2
(∇σ)2 dΩ =

ne∑
j=1

lj
ηj
2

(Dσ)2
j

∫
Ω

(1− η(x))

2
φ (|∇σ|; a) dΩ =

ne∑
j=1

lj
(1− ηj)

2
φ(|(Dσ)j|; a)

where lj is the length of ej.

In conclusion, the discretized functional onM becomes

J (σ;λ, η, a) := λ|E| ‖Jσ−Vm‖2+
ne∑
j=1

lj

{
ηj
2

(Dσ)2
j +

(1− ηj)
2

φ(|(Dσ)j|; a)

}
.

(5.7)

5.3 Spatially varying η function

In this section the idea of using a space varying weighting function η(t)

for the penalty terms in the CNC model (5.1) is described. The aim is to

de�ne a way to distinguish the regions where to prioritize the action of the

smoothing term and the ones where to promote sparsity instead, so that

mixed conductivity con�gurations such as the PCSM phantom from Chapter

4 can be accurately reconstructed. To this end, a certain prior knowledge

about the solution is then required, but unlike what happens in restoration

problems, where the input data is a degradated version of the solution that is

looked for and can therefore provide some information about e.g. the bound-

aries of the regions, in EIT solution and data are de�ned on di�erent spaces.

Two scenarios can thus be identi�ed: (a) the con�guration inside the tank

is known or visible, which allows to construct an ad hoc mesh and manually

assign the values of the weighting function η in the di�erent regions; (b) the

setup is blind, meaning no information is provided about the content of the

tank.
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A possible procedure in case (b) is to consider the solution σ0 obtained

by a preliminary step of the proposed method with η(x) ≡ 0 x ∈ Ω as

the starting point for the space-variant approach. This generates a piecewise

constant reconstruction σ0 where sharp edges and step changes are more

promoted than smooth variations. The idea is then to compute the gradient

∇σ0 of the reference conductivity di�erence and obtain a η-map by applying

the bounded nonnegative continuous and monotonically descending function

η(t) =
1

(1 + (t/κ)2)
(5.8)

where t = ‖∇σ0‖2
2. The function (5.8) is used in image processing as an edge

detector.

5.4 Applying ADMM to the proposed model

In order to minimize the functional in model (5.1), the alternating di-

rection method of multipliers (ADMM) is applied on the triangulated mesh

domainM. Considering the discretizations described in the previous section

and introducing the auxiliary variable t ∈ Rne , problem (5.1) is reformulated

in the following equivalent discrete form:

{σ∗, t∗} ← arg min
σ,t

{
|E|λ‖Vm − Jσ‖2

2 +
ne∑
j=1

lj

[
ηj
2
t2j +

(1− ηj)
2

φ(|tj|; a)

]}
(5.9)

subject to : t = Dσ , (5.10)

where Jacobian J is computed with respect to an initial conductivity

distribution σ(0) and not updated throughout the iterative scheme.

To solve the constrained optimization problem (5.9)-(5.10) the augmented
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Lagrangian functional is de�ned as

L(σ, t; ρ;λ, η, a) = |E|λ‖Vm − Jσ‖2
2 +

ne∑
j=1

lj

{
ηj
2
t2j +

(1− ηj)
2

φ(|tj|; a)

}
− 〈 ρ, t−Dσ 〉+

β

2
‖t−Dσ‖2

2 , (5.11)

where β > 0 is a scalar penalty parameter and ρ ∈ Rne is the vector of

Lagrange multipliers associated with the linear constraint t = Dσ in (5.11).

The following saddle-point problem is then considered:

Find (σ∗, t∗; ρ∗) ∈ RnT× Rne× Rne

s.t. L (σ∗, t∗; ρ;λ, η, a) ≤ L (σ∗, t∗; ρ∗;λ, η, a) ≤ L (σ, t; ρ∗;λ, η, a)

∀(σ, t; ρ) ∈ RnT× Rne× Rne .

(5.12)

Given vectors σ(k) and ρ(k) computed at the k-th iteration (or initialized if

k = 0), the (k+ 1)-th iteration of the ADMM-based iterative scheme applied

to the solution of the saddle-point problem (5.11)�(5.12) is splitted into the

following three sub-problems:

t(k+1) ← arg min
t∈Rne

L(σ(k), t; ρ(k);λ, η, a) (5.13)

σ(k+1) ← arg min
σ∈RnT

L(σ, t(k+1); ρ(k);λ, η, a) (5.14)

ρ(k+1) ← ρ(k) − β
(
t(k+1) −Dσ(k+1)

)
(5.15)

Remark 5.1. The minimization sub-problems are all strictly convex and ad-

mit a unique solution under proper conditions (see Prop. 5.3), but this is

not su�cient to guarantee the convergence of the overall ADMM algorithm.

We will further investigate this topic in a future work.

In the following sections the methods to tackle the two minimization

sub-problems (5.13) and (5.14) for the primal variables will be described in
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detail.

5.4.1 Solving the sub-problem for t

Sub-problem (5.13) can be reformulated as follows:

t(k+1) ← arg min
t∈Rne

ne∑
j=1

{
lj
ηj
2
t2j + lj

(1− ηj)
2

φ(|tj|; a)− ρ(k)
j tj +

β

2
(tj − (Dσ(k))j)

2

}
.

(5.16)

Considering the last two terms of each summation and adding the con-

stant terms (Dσ(k))jρ
(k)
j and 1

2β
(ρ

(k)
j )2 yields:

arg min
t∈R

{
−ρ(k)

j t+
β

2
(t− (Dσ(k))j)

2

}
=

= arg min
t∈R

{
−ρ(k)

j t+
β

2
(t− (Dσ(k))j)

2 + (Dσ(k))jρ
(k)
j +

1

2β
(ρ

(k)
j )2

}
=

= arg min
t∈R

{
β

2
(t− (Dσ(k))j −

1

β
ρ

(k)
j )2

}
=

= arg min
t∈R

{
β

2
(t− r(k)

j )2

}
where

r
(k)
j = (Dσ(k))j +

1

β
ρ

(k)
j , r

(k)
j ∈ R.

This leads to the following formulation for each of the ne subproblems:

t
(k+1)
j ← arg min

t∈R

{
lj
ηj
2
t2 + lj

(1− ηj)
2

φ(|t|; a) +
β

2
(t− r(k)

j )2

}
(5.17)

and equivalently, de�ning

β̃j =
β

lj
, β̃j ∈ R

one obtains

t
(k+1)
j ← arg min

t∈R

{
ηj
2
t2 +

(1− ηj)
2

φ(|t|; a) +
β̃j
2

(t− r(k)
j )2

}
. (5.18)
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Lemma 5.2. Let k1, k2 ∈ R and z1, z2 ∈ Rm. Then, for any z ∈ Rm we have

k1

2
‖z − z1‖2

2 +
k2

2
‖z − z2‖2

2 =
k1 + k2

2
‖ z − 1

k1 + k2

(k1z1 + k2z2) ‖2
2

+
k1k2

2 (k1 + k2)
‖z1 − z2‖2

2 . (5.19)

Using Lemma 5.2, the problem (5.18) can be rewritten as

t
(k+1)
j ← arg min

t∈R

{
αj
2

(
t− r̃(k)

j

)2

+ φ(|t|, a)

}
(5.20)

with

αj := 2

(
ηj + β̃j
1− ηj

)
, r̃

(k)
j :=

(
β̃j

ηj + β̃j

)
r

(k)
j . (5.21)

Following proposition 5.3 the problem in (5.20) is strongly convex if and

only if the following conditions hold:

β̃j >
a(1− ηj)− 2ηj

2
for j = 1, . . . , ne (5.22)

β > lj

(
a(1− ηj)− 2ηj

2

)
for j = 1, . . . , ne (5.23)

In case condition (5.23) is satis�ed, the unique solutions of the strongly

convex problems in (5.20) can be obtained using the soft-thresholding oper-

ator de�ned in (5.29)�(5.30) of Proposition 5.3, that is:

t
(k+1)
j = ξ(k+1)r̃

(k+1)
j = min

{
max

{
νj − ζj/|r̃(k+1)

j | , 0
}
, 1
}
r̃

(k+1)
j , (5.24)

where

νj =
αj

αj − a
, ζj =

√
2a

αj − a
. (5.25)

Proposition 5.3. Let φ( · ; a) : R+ → R be the penalty function de�ned in

(5.2), r ∈ Rm a given constant vector and a ∈ R+, α ∈ R∗+ two (free)
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parameters. Then, the function

θ(z) := φ (‖z‖2; a) +
α

2
‖z − r‖2

2 , z ∈ Rm , (5.26)

is strongly convex if and only if the following condition is satis�ed:

α > a . (5.27)

Moreover, in case that (5.27) holds, the strongly convex minimization problem

arg min
z∈Rm

θ(z) (5.28)

admits the unique solution z∗ ∈ Rm given by the following shrinkage operator:

z∗ = ξ∗r , with ξ∗ ∈ [0, 1], in particular : (5.29)

ξ∗ = min
{

max
{
ν − ζ/

∥∥r∥∥
2
, 0
}
, 1
}
, (5.30)

where

ν =
α

α− a
, ζ =

√
2a

α− a
. (5.31)

5.4.2 Solving the sub-problem for σ

The minimization sub-problem for σ in (5.14), if constants are omitted,

can be rewritten as follows:

σ(k+1) ← arg min
σ∈RnT

{
|E|λ‖Vm − Jσ‖2

2 +
〈
ρ(k), Dσ

〉
+
β

2
‖t(k+1) −Dσ‖2

2

}
,

(5.32)

The quadratic minimization problem (5.32) has the following �rst-order op-

timality conditions

2|E|λ(−J)T (Vm − Jσ) +DTρ+ β(−DT )(t−Dσ) = 0 (5.33)
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which lead to the following linear system:(
JTJ +

β

2|E|λ
DTD

)
σ = JTVm +

β

2|E|λ
DT

(
t(k+1) − 1

β
ρ(k)

)
. (5.34)

Since DTD is symmetric and the ratio β
2|E|λ is positive, the nT×nT coe�cient

matrix of the linear system (5.34) is symmetric positive semi-de�nite.

5.4.3 Special Case

If η ≡ 1, then (5.1) simpli�es to the following minimization problem

min
σ
J (σ;λ, a) ,

J (σ;λ, a) :=
λ

2

∫
Ω

(Jσ − Vm)2dΩ +
1

2

∫
Ω

(∇σ)2 dΩ
(5.35)

with the equivalent discrete form for J corresponding to a Tikhonov regu-

larization functional

J (σ;λ, η, a) := |E|λ ‖Jσ − Vm‖2
2 + ‖DΛσ‖2

2. (5.36)

where DΛ =
√

ΛD. The solution σ∗ can therefore be found by solving the

linear system arising from optimality condition

JT (Jσ − Vm) +
1

2|E|λ
DT

ΛDΛσ = 0 (5.37)

(JTJ +
1

2|E|λ
DT

ΛDΛ)σ = JTVm. (5.38)

5.4.4 SAEiTη: an ADMM-type algorithm

The ADMM-based algorithm for the Space Adaptive method for Electri-

cal Impedance Tomography (SAEiT) is given in Algorithm 1. The stopping

criterion is based on the relative change of the reconstructed conductivty
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between two successive steps

‖σ(k+1) − σ(k)‖2
2

‖σ(k)‖2
2

< tol (5.39)

Algorithm 1 SAEiTη for the solution of (5.1)

inputs: voltage measurements Vm ∈ Rnm , η-map η : E → [0, 1)ne ,

output: reconstructed conductivity di�erence σ∗ ∈ RnT

parameters: MODEL: · concavity parameter a ≥ 0 for φ( · ; a) : R+→R+

· data �delity parameter λ > 0

· electrode measure |E| > 0

ADMM: · β > 0

initialization: σ(0) = zeros(nT , 1), ρ(0) = zeros(ne, 1)

compute gradient operator D ∈ RnT×ne

for k = 0, 1, 2, . . . until convergence do:

for j = 0, 1, 2, . . . until ne do:

% update parameters:

· set α(k+1)
j and r̃

(k+1)
j by (5.21)

· set ξ(k+1)
j by (5.30)

% subproblem for t:

· compute t
(k+1)
j by (5.24)

end

% subproblem for σ:

· compute σ(k+1) by solving the linear system (5.34)

% update dual variables ρ:

· compute ρ(k+1) = ρ(k) − β
(
t(k+1) −Dσ(k+1)

)
end

σ∗ = σ(k+1)





Chapter 6

Numerical Experiments

In this chapter we illustrate a group of examples that show the charac-

teristics of the proposed Spatially Adaptive method for Electrical Impedance

Tomography (SAEiT). Data are considered both with and without noise in

order to assess the stability of the algorithm (the generation of synthetic

noise is described in Subsection 6.1). The performance is compared to the

one of the methods described and tested in Chapters 3 and 4.

All examples simulate a circular tank of radius r0 = 1 with 1 ring of 16

electrodes. Drive current level in Ampere is set to 0.1 and the conductivity of

the backgorund liquid is set to 1Sm−1. Measurements are generated via the

same opposite injection - adjacent measurement protocol used in Chapter 4

and illustrated in Figure 2.1a.

The most general scheme for the algorithm is described by the following

three steps:

� SAEiT0: the spatially adaptive method is applied with η ≡ 0 in order

to generate the preliminary solution σ0 that allows to compute the

space-variant η-map;

� η-map detection performed via a thresholding procedure on the edge-

based gradient of conductivity distribution σ0;

93
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� SAEiTη: the spatially adaptive method is applied with space-variant

η-map.

The performance is assessed both qualitatively and quantitatively. The

quantitative analysis is performed via two of the error metrics described in

Chapter 4: the slice metric that gauges how well the original conductivity

distribution is reconstructed (it can only be applied when a Ground Truth

is provided), and the relative solution error which determines how well the

reconstructed conductivity can reproduce the input data. Unlike what de-

scribed in Chapter 4, the slice metric is computed on a 576×576 slice matrix,

as the experiments described in the present chapter are carried out on �ner

meshes.

6.1 Adding Noise to the simulated data

If the data model is

F (σ) = Vm

then introducing a noise vector e ≈ N (0, s2
e) with ‖e‖2

2 = nms
2
e (nm is the

number of data) of additive white Gaussian noise (AWGN) of standard de-

viation se and zero mean yields the corrupted measurement vector

Ṽm = F (σ) + e.

In the considered framework of the di�erence imaging, the noise is added to

the input di�erence data.

In order to estimate the Signal-to-Noise Ratio in dB we can use the fol-

lowing formula

SNR(Ṽm) = 10 log10

(
‖Vm − E[Vm]‖2

2

‖Vm − Ṽm‖2
2

)
= (6.1)

= 10 log10

(
‖Vm − E[Vm]‖2

2

‖e‖2
2

)
(6.2)
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where the numerator equals the variance of the voltage di�erences s2
V and the

denominator equals the variance of the noise s2
e. Thus SNR represents the

ratio between the standard deviation of the data with respect to the noise

variation.

Therefore, for a �xed expected SNR value in dB the standard deviation

of the noise se can be expressed in terms of percentage value of the standard

variation of the data sV . Fixing SNR(Ṽm) and substituting se = κsV in (6.2),

we get to

SNR(Ṽm) = 10 log10

(
sV
se

)2

= 10 log10

(
1

κ

)2

(6.3)

and inverting for κ we obtain

κ =

√
1/(10

SNR(Ṽm)
10 ). (6.4)

Substituting (6.4) in se = κsV we obtain the noise standard deviation in

terms of input data measurements variation and the imposed SNR(Ṽm) value:

se =

√
‖Ṽm − E[Vm]‖2

2 nm/(10
SNR
10 ). (6.5)

Table 6.1 shows some correspondences between SNR(Ṽm) and κ values.

SNR(Ṽm) κ

30 dB 3.16 %
33.98 dB 2 %
40 dB 1 %
50 dB 0.32 %
60 dB 0.1 %

Table 6.1: Correspondence table for the percentage of standard devia-

tion of the input signal and the SNR level.

In EIDORS v1 = add_noise( SNR , v1 , v2 ) assigns to v1 the noise

calculated from std(v1-v2) to match given SNR for the di�erence data.
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6.2 Example 1: SAEiT0 vs PDIPM

In this example we compare the PDIPM algorithm and proposed SAEiT

model with null η-map (named SAEiT0) on the PC-test without addition

of noise. The aim is to show the power of this special setting of the pro-

posed model in sparsity promoting and reconstruction of complex piecewise

constant conductivity distributions. The data are simulated on the generic

forward mesh (which will from now on be referred to as GFM) with 39488

triangles and 19937 nodes shown in Figure 6.1, while the reconstruction is

performed on the same mesh that is used in Chapter 3.

Figure 6.1: Generic Forward Mesh GFM

The bene�ts of choosing the proposed method can be seen in the reduced

contrast loss, details loss and contour shrinkage that are gained thanks to

the use of the nonsmooth nonconvex φ(t; a) function in the penalty term:

the original conductivity values are indeed more accurately reconstructed as

shown in Figure 6.3, the small circular shape is not completely �attened

and the squared shape is not lost in favour of a more circular-like one. The

reason behind these results is that TV allows for step changes but at the same

time imposes on them a penalty that grows accordingly to their magnitude,

which results in the introduction of intermediate step changes and reduced

constrast. On the contrary, function φ(t; a) is identically equal to 1 from a

certain t value, which means that all the highest step changes are equally
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penalized or, equivalently, allowed.

εslices εsol
SAEiT PDIPM SAEiT PDIPM
0.3115 0.3715 0.0663 0.0201

Table 6.2: Example 1 Error Values

(a) (b)

(c) (d)

Figure 6.2: Example 1: SAEiT with η = 0 (named SAEiT0) (c)-(d)

behaves as TV-like-L2 model which is compared with the TV-L2 model

implemented in the PDIPM method (a)-(b).

After showing the performance of the two algorithms on the usual setup

with 16 electrodes, we now present how the choice of a di�erent number of

electrodes in�uences the solution: to this aim, the previous computation on

the PC-test is repeated in a setting with 8 and 32 electrodes. The idea be-

hind this example is that the more electrodes one introduces in the system,

the more information is collected and, as a consequence, an enhancement in

the resolution should be achieved. Yet, this holds true only when su�cient

precision of the instrument is provided [19]. Furthermore, considering more

electrodes translates into more measurements and therefore higher computa-

tional cost in solving the inverse problem.
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Figure 6.3: Example 1: 1D sections of the 3D surface reconstruction

Figures 6.4, 6.5 and 6.6 illustrate the reconstructions with the new elec-

trode settings. The sensor array with 8 electrodes yields, as expected, a

very poor solution that does not reproduce the original conductivity values

and is not �t within the original shapes: both algorithms expanded and

smoothened the contour of the positive squared conductivity variation and

only reconstructed half of the height of the step change, while the small neg-

ative variation is only detected by SAEiT0, but not properly reconstructed.

The sensor array with 32 electrodes yields a good solution although not

too much improvement is gained with respect to the 16 electrodes setup for

the price of a higher computational cost, since the number of measurements

sums up to 896 for a full measurement protocol with 32 electordes, against

192 measurments with 16 electrodes, as reported in Table 2.2. In addition, a

too high �delity parameter in both algorithm results in the introduction of

small artefacts in the reconstructed conductivity, as can be noticed in Figure

6.5. Table 6.3 updates table 6.2 with the error values for the setup with 8

and 32 electrodes.

6.3 Example 2: Bene�t of η-map

The following group of examples is designed to show the ability of the pro-

posed model with a space-variant η-map to reconstruct di�erent and mixed
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(a) (b)

(c) (d)

Figure 6.4: Example 1: PDIPM reconstruction of PC-test with 8

electrodes (a)-(b); SAEiT0 reconstruction with 8 electrodes (c)-(d).

L εslices εsol
SAEiT PDIPM SAEiT PDIPM

8 0.8298 0.7549 0.0131 0.0143
16 0.3115 0.3715 0.0663 0.0201
32 0.3596 0.4227 0.0216 0.0201

Table 6.3: Example 1: Error Values for di�erent electrode numbers

L

conductivity distributions. In this example we compare the PDIPM method

and the proposed SAEiT method with a space-variant η map on the PCSM-

test without addition of noise. The data are simulated on GFM, while the

reconstruction is performed on an ad hoc mesh with 750 nodes and 1402

triangles. The space-variant η map illustrated in Figure 6.7 is obtained via

a proper processing of the gradient of the reference solution obtained in a

preliminary step of SAEiT0.

The reconstruction shown in Figures 6.9(a)-(b) is from PDIPM and the
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(a) (b)

(c) (d)

Figure 6.5: Example 1: PDIPM reconstruction of PC-test with 32

electrodes (a)-(b); SAEiT0 reconstruction with 32 electrodes (c)-(d).

one in Figures 6.9(c)-(d) is from SAEiT. Clearly the proposed method per-

forms better in reconstructing both the piecewise constant and the smooth

conductivity variations: sparsi�cation and contrast stretching are better

achieved in the �rst case and smoothing in the second. Figure 6.8 shows

in detail how well the contour of the piecewise constant inclusion are re-

spected and the smooth decrease of the circular variation is reproduced,

where PDIPM only allowed for two step changes.

εslices εsol
SAEiT PDIPM SAEiT PDIPM
0.2747 0.3302 0.0545 0.0209

Table 6.4: Example 2: Error Values

We now assess the performance of the SAEiT algorithm with space-

variant η-map for the same test but on a �ne generic backward mesh with

2625 nodes and 5056 triangles. Results in Figure 6.12 show that even without
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(a) (b)

Figure 6.6: Example 1: 1D sections of the 3D surface reconstruction

from a 8 (a) and 32 (b) electrodes EIT sensor array.

Figure 6.7: Example 2: Space-variant η-map.

prior information about the shape of the inclusions the algorithm is able to

detect and di�erentiate them. Figures 6.12(a)-(b) show the projection of the

ground truth on the backward mesh and Figures 6.12(c)-(d) show the SAEiT

reconstruction: the piecewise constant inclusion is �t by the algorithm within

a region that well reproduces the original rectangular shape, if one considers

the inconsistent geometry of the mesh.

εslices εsol
0.3667 06472

Table 6.5: Example 2 with generic Backward mesh: Error Values
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Figure 6.8: Example 2: 1D sections of the 3D surfac reconstruction.

6.4 Example 3: SAEiTα vs IGNL

In this example we compare the IGNL algorithm which belongs to the

class of EIT-NL-LR models and the proposed SAEiT method (which belongs

to the class EIT-L-NLR) with a constant η-map with η = α on Ω, α 6= 1, on

a new version of the SM-test without addition of noise. We notice that η-

map in this test would be 1 everywhere on Ω. The di�erence with SM-test in

Chapter 4 is that the smooth features have a maximum resp. minimum point

that is 0.013 higher resp. lower than sca�old level. The data are simulated on

the same generic mesh as in the previous examples, while the reconstruction

is performed on an ad hoc mesh with 1394 nodes and 2690 triangles.

The choice of a constant η-map aims to highlight the e�ect of the non-

convex penalty term, which would otherwise be ignored: as previously de-

scribed, when η(x) ≡ 1 for x ∈ Ω, the proposed variational model reduces

to a Tikhonov regularization. Figures 6.13(b)-(c) show the IGNL recon-

struction, while Figures 6.13(e)-(f) show the result of SAEiT: the smooth

behaviour of the inclusion is well reconstructed in both case, but the for-

mer method presents some oscillations in the background, while the latter

method managed to �atten it. Furthermore, as shown in Figures 6.13(a)-(d),

SAEiT reconstruction is slightly more precise than IGNL in retrieving the

original conductivity values and this re�ects in a signi�cantly smaller slices
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(a) (b)

(c) (d)

Figure 6.9: Example 2: PDIPM reconstruction (a)-(b); SAEiT recon-

struction (c)-(d).

error value for SAEiT, as reported in Table 6.6.

εslices εsol
SAEiT IGNL SAEiT IGNL
0.2377 0.3447 0.0454 3.0586e-05

Table 6.6: Example 3: Error Values

6.5 Example 4: Reconstruction of noisy data

In this example we compare the PDIPM method and the proposed SAEiT

method with a space-variant η-map on the PCSM-test with addition of

AWGN in the range {30 SNRdB, 40 SNRdB, 60 SNRdB}. In Table 6.7

we report the standard deviation of the noise vector applied to the data for

a given SNR(Ṽm) value. We notice that higher values of SNR correspond

to less degradation of the measured data. The data are simulated on the

same generic mesh as in the previous example, while the reconstruction is
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Figure 6.10: Example 2 with Generic Backward Mesh: Space-variant

η-map.

Figure 6.11: Example 2: with Generic Backward Mesh: 1D sections

of the 3D surface reconstruction.

performed on the same mesh that is used in Chapter 3 for the considered

test. The space variant η map is obtained via a proper processing of the

gradient of the reference solution obtained in a preliminary step of SAEiT0.

SNR(Ṽm) 30 dB 40dB 60 dB
se 8.0076e-04 2.5322e-04 2.5322e-05

Table 6.7: Standard deviation of AWGN for given SNR values

Results show that SAEiT can perform well even with noisy data in both

recovering a proper η-map and successively reconstruct the conductivity dis-
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(a) (b)

(c) (d)

Figure 6.12: Example 2: with Generic Backward Mesh: GT projec-

tion on backward mesh (a)-(b); SAEiT reconstruction (c)-(d)

tribution. Error values are reported in Table 6.8: εslices for SAEiT increase in

accordance with increasing noise level, but this can only be appreciated from

the third decimal place, while PDIPM is signi�cantly a�ected already on the

second decimal place. It is also interesting to notice that even in case the

edge detection procedure wrongly classi�es some isolated edges, if they do

not de�ne a closed path (as shown in Figures 6.17-6.20), then the algorithm

still manages to �atten the reconstruction in that area.

εslices εsol
SAEiT PDIPM SAEiT PDIPM

60 dB 0.2795 0.3323 0.0548 0.0218
40 dB 0.2816 0.3764 0.0543 0.0205
30 dB 0.2832 0.4174 0.0543 0.0209

Table 6.8: Example 4 with noisy data: Error Values
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(a) (b) (c)

(d) (e) (f)

Figure 6.13: Example 3: 1D sections of the 3D surface reconstruc-

tion (a)-(d); IGNL reconstruction (b)-(c); SAEiT reconstruction with

η(x) = α on Ω (e)-(f).

6.6 Example 5 - Image Fusion

In this example we show the performance of SAEiT with space variant η-

map de�ned via the Image Fusion Procedure and compare it with the PDIPM

method. Given an photograph of the experimental setup as shown in Figure

6.23a, the Image Fusion Procedure consists of the following steps:

� Region Segmentation of the interior of the tank to generate a la-

belling of the N regions inside the tank;

� Edge detection of the region inside the tank to generate closed con-

tour curves of the regions C = {Cs}Ns=1;

� Scaling of the interior of the tank onto a unitary circle to construct

the Backward Mesh;

� Mapping of C onto the mesh to obtain the η-map, η : E → [0, 1].
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Figure 6.14: Example 4 (60 dB Noise): Space variant η-map.

Figure 6.23a shows a tank with a sensor array of 16 electrodes and two

inclusions, a hydrogel sca�old and a rubber triangle, immersed in a bu�er

for cell cultures that keeps the pH of the experiment under control; Figure

6.23b shows the segmented versions of Figure with three di�erent labels for

the backgorund, the bu�er solution and the inclusions; Figure 6.24 shows

the contour curves of the regions inside the tank generated after the edge

detection procedure on the segmented image.

Figures 6.25a and 6.25b show two di�erent ad hoc meshes obtained from

Figure 6.23b which are used for the simulation of the synthetic voltage mea-

surement data and the reconstruction of the conductivity variation distribu-

tion with respect to the empty tank. The Forward Mesh is made of 6253

nodes and 12312 triangles, while the Backward Mesh contains 1301 nodes

and 2504 triangles. Figure 6.26 shows an example of the space variant η-

map.

The simulation was conducted considering an EIT array sensor with 16

electrodes and an injected current with intensity 0.1 A; the background con-

ductivity was set to 1.1 Sm−1, the rubber triangle was assigned 1.05 Sm−1

so that it represented a downward jump in conductivity and the sca�old a

smoothly increasing conductivity up to 1.1267 Sm−1 because in a realistic

experiment with cell colonies, cells more likely populate the boundary due to
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(a) (b)

(c) (d)

Figure 6.15: Example 4 (60 dB Noise): PDIPM reconstruction

(a)-(b); SAEiT reconstruction (c)-(d)

the presence of nutrients in the liquid solution, while the interior experiences

some metabolic stress (low oxygen, low nutrients) that limits mineralization.

The space variant η-map was de�ned as equal to zero on the boundary of the

inclusions and the rest of the edges got a constant value α = 0.5, as shown

in Figure 6.26.

Results in Figure 6.28 show that both methods perform well in general,

as long as shape and average behaviour are considered, but a more detailed

analysis reveals that PDIPM generates some artifacts around the rubber

triangle and completely �attens the variation inside the sca�old, while SAEiT

reconstructs a clean step variation in the �rst case and a smooth increase in

the second. This precision translates into a low εslices value for SAEiT as

reported in Table 6.9.

εslices εsol
SAEiT PDIPM SAEiT PDIPM
0.1605 0.2753 0.0683 0.0255

Table 6.9: Example 5 Error Values
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Figure 6.16: Example 4 (60 dB Noise): 1D sections of the 3D

surface reconstruction.

Figure 6.17: Example 4 (40 dB Noise): Space variant η-map.



6. Numerical Experiments

(a) (b)

(c) (d)

Figure 6.18: Example 4 (40 dB Noise): PDIPM reconstruction

(a)-(b);SAEiT reconstruction (c)-(d)

Figure 6.19: Example 4 (40 dB Noise): 1D sections of the 3D

surface reconstruction.
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Figure 6.20: Example 4 (30 dB Noise): Space variant η-map.

(a) (b)

(c) (d)

Figure 6.21: Example 4 (30 dB Noise): PDIPM reconstruction

(a)-(b); SAEiT reconstruction (c)-(d)



6. Numerical Experiments

Figure 6.22: Example 4 (30 dB Noise): 1D sections of the 3D

surface reconstruction

(a) (b)

Figure 6.23: Example 5 EIT tank with an 16 electrodes sensor array

and 2 inclusion (a); segmented image (b).
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Figure 6.24: Example 5: Detected contours of the regions inside the

tank.

(a) (b)

Figure 6.25: Example 5: Image Fusion Forward (a) and Backward

(b) meshes.
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Figure 6.26: Example 5: Space variant η-map (a) from Image Fusion

procedure.

(a) (b)

Figure 6.27: Example 5: Simulated data for the Forward problem.
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(a) (b)

(c) (d)

Figure 6.28: Example 5: PDIPM reconstruction (a)-(b); SAEiT re-

construction (c)-(d)

Figure 6.29: Example 5: 1D sections of the 3D surface reconstruction

(b).





Conclusions

In this work the inverse problem of Electrical Impedance Tomography

was investigated. In the �rst chapter, a brief summary of the history of the

problem and its applications is presented, from the early studies of the dis-

tribution of electrical potentials inside layers of ground until the most recent

employments in biomedical engineering.

In the second chapter we described the mathematical models for both

the forward and the inverse problem. In particular we �rstly presented the

construction of the Complete Electrode Model and the conditions that en-

sure the uniqueness of the solution in this framework. Secondly, we described

di�erent regularization models for the inverse problem and classi�ed them ac-

cording to the linearity or nonlinearity of the �delity (EIT-L/EIT-NL) and

of the penalty (LR/NLR) term.

In the third chapter we showed the discretization of the spatial domain

and of the models and di�erent numerical methods to address the inverse

problem which are implemented in EIDORS software , while in the fourth

chapter we tested and compared the performance of the aforementioned

methods for the recovery of various conductivity distribution. We concluded

that on a general scale the TV based Primal Dual Interior Point Method

(PDIPM) is the most accurate among the considered ones.

In the �th chapter we proposed a new variational method for EIT inverse
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problem with a spatially adaptive mixed penalty term (SAEiT), which in-

cludes a smoothing L2 generalized Tikhonov regularization operator and a

nonsmooth nonconvex TV-like sparsity promoting operator based a rescaled

and reparameterized version of the minmax concave penalty function φ(t; a),as

the aim is to jointly reconstruct both the piecewise constant regions and the

smooth regions, according to an adaptive map. The particular choice for the

nonconvex operator has the advantage over canonical TV of equally penaliz-

ing the highest step changes (function φ is identically equal to 1 from a certain

t value that depends on the concavity parameter a) while, on the contrary

TV penalizes step changes accordingly to their magnitude and this intro-

duces intermediate steps and causes a reduction in contrast reconstruction.

We succesively showed how to de�ne an edge-based space-variant trade-o�

between the penalties, depending on the amount of information that is pro-

vided on the experimental setup, and outlined an ADMM-based algorithm

for the resolution of the minimization problem.

In the sixth chapter we compared the performance of SAEiT and other

methods from the ones described in Chapter 3 on various conductivity dis-

tribution (smooth, piecewise constant and mixed) both with and without

additive white gaussian noise. Quantitative and qualitative results showed

the higher degree of accuracy of the SAEiT reconstructions, especially in

case of mixed conductivity distributions, and stronger robustness against

noisy data.
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