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Abstract

Autism is a neuropsychiatric disorder characterized by impairments in reciprocal

social interaction and communication, and the presence of restricted and repetitive

behaviours. Autism is predominantly heritable, but the underlying genetic associa-

tions are still largely unknown. Understanding the genetic background of complex

diseases, such as autism, plays an essential role in the promising precision medicine.

The evaluation of candidate genes, however, requires time-consuming and expensive

experiments given the large number of possibilities. Thus, computational methods

have seen increasing applications in predicting gene-disease associations. In this the-

sis, we proposed a bioinformatics framework, Prioritization of Autism-genes using

Network-based Deep-learning Approach (PANDA). Our approach aims to identify

autism-genes across the human genome based on patterns of gene-gene interactions

and topological similarity of genes in the interaction network. PANDA trains a graph

deep learning classifier using the input of the human molecular interaction network

(HMIN) and predicts and ranks the probability of autism association of every node

(gene) in the network. PANDA was able to achieve a high classification accuracy of

89%, outperforming three other commonly used machine learning algorithms. More-

over, the gene prioritization ranking list produced by PANDA was evaluated and

validated using a large-scale independent exome-sequencing study. The top decile

(top 10%) of PANDA ranked genes were found significantly enriched for autism as-

sociation.
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Chapter 1

Introduction

Biomedicine studies acknowledge that susceptibility to common diseases is multifacto-

rial, and both genetic and environmental factors play a crucial role [1]. Abnormalities

in certain genes can either predispose individuals to a disease or directly account for

the manifestation of a disease phenotype [2]. Thereby, deciphering the association

of genes with a specific disease helps better understand the etiology of the disease,

leading to better diagnosing the disease, designing therapeutic strategies, and even

preventing the disease [3, 4, 5].

Understanding the genetic etiology of complex diseases is one of the greatest chal-

lenges in modern biomedicine research [6, 7, 8]. Many common diseases are specu-

lated to have complex genetic architecture, and a substantial number of genes may

contribute collectively to the manifestation of a disease [9, 10]. However, the identi-

fication of genes associated with a disease, such as linkage studies [11], genome-wide

association studies [12] and RNA interference screens [13], requires time-consuming

and expensive biological experiments to evaluate a considerable number of possible
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candidates [14, 15, 16, 17].

Computational methods in silico can successfully facilitate more targeted down-

stream biological evaluation experiments [18]. Cooperative endeavours are requested

from various research fields, ranging from computer science and statistics to bio-

chemistry. Due to the interdependencies of molecular components, identifying genetic

variants contributory to a disease needs not only to systematically study molecular

functionality independently but also to look into the interconnectivity of molecular

components [19]. In order to identify disease-associated genes, systems biology has

seen increasing applications of computational approaches that model the interactions

among multiple constitutes in human cellular systems [6, 20, 21, 22, 23].

The inheritable disease we are particularly interested in is autism spectrum disor-

der. Autism is a neuropsychiatric disorder characterized by impaired social interaction

and communication, repetitive behaviour, and restricted interests [24]. Sequencing-

based studies suggest that complex neurodevelopmental phenotypes of autism are

driven by a multitude of genomic variants across the genome [25, 26, 27]. Large-scale

family-based exome sequencing studies have unraveled autism-associated genetic vari-

ants [28, 29, 30, 31]. Although over 1,000 genes have been identified to influence

autism susceptibility, only about 7% of them have shown significant associations with

the disease [32, 33, 34].

Technological advances in genomics have led to an explosion of molecular and

cellular data from large number of samples. The rapid increase in biological data

dimension and acquisition rate is challenging conventional analysis of disease-gene

associations. With impressive recent advances made in applications ranging from

computer vision to natural-language processing, deep learning methods, a class of
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machine learning techniques, have demonstrated the promising capability of identi-

fying highly complex patterns in large datasets. The crux of deep learning problems

is searching for appropriate representations for input data, which makes the learned

representations amenable to the task at hand.

The combination of genetics and molecular biology has greatly facilitated the

identification of candidate genes for human diseases. Genes associated with similar

disorders show a higher likelihood of physical interactions between their products.

The molecular interconnectivity in human suggests the complex genetic architecture

of autism, meaning that the genetic abnormality of autism is not restricted to the

activity of single gene aberration, but can involve multiple genes from different molec-

ular pathways [35]. Although the data are complex, the network information is very

important for bioinformatics analysis of autism-associated genes, since the topological

and interaction information often have a clear biological meaning.

To address these challenges, network science [36] recently has seen ever increasing

applications to disease-gene association studies. Network science studies entities (as

nodes) and their pairwise relationships (as edges), and can be a powerful tool to dis-

cover interaction patterns among biological components. To unravel the links between

genes and diseases, network algorithms rely on the premise that phenotypically simi-

lar diseases are caused by genes that are functionally related. Previous network-based

studies have demonstrated that cellular interaction networks, i.e., protein-protein in-

teraction networks, gene co-expression networks, and metabolic networks, can be used

to understand the molecular basis of gene-disease associations [37, 38, 39, 40, 41, 42].

On the other hand, machine learning techniques have been extensively explored

in disease genomics research [43]. Particularly, with the impressive recent advances
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in computer vision and natural-language processing, deep learning has been rapidly

gaining popularity in bioinformatics as well [44]. The flexibility of multi-layered

neural networks extends their usage of diverse datasets, ranging from DNA and RNA

microarrays to gene expression profiles [45, 46, 47, 48, 49]. However, standard deep

learning approaches intuitively take data in Euclidean domain as input, such as images

(2-dimensional space), text(1-dimensional space), and gene expression profiles (n-

dimensional space) [50], and do not explicitly process data from the non-Euclidean

domain, such as graphs [51]. This limitation holds back its utilities for data naturally

represented as graphs, such as biological networks, social and knowledge networks,

and physical systems.

Graph neural network (GNN) has recently become a promising technique of learn-

ing with graph-structured data [52]. GNN is a family of deep learning methods that

directly analyze data structured as graphs [53]. GNN can extract local spatial fea-

tures on both node- and graph- levels directly from a graph and compose them to

build highly expressive representations, not only capturing the high nonlinearity of

the graph but also preserving the spatial patterns of the nodes [51]. Due to its out-

standing performance on various applications, such as social networks [54], protein

interface inference [55], physical systems [56], and knowledge graphs [57], GNN has

been receiving a surge of attention on different graph inference tasks, such as node

classification, link prediction, and graph classification. Although many machine learn-

ing approaches have been proposed in order to predict disease-associated genes, to

the best of our knowledge, few have explored the idea of designing GNN approaches

for the task.

In this thesis, we proposed a bioinformatic framework, Prioritization of Autism-
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genes using Network-based Deep-learning Approach (PANDA), and aimed to identify

potential genes associated with autism across the human genome by designing a

GNN classifier that used the human molecular interaction network (HMIN) as input

for training. Our research starts by constructing the HMIN, which provides a scaffold

of the connectivity patterns and structural properties of autism-associated genes. We

then compile the set of autism-associated genes, which was used to train the GNN

and to discover novel genes that may associate with autism.
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Chapter 2

Related Work

2.1 Disease-gene association studies

Many common human diseases can be observed passing from one generation to the

next. The information about the genetic basis of human diseases lies at the heart

of precision medicine and drug discovery [58]. Understanding what genes cause a

specific disease helps better diagnose and treat the disease, and may even prevent

the disease if predicted accurately at early stages and effective preventive actions are

taken. However, the associations of genes and diseases are still largely unknown, and

research is required to study and predict such relationships.

In recent years, with the completion of the Human Genome Project [59], genetic

markers spanning the entire human genome have empowered widespread mapping

efforts based on linkage analysis using families with a number of affected individuals,

leading to the discovery of multiple genes for Mendelian diseases. Yet, linkage stud-

ies have had only limited success in identifying genes for complex diseases, such as
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autism, heart disease, cancer, and psychiatric disorders. With the improvement in

genotyping technology, focuses have been shifted from gene mapping in humans to ge-

netic association studies [60]. With greater power and resolution of disease-associated

gene locations than linkage analysis, genetic association studies provide renewed hope

for mapping genes to complex diseases.

Disease-gene association studies are a group of approaches to associate candidate

genes with common diseases [61]. Research on the relationships between genes and

diseases has accelerated as a result of both the completion of the human genome [59]

and the advance of the Next Generation Sequencing technologies [62]. In contrast to

genome-wide association studies (GWAS), which scan the entire human genome for

common genetic variations, disease-gene association studies often focus on exploiting

genetic alterations with pre-specified genes of interest with a priori knowledge about

their functional impact on the disease in question.

A disease-gene association study is considered as a useful initial step in exploring

potential causal pathways between genetic markers and complex diseases. Once a

statistically significant association of a gene is ascertained, the same gene and its

variants can be further examined in independent populations [63]. In addition, the

identified genes and variants allow molecular biologists designing experiments to find

their functional roles in biological processes and disease pathology, providing strong

support for causality.
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2.2 Network science-based disease-gene association

studies

Networks are ubiquitous [36]. A network is a collection of nodes joined together in

pairs by edges. They are natural representations for encoding relational structures

encountered in many complex systems, such as biological systems, social networks,

and physical systems [36]. Networks capture the patterns of interactions between the

components of a complex system. For instance, connections in a social network af-

fect how people learn, shape opinions, and diffuse ideas, as well as other less obvious

phenomena, such as the spread of disease. In biology fields, biological networks ag-

glomerate the interactions of molecules in living cells, which provide the perspectives

in understanding the dynamics and mechanisms of complex biological systems.

A major challenge in systems biology and medical genetics is to understand how

interactions among genetic variants contribute to complex diseases. Networks have

become an emerging trend for representing the structure of a cellular system that

creates a bridge between biological data and a large toolkit of powerful analysis tech-

niques. Indeed, the enormously complex interactions among molecules within a cell

and even among cells present researchers difficulties to acquire knowledge from them.

Over the past decades, systems biology and medical genetics have seen rapid advances

in network biology [64]. Increasing number of studies have utilized network-based

analysis to unravel the relationships between a group of genes and a disease of inter-

est [23, 65, 66].

Yonan et al. [67] constructed gene pathway networks based on prior genetic evi-

dence from the allelic association literature to query the known transcripts within the
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1-LOD (logarithm of the odds) support interval for each region. They used biological

databases and the pathway networks to identify a subset of biologically meaning-

ful, high priority candidates, which contained 383 positional autism candidate genes.

Corominas et al. [68] introduced an interactome mapping approach by experimen-

tally identifying interactions between brain-expressed alternatively spliced variants

of autism risk factors. Suthram et al. [69] presented the first approach integrating

high-throughput datasets such as mRNA expression and large-scale protein-protein

interaction networks to discover human disease relationships in a systematic and

quantitative way.

Other network-based studies on disease-gene association have also focused on the

protein-protein interaction (PPI) network. Sun et al. [6] analyzed and compared

four publicly available disease-gene association datasets and applied three disease

similarity measures, namely annotation-based measure, function-based measure, and

topology-based measure, to estimate the similarity scores between diseases. The

result demonstrated that the predicted disease associations correlated with disease

associations generated from genome-wide association studies significantly higher than

expected at random. A recent study [41] focused on studying the protein-protein

interaction network structure of disease pathways. They defined different sets of

proteins associated with diseases and found that disease pathways are fragmented

and sparsely represented in the PPI network, and that spatial clustering of disease

pathways within the PPI network is statistically insignificant.
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2.3 Machine learning-based disease-gene associa-

tion studies

Machine learning techniques have been extensively explored in computational biology

under various scenarios, such as classification, regression, clustering, and feature se-

lection [43]. A machine learning approach optimizes a performance criterion by using

example data or past experience. Machine learning-based computational approaches

provide a convenient framework for taking advantages of the exponential growth of

the amount of available biological data [70].

The use of machine learning methods in the context of genome-wide data on ge-

netic variants has yielded an ever-growing number of studies in recent years, compared

to a large number of machine learning studies on other types of genomic datasets,

especially genome-wide gene expression profiles [71, 72]. Further, the combination of

predictive modeling and disease-gene association studies have yielded quite positive

results [71]. Indeed, many studies have suggested that the use of machine learning

approaches are capable of identifying genes contributing to certain diseases [72, 73].

In recent years, advanced computational and engineering methodologies have been

employed to meet the needs of cross-disciplinary applications in biomedicine. Brown

et al. [74] introduced a method of functionally classifying genes by using gene expres-

sion data from DNA microarray hybridization experiments. The method was based

on support vector machines (SVMs). The method demonstrated that SVMs could

accurately classify genes into functional categories based on expression data. SVM

as a popular supervised learning algorithm has been used by other studies aiming

to prioritize autism genes. Kou et.al [75] applied several SVM kernels to prioritize
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autism gene candidates based on curated lists of known autism genes. The proposed

approach aimed to learn an SVM classifier for prioritizing pluripotency stem cell reg-

ulators from RNAi screens using microarray and ChIP-seq data. Duda et al. [76]

constructed a machine learning model by leveraging a brain-specific functional rela-

tionship network (FRN) of genes to produce a genome-wide ranking of autism risk

genes. Through functional enrichment analysis on their highly prioritized candidate

gene set, they identified a small number of pathways that are key in early neural

development, providing further support for their potential role in autism. Recently,

Krishnan et al. [77] developed a machine-learning approach based on a human brain-

specific gene network to present a genome-wide prediction of autism risk genes. By

using the linkage of nodes, they identified a large set of autism genes converges on a

smaller number of key pathways and developmental stages of the brain.

2.4 Deep learning on biological data

While conventional machine learning approaches have seen great potential for making

use of genetic data, they were limited in their ability to process natural data in their

raw form [78]. Moreover, the rapid increase in biological data dimension and acqui-

sition rate is challenging conventional analysis strategies. Decades-long efforts have

been put to constructing machine-learning systems that required carefully manually-

engineered features. Considerable domain experts need to design an effective feature

extractor that transformed the raw data into a suitable internal representation from

which a model is able to learn.

Impressive advances in computer vision and natural-language processing have been
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revolutionary over the past decade [79]. Deep learning, a family of neural network-

based machine learning methods, has been rapidly gaining in popularity among bioin-

formatic scientists [44]. The flexibility of multi-layer neural networks extends their

applications on diverse genetic datasets from DNA and RNA microarrays to gene ex-

pression profiles [45, 46, 47, 48, 49]. However, standard deep learning approaches intu-

itively take data in Euclidean domain as input, such as images (2-dimensional space),

text(1-dimensional space), and gene expression profiles (n-dimensional space) [50],

and do not explicitly process data from the non-Euclidean domain, such as graphs [51].

This limitation holds back its utilities for data naturally represented as graphs, such

as biological networks, social and knowledge networks, and physical systems.

To better utilize the graph-structured datasets, representation learning on graphs

has shown its effectiveness in many learning tasks, such as prediction or classifica-

tion [80]. Deep-learning methods can serve as representation-learning methods with

multi-level representation, allowing a model to deal with raw data and to automat-

ically discover suitable representations for downstream learning tasks. Deep neural

networks (DNNs) are efficient algorithms based on the use of compositional layers

of neurons. Figure 2.1 displays the general workflow of a deep neural network. In

computational biology, their appeal is the ability to derive predictive models without

a need for strong assumptions about underlying mechanisms, which are frequently

unknown or insufficiently defined.
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Input X

Layer
(data transformation)

Layer
(data transformation)

Weights

Weights

Loss function

Optimizer

Predictions Y’ True targets Y

Loss score

Figure 2.1: Schematic flow of deep learning approaches. A deep neural network is

parameterized by its weights on each layer. A loss function measures the quality of

the network output. The loss score is used as a feedback signal to adjust the weights.

2.5 Graph neural network

As stated in the previous section, data in many scientific fields can be represented as

graphs, including biological, financial, social, and knowledge networks [36]. Graphs

can not only serve as useful structured knowledge repositories but also play a vital

role in modern machine learning [81]. Thus researches of learning on graphs have

been receiving ever-growing attention due to the great expressive power of graphs.

For example, modeling physics systems, learning molecular fingerprints, predicting

13



protein interfaces and classifying diseases require that a computational model learns

from graph inputs.

Graph-structured data contains rich geometric relational information among ele-

ments of a complex system. As a unique non-Euclidean data structure for machine

learning, statistical analysis of graphs focuses on node classification, link prediction

and clustering [82]. Traditionally, machine learning algorithms rely on domain expert-

defined heuristics to extract features in order to encoding structural information about

a graph [83]. In recent years, exploiting graph-structured data effectively inspired the

advances of graph neural networks [84].

Graph neural network (GNN) is a family of deep learning algorithms that operate

on a graph and organize their computation over the graph structure [53]. GNNs

are connectionist models that capture the dependence of graphs via message passing

between nodes of graphs. The primary goal of GNNs is finding an effective way to

encode graph structure, so that the downstream learning tasks can exploit the graph.

For various graph learnings tasks, e.g., node classification, clustering, and edge

prediction, GNNs often require different designs. GNNs broadly follow a recursive

neighborhood aggregation scheme [53]. Similar to message passing, each node ag-

gregates feature vectors of its neighbors to compute its new feature vector. After

k iterations of aggregation, a node is represented by its transformed feature vector,

which captures the structural information within the node’s k-hop neighborhood.

In chapter 4, we describe in detail the framework and computation procedures of a

general GNN.
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2.6 Summary

In this section, we introduced the concept of disease-gene association and its position

in exploring potential causal pathways between genetic markers and complex diseases.

We then described two main trends of computational approaches to disease-gene

association studies. The first trend is to apply the concepts and tools of network

science to model and analyze the underlying interaction relationships among genes

in human cells. The second trend is to design machine learning-based methods to

find the models aiming at predicting the disease-associated genes and interpreting

their roles in the etiology of the diseases. Finally, we introduced the concepts and

applications of deep learning, especially graph neural network, on the biological data,

which demonstrated their power and flexibility to explore the genomic data.
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Chapter 3

Disease-Gene Association Studies

for Autism

3.1 Background

3.1.1 Autism spectrum disorder

Autism spectrum disorder is a neurodevelopmental disorder typified by striking deficits

in social communication and genetically by a mixture of de novo and inherited vari-

ation contributing to liability [85]. Numerous epidemiology studies have reported

that 1 in 68 children is diagnosed with autism, with a 3 to 4-fold increased risk for

boys [86]. Family and twin studies have found that autism is highly heritable, most

caused by a combination of genetic and environmental influencers [87]. The genetic

risk factors behind autism, however, are highly heterogeneous and over a thousand

genes across the genome are estimated to be involved with no single gene accounting

for more than 1-2% of the cases [23, 88]. Almost all genetic risk factors for autism can
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be found in the general population, but the effects of these risk factors are unclear in

people not ascertained for neuropsychiatric symptoms [89].

Sequencing-based discovery efforts have produced valuable catalogs of genetic vari-

ants that point toward potential causal autism genes [90]. Decades-long efforts to

explain the causes of autism have produced an impressive list of disease-gene associ-

ations. Yet only a small fraction of potentially casual genes are known with strong

genetic evidence from sequencing studies [77]. Unraveling the genetic background of

autism serves a number of goals. One aim is to identify genes that modify the suscep-

tibility to autism. When a set of autism risk genes can be identified with significantly

high frequencies, we have the potential information to learn about the pathogenesis

of the disease, and we can identify possible targets for therapeutic interventions. An-

other goal is to classify autism patients on the spectrum according to their risk for

autism or to make risk predictions on autism.

Recently, copy number variations (CNVs) were strongly associated with autism [91].

Additionally, autism is consistently associated with a number of specific genetic dis-

orders such as Fragile X syndrome amongst others [92]. Single-gene variants are also

linked to rare cases of autism [93]. The high genetic heterogeneity of autism poses an

enormous challenge for understanding disease etiology.

3.1.2 Autism gene databases

To establish our understanding of autism-associated genes, we explored three ma-

jor databases, including SFARI Gene 2.0 [94], AutDB [95] and Online Mendelian

Inheritance in Man (OMIM) [96]. Each resource gathered data from sources with
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different levels of evidence, ranging from recurrent mutations in patients with autism

to nebulous links gleaned from text-mining thousands of PubMed abstracts.

SFARI Gene 2.0 database is a web-platform developed for the ongoing collection,

curation, and visualization of genes linked to autism in order to enable systematic

community driven assessment of genetic evidence for individual genes with regard to

autism. Several types of genetic variations, such as common variants of small effect or

single-gene variants of large effect, can contribute to autism [89]. Structural variations

in the genome, such as microdeletions or duplications, are also associated with the

disorder [97]. Therefore, SFARI database keeps track of numerous susceptibility genes

uncovered by advanced high-throughput approaches.

AutDB is a publicly available web-portal repository for on-going assembling, man-

ual annotation, and visualization of genes associated with autism [95]. The content

of AutDB is gleaned entirely from published scientific literature and is manually an-

notated by expert biologists. Online Mendelian Inheritance in Man (OMIM) is a

comprehensive, authoritative compendium of human genes and genetic phenotypes

that is freely available [96].

3.1.3 Network biology for molecular interaction network

A key aim of research on postgenomic biomedicine is to systematically study all

molecules and their interactions within a living cell. Network biology [39] has brought

about a shift in the paradigm of elucidating disease pathologies from analyzing the

impacts of single genes to understanding the structures and dynamics of molecular

interaction networks [98]. Indeed, most phenotypes reflect the interplay of multiple

18



molecular components that interact with each other. Network-based analysis strate-

gies offer a quantifiable description of various biological systems [69].

Molecular interaction networks have been exploited to nominate novel candidate

disease-associated genes, based on the assumption that the neighbors of disease-

related genes in a network are more likely to be involved in similar disease traits.

Such interconnectivity implies that the abnormal function of a molecule is not only

confined to that molecule but can spread along the links in the network, which re-

sults in a dense cluster or community, called disease module. Yet, due to the limited

knowledge of disease-associated genes, only a fraction of the known disease-associated

genes are known to physically interact with each other. This suggests that analyzing

dense communities of known disease-associated genes restricts the discovery of all

disease-associated genes.

The elements of molecular interaction networks range from metabolites to pro-

teins. Understanding the function and dysfunction of over 20,000 protein-coding

genes reveals how proteins assemble into functional modules and networks engaged

in specific biological activities. In this thesis, we construct the human molecular in-

teraction network (HMIN) in order to provide a scaffold of gene-gene relationships

that helps identify candidate genes according to their structural similarities to known

autism genes. In the following section, we describe in detail our HMIN.
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3.2 Method

3.2.1 Training set of genes compilation

To collect prior known autism-associated genes as training samples, we compiled the

supervised training set of genes using SFARI Gene 2.0 [94] and Online Mendelian

Inheritance in Man (OMIM) [96]. The SFARI Gene 2.0 database is exclusively for

the autism research community and has a collection of manually annotated autism-

associated genes. It assigned each gene a score ranging from 1 (highest association

confidence) to 6 (no role in autism) to quantify its association with autism, see Fig-

ure 3.1. Score 1 and 2 represent the strongest evidence of autism association, score 3

and 4 show relaxed criteria of autism association, score 5 marks genes hypothesized

but without tested associations, and score 6 genes have no supporting evidence to be

related to autism. In addition, the OMIM database is a comprehensive, authorita-

tive and updated knowledge base of human genes and genetic disorders compiled to

support human genetics research and education and the practice of clinical genetics.

As described above, score 5 includes genes for which the only evidence comes

from studies of model organisms, without statistical or genetic support in human

studies and score 6 marks genes whose evidence argues against a role in autism.

Therefore, we retrieved 732 genes of categories 1 to 4 from the SFARI database. In

OMIM, we extracted 28 genes from OMIM using the terms of “autism”, “autism

spectrum disorder”, “ASD”. All data were retrieved in November 2018. Overall, a

total number of 760 autism-associated genes were used as positive instances for the

supervised training in the proposed method (a.k.a. PANDA).

On the other hand, we retrieved 1,146 genes that have shown no association as
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Figure 3.1: Score categories of SFARI genes. Score 1 and 2 represent the strongest

evidence of autism association, score 3 and 4 show relaxed criteria of autism associ-

ation, score 5 marks genes hypothesized but without tested associations, and score 6

genes have no supporting evidence to be related to autism. In the figure, each point

represents the mapping of a score category and its associated number of reports, and

the size of a point denotes the number of genes that have the given score and the

corresponding number of reports.

the negative instances curated by brain-disease experts [76]. Our integrated HMIN

covered 1,102 out of the 1,146 genes. Given the fact that genes in the positive set have

different strengths of association with autism, we placed them into three confidence

levels, where each level was assigned with a confidence value from {0.5, 0.75, 1.0} (see

Table 3.1). For the set of negative genes, their confidence values were set to −1.0.

The association with autism of the positive and negative genes served as the labels

of our training set genes for the subsequent supervised training of the classifier in

PANDA.
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Table 3.1: Gene labels based on their confidence levels of autism association

Confidence Data Source

1.0 Genes in SFARI category 1

0.75 Genes in SFARI category 2 and OMIM autism entry

0.5 Genes in SFARI category 3 and 4

-1.0 Genes without autism association

3.2.2 Human molecular interaction network

We integrated the HMIN based on two sources. The first data source was a previ-

ously well-established human protein-protein interaction network [99]. This network

included data curated up to 2015. We updated this network by integrating newly

discovered protein-protein interactions using BioGRID version 3.5.167, released on

November 25th, 2018 [100]. BioGRID is a public repository with data of genetic and

protein interactions.

Our HMIN has 23,472 nodes (genes) and 405,618 edges (interactions), representing

their pairwise relationships. The HMIN covers 732 positive autism-associated genes

and 1,102 negative genes in our training set (Section 3.2.1). It included physical

interactions experimentally annotated in human cells, such as transcription factor

regulatory interactions, metabolic enzyme-coupled interactions, and protein-protein

interactions. Note that we treat the HMIN as an unweighted and undirected network.

The hypothesis is that the manifestation of autism is unlikely a consequence of the

dysfunction of a single gene product, but implies various pathological processes that

interact as captured in the HMIN [19]. The interaction patterns of known autism-

associated genes may imply these pathological processes, and can be utilized to predict
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novel autism genes. Therefore, we use such an interaction network and aim to discover

candidate genes that are structurally similar to known autism-genes.

In the first-stage experiments, we investigated both global and local network prop-

erties of the HMIN and autism-associated genes in the HMIN. Here, we briefly describe

the definitions of the global network properties.

• Giant connected component: A component is subgraph G0 of network G

that the sets of its nodes and edges are subsets of those of G. A graph is

connected if there is a path, which is a sequence of edges, between any pair of

its nodes. A giant connected component refers to a connected subgraph of the

network larger than any other connected components that includes the majority

of nodes.

• Average shortest path length: A path is a sequence of nodes P = (v1, v2, ..., vm)

where vi and vi+1 are connected by an edge for i ∈ [1,m). In an unweighted

network, the path length equals the number of edges traveled in the path. Due

to the possible existence of multiple paths between any pair of nodes, the short-

est path between a pair of nodes is defined as the one with the shortest length.

Thus the average path length in the network is the average length of the shortest

paths between every pair of nodes.

• Network diameter: The diameter of a network refers to the longest shortest

path in the network. The definition is as D = max(di,j), ∀vi, vj ∈ V(G), where

di,j is path length for nodes within the same connected component.

• Network density: The density of a network refers to the ratio of the number of
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edges and the number of possible edges. Network density measures the sparsity

of the network.

• Clustering coefficient: It is defined as the fraction of length-two paths in the

network that are closed. The path P = (v1, v2, v3) is closed if there exists a third

edge from v3 to v1. Clustering coefficient quantifies the degree of transitivity in

the network, indicating the likelihood of an interaction (i.e. connected by an

edge) between gene products A and C given that there are edges between gene

products A and B as well as B and C.

As local network properties, centrality quantifies how important nodes are in a

network. We used four network centrality metrics, whose definitions are as follows:

• Degree centrality is the number of edges connected to a node.

• Betweenness centrality measures the extent to which a node lies on paths

between other nodes.

• Closeness centrality is a centrality score that measures the mean distance

from a node to other nodes.

• Eigenvector centrality is an extension of degree centrality. Eigenvector cen-

trality awards a number of points proportional to the centrality scores of the

neighbors.

Apart from the network properties stated above, we also utilized three other net-

work metrics, including k-coreness, personalized PageRank and graphlets. Their def-

initions are as follows:
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Figure 3.2: The orbits of 4- and 5-node graphlets. Each isomorphic orbit is rendered

using four different colors – white, blue, green and red. The colors do not distinguish

the importance of each orbit.

• k-coreness The k-core of graph is a maximal subgraph in which each node has

at least degree k. The coreness of a node is k if it belongs to the k-core but not

to the (k + 1)-core.

• Personalized PageRank is a weighted version of conventional PageRank [101].

The weights in personalized PageRank are defined by users.

• Graphlets A graphlet is a small connected non-isomorphic induced subgraph of

a large network [102]. Orbits refer to distinct positions of vertices in a graphlet.

There are 69 different orbits in 4- and 5-node graphlets, see Figure 3.2.
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Table 3.2: Network properties of the HMIN

Property Value

Number of nodes 23,472

Number of edges 405,618

Number of connected component 4

Network Diameter 8

Network Density 0.001473

Clustering coefficient 0.107435

Average node degree 34.561861

Average shortest path length 3.203211

3.3 Results

3.3.1 Investigation of the HMIN

First, we investigated the global network properties of HMIN. Table 3.2 shows some

fundamental network properties of the HMIN. In the HMIN, each node has a degree

ranging from 1 to 2,393 with an average of 34.562. The degree distribution of the

HMIN can be seen in Figure 3.3, which is approximately a power-law distribution,

suggesting a scale-free structure. Most of the genes only interact with a handful of

other genes, while some can interact with one or two thousands of others.

The HMIN is highly connected, with only four components, and the giant con-

nected component (GCC) includes 23,465 nodes. The other seven nodes form islands

of two to three nodes. We used the GCC of the HMIN as the input network to train

the GNN classifier in PANDA, described in Chapter 4. Moreover, the average shortest
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Figure 3.3: The node degree distribution of the HMIN. The distribution is approxi-

mately power-law, suggested by the straight line correlation in a log-log scale.

path length is roughly 3, suggesting that the HMIN has a small-world property [103].

The small-world effect of HMIN implies that the neighbors of two given nodes are

likely to be neighbors of each other and most genes can be reached from every other

gene by a small number of steps.

3.3.2 Investigation of the known autism-associated genes

We inspected the degree distribution of autism-genes in the GCC of HMIN. Figure 3.4

shows the distribution of autism-genes. The degrees of autism-associated genes range

from 1 to 665 with the average degrees of 76.32368. Nodes of unusually high degree

are called hubs. The hubs of the GCC are at least 1267 degrees. Compared with the

hubs of the HMIN, autism-genes usually are distributed peripherally in the HMIN.
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Figure 3.4: The degree distribution of autism-associated genes in the GCC. In the

figure, the scales of x-axis and y-axis are natural numbers. The majority of autism-

associated genes are distributed peripherally in the GCC of the HMIN.

To further investigate the distribution structures of autism-associated genes, we

extracted the subgraphs from the HMIN using the autism-associated genes as seeds.

Table 3.3 summarizes the size and number of detected subgraphs. The majority of

known autism-associated genes are connected within a large component with 643

nodes. On the other hand, the rest of the autism nodes are scattered in the HMIN,

suggesting that there may exist other uncovered autism-associated genes that can

joint the large component with the remaining nodes.
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Table 3.3: Measurements of subgraphs extracted using autism-associated genes in

HMIN.

Subgraph sizes Number of occurrence

634 1

2 2

1 121

3.4 Summary

In this section, we first introduced the definition of autism spectrum disorders and

described the databases of autism genes. Then, we described in detail the human

molecular interaction network and the network properties we used as node properties

in later study. We performed initial network analysis of our HMIN and the known

autism-associated gene in the GCC. The results demonstrated an approximate power-

law distribution of the degrees in the HMIN. Further analysis of the degree distribu-

tion of the autism-associated genes indicated that most of the known autism genes

are peripherally distribution in the GCC of the HMIN. In the coming section, we will

describe in detail our design of PANDA algorithm.
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Chapter 4

Prioritization of Autism-Genes

Using Network-Based

Deep-Learning Approach

4.1 Background

4.1.1 Learning on networks

4.1.1.1 Network embedding

Network embedding is an important approach to learn low-dimensional representa-

tions of nodes in networks, aiming to capture and preserve the network structure [104].

Modeling the interactions between entities as graphs has enabled scientists to under-

stand the various network systems in a systematic manner [36]. Network embedding

is capable of supporting subsequent network analytic tasks, such as node classifica-
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Figure 4.1: The illustration of network embedding [84]. In the third panel, the dif-

ferent colors denote that after embedding, different nodes are transformed to distinct

representation of the original graph space. Each row of the embedding matrix is the

embedding of the corresponding node.

tion, link prediction, clustering, and network visualization, yielding insight into the

structure of society, communication patterns, and different mechanisms of biological

components, see Figure 4.1 [84].

Typically, a model defined to solve graph-based problems either operates on the

original graph adjacency matrix or on a derived vector space. Essentially, network

embedding exploits the latter way to represent network structures. Many approaches

have been proposed to represent network structure [84, 83]. The traditional techniques

of network representation raise several issues on performing network processing and

analysis. On the one hand, network data represented in the traditional way, e.g.

adjacency matrices, causes severe difficulties to design and implementation of parallel

algorithms. On the other hand, traditional network representation is inapplicable for

machine learning methods, especially deep learning.

In the past few decades, neural network-based methods have become widely pop-

ular for the node classification. The primary goal of such methods is that the learned
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embedding space can effectively support the inference of node labels. These methods

can be broadly abstracted into two categories of approaches – methods which use ran-

dom walks to propagate the labels, and methods which extract features from nodes

and apply classifiers on them. The embeddings are input as features to a model and

the parameters are learned based on the training data. This obviates the need for

complex classification models which are applied directly on the graph.

In summary, the structure and property preserving network embedding plays a

vital role in subsequent learning tasks. If one cannot preserve well the network struc-

ture and retain the important network properties in the embedding space, serious

information is loss, which consequently hurts the downstream analytic tasks [84].

4.1.1.2 Challenges of network embedding

Obtaining a vector representation of each node in a network is inherently difficult and

presents several challenges which have been motivating research in this field. The first

challenge is choosing the property of the graph which the embedding should preserve.

A “good” vector representation of nodes should preserve the structure of the graph

and capture the connection patterns of individual nodes. Due to the plethora of

distance metrics and properties defined for graphs, this choice can be difficult and

the performance may depend on the applications.

Second, most real-world networks are large and contain millions of nodes and

edges. Embedding methods should be scalable and able to process large-scale graphs.

Defining a scalable model can be challenging especially when the model is aimed to

preserve global properties of the network.

Last but not least, find the optimal dimensions of the representation can be hard.
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The choice can rely on application-specific demands on the approach. For example,

lower number of dimensions may result in better link prediction accuracy if the chosen

model only captures local connections between nodes.

4.1.2 Graph neural network

Graph neural network (GNN) is a family of deep learning algorithms [53]. The concept

of GNNs extends existing neural networks for processing the data represented in graph

domains. GNNs operate on a graph and organize their computation over the graph

structure. In many research problems, data can be represented as graphs, including

biological, financial, social, and knowledge networks [36]. Exploiting graph structured

data effectively inspired the advances of GNN [84].

For various graph learnings tasks, e.g., node classification, clustering, and edge

prediction, GNNs often require different designs. In particular, node classification

aims at determining the labels of nodes based on other labeled nodes and the topology

of the network. In this thesis, we focused on predicting the gene association with

autism, i.e., node classification.

Based on convolutional neural network [105] and graph embedding, GNNs are

proposed to collectively aggregate information from graph structure. Thus they can

model input and output consisting of elements and their dependency. Further, graph

neural network can simultaneously model the diffusion process on the graph with

recurrent neural network kernel [106].

Though experimental results showed that GNN is a powerful architecture for mod-

eling structural data, the original GNN is inefficient to update the hidden states of
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nodes iteratively for the fixed points [51]. In contrast, a multi-layer version of GNN

relaxes the assumption of the fixed point, resulting in the capability to obtain a stable

representation of node and its neighborhood.

A network can be mathematically represented as a graph G = (V , E), where V is

the set of nodes and E is the set of edges. In the context of classification, each node

has a class label. A GNN is able to learn a d-dimensional real-valued representation

hv ∈ Rd for every node v in V , which is called its node embedding. A GNN constructs

the node embedding h by aggregating the neighborhood information of a node. The

node embedding can be seen as predictors, which will be used in turn for the prediction

of the class label of a node. Figure 4.2 shows the general framework of GNNs in the

proposed research [53].

The embedding of node v captures its spatial structure in its neighborhood and in

the graph, and can be used to produce an output ov such as the class label. A GNN has

two computation modules, i.e., embedding generation and output generation. First, a

local transition function f , shared among all nodes, aggregates the information from

the neighborhood of each node to update the node embedding. Then, a global output

function g takes a node’s embedding as input and returns the prediction of its label

as output. The node embedding hv and the output ov are defined as

hv = f(xv,xnb[v],xco[v],hnb[v]),

ov = g(hv,xv),

(4.1)

where xv,xnb[v],xco[v],hnb[v],hv denote the network properties of v, those of v’s neigh-

borhood nodes, the properties of v’s edges, the embeddings of v’s neighborhood nodes,

and the embedding of v, respectively. The learning of functions f and g can be im-

plemented using feed-forward neural networks [53].
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Figure 4.2: Overview of a general graph neural network (GNN). (a) This example

graph has six nodes {v, A, B, C, D, E}, where the class label of v needs to be assessed.

A GNN has two essential functions, the local transition function f(·), which learns

the embedding representation of a node, and the global output function g(·). The

vector xv includes m network properties of node v, such as node degree, centralities,

etc. First, f generates an embedding hi of each node i by iteratively aggregating

its xi and its neighboring nodes’ network properties (xnb[i]) and embeddings (hnb[i]).

Then, g uses the embeddings to predict the class label for node v. (b) Both f and g

can be learned using feed-forward neural networks.

4.2 Method

4.2.1 PANDA overview

Our proposed framework, Prioritization of Autism-genes using Network-based Deep-

learning Approach (PANDA), include the following steps. We started by integrating

the human molecular interaction network (HMIN) using the literature of physical

protein interactions experimentally documented, where nodes are proteins mapped to

their corresponding genes, and an edge indicates the existence of interactions between
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Figure 4.3: PANDA overview. Using the graph input of (a) the human molecu-

lar interaction network (HMIN), PANDA employs (b) a ground truth set of known

autism-associated genes as positive instances and a set of genes that have been shown

without autism association as negative instances. The classifier learns the structural

patterns of autism-associated genes through (c) a multi-layer graph neural network

(GNN) and (d) predicts and ranks autism associations for all genes in the HMIN.

two genes (Figure 4.3a). We then compiled a set of known autism-associated genes

and a set of confirmed genes without autism association from databases including

SFARI [94] and Online Mendelian Inheritance in Man (OMIM) [96] (Figure 4.3b).

These two sets of genes were used as positive and negative instances for training the

classifier. Next, we designed a multi-layer graph neural network (GNN) that used the

HMIN as input (Figure 4.3c). In the final step, we used the trained GNN classifier

to predict and rank the probabilities of all genes in the HMIN that influence autism

(Figure 4.3d).
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4.2.2 Our GNN in PANDA

In PANDA, we utilized the gene-gene interaction patterns captured by the HMIN,

and designed a deep graph neural network (GNN) that directly takes the graph of

the HMIN as input and outputs a predicted ranking of genes in the HMIN based on

their autism associations.

Following the ideas of the general GNN outlined in the previous section, we pro-

posed a GNN tailored for our PANDA framework. Figure 4.4 presents the node

classification procedure of PANDA. Specifically, here we discuss the design of the

node embedding h, the local transition function f , and the global output function g

and its loss function.

We used six network metrics and graphlet orbit frequencies to describe the local

structural properties xv of node v. These six network metrics include betweenness,

closeness, eigenvector centrality, personalized PageRank centrality [107], degree, and

coreness [108]. A graphlet is a small connected non-isomorphic induced subgraph of a

large network [102]. Orbits refer to distinct positions of vertices in a graphlet. There

are 69 different orbits in 4- and 5-node graphlets we extracted from the HMIN.

The local transition function f aggregates the network properties of node v and

its direct neighbors (Figure 4.5). Recall that only the training set of genes in the

HMIN have labels, so v’s neighbors can contain both labeled and unlabeled nodes.

For the unlabeled nodes u′, we performed the conventional element-wise averaging

over them. For the labeled neighbors u, we computed a weighted average using their

labels (confidence values, see Table 3.1). The aggregation was computed as follows

hk−1nb[v] =
1∑
u ξu

∑
u

ξuh
k−1
u +

1

B

∑
u′

hk−1u′ , (4.2)
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Figure 4.4: Schematic demonstration of PANDA for node classification. Here, the

graph with five nodes and five edges is a miniature of HMIN. PANDA learns the

node embeddings over the structure of HMIN via a multi-layer graph neural network,

aiming to classify the set of nodes into autism-associated gene (y = 1) and no-autism-

association gene (y = −1). Start from the input layer, each node has a m-dimensional

network property vector xi={1,2,3,4,5} ∈ Rm. Transformed through multiple hidden

layers, every node obtains an d-dimensional real-valued embedding hi={1,2,3,4,5} ∈ Rd.

The output of PANDA is the predicted probabilities of all nodes. In our study, only

a subset of nodes have labels. As shown in the figure, only node x1 and x4 have

labels y1 and y4, respectively. By aggregating information from neighbors, the five

nodes embeddings transform the representations of the nodes from the original m-

dimensional space to the 2-dimensional space.

where hk−1nb[v] is the (k − 1)th-layer aggregated embedding of node v’s neighborhood,

hk−1u and ξu are the (k − 1)th-layer embedding and the label of the neighbor node u

of v, respectively, and hk−1u′ is the (k − 1)th-layer embedding of the total number of

B unlabeled nodes u′.
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Figure 4.5: Learning the node embeddings. (a) Node i has three neighbors v1, v2, v3,

each assigned with a confidence value ξ1, ξ2, ξ3. To update the embedding of i at

layer k, the local transition function f first aggregates the (k-1)th-layer’s embeddings

of i’s neighbors, i.e., hk−1nb[i] = (1/
∑3

j=1 ξj)
∑3

j=1 ξjh
k−1
vj

. Next, it concatenates the

embedding of i at layer k − 1 with hk−1nb[i], i.e., hk−1i ⊕ hk−1nb[i]. Finally, we used a ReLU

function as the activation function that takes as input the concatenated vector and

generates the kth-layer’s embedding of i, i.e., hki = ReLU(Wk · (hk−1i ⊕ hk−1nb[i]) + bk).

(b) For a K-layer GNN, the embedding generation process is repeated K − 1 times.

Then, we combined the embedding hk−1v of v and the aggregated embedding hk−1nb[v],

using the concatenation operation ⊕ proposed in GraphSAGE [109], which is to

combine two embedding vectors side by side,

CONCATE(hk−1v ,hk−1nb[v]) = hk−1v ⊕ hk−1nb[v].
(4.3)

After the training of the local transition function f and receiving the embeddings

of all nodes in the HMIN, the global output function g was used to predict the
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Table 4.1: Terms and notations used in PANDA algorithm

Notation Definition

G = (V , E) Human Molecular Interaction Network

|V| Number of nodes

|E| Number of edges

nb[v] The set of v’s neighbors

xv ∈ Rm Properties of v in m-dimensional space

yv ∈ {1,−1} Desired label for v

ŷv ∈ {1,−1} Predicted label for v

p̂v ∈ [0, 1] Predicted autism association probability for v

K Number of layers in PANDA algorithm

θ = (W,b) Hyperparameters

class of each node, i.e., the association with autism. We used the sigmoid function

that transformed the prediction result to a probability. We let the nominal variable

yv ∈ {1,−1} be the desired label for the node v, where yv = 1 indicates that the

node v is associated with autism, otherwise it is not related to autism (i.e. yv = −1),

and let p̂v be the predicted probability of v being associated with autism. We then

projected these probabilities to one of the two labels.

4.2.3 Loss function and optimization

Before we introduce the loss function, Table 4.1 gives the notation used in the PANDA

algorithm.

Since only a subset of genes have labels while the others do not, we designed a
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two-term loss function in PANDA. The first term of the loss function is a binary

classification cross-entropy loss function for the supervised learning using labeled

nodes [50]. Cross-entropy loss increases as the predicted probability diverges from

the actual label, defined as

Lsu =
nsu∑
i=1

−yi log p̂i − (1− yi) log(1− p̂i), (4.4)

where nsu is the number of labeled nodes, yi is the desired label, and p̂i is the predicted

probability.

For the second term of unsupervised learning using unlabeled nodes, a similarity

measurement was employed. Recall that the node embeddings were generated under

the principle that neighboring nodes should have similar embedding vectors. The

similarity between two embedding vectors can be naturally quantified using Euclidean

distance. The second term of the loss function is to penalize the embeddings that

encode neighboring nodes very differently, defined as

Lun =
nun∑
j=1

∑
i∈nb[j]

||hj − hi||22, (4.5)

where nun is the number of the unlabeled nodes, hj and hi are the embeddings of

node j and its direct neighbors.

The final loss function is thus computed as

L = Lsu + αLun + λLreg, (4.6)

where α balances the influence of unlabeled nodes in the learning, λ is the regulariza-

tion weight, and Lreg is an L2-norm regularization term to prevent overfitting, defined

as

Lreg =
1

2

K∑
k=1

||Wk||22, (4.7)
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where K is the number of layers of the GNN.

4.2.4 Training and cross-validation

We adopted a five-fold cross-validation scheme to train the classifier in PANDA.

First, we randomly split the labeled genes into five partitions. In each of the five

iterations, we trained the classifier using four partitions and evaluated the classifier

on the remaining testing partition. For an unlabeled node, its final predicted label

is computed by averaging the predictions of the five iterations. After obtaining the

predictions for all nodes in the HMIN, we ranked the nodes in the descending order

of their predicted probabilities. This rank list represents PANDA’s prioritization of

candidate autism-associated genes. The pseudocode of this learning algorithm in

PANDA is shown in Algorithm 1.

4.3 Results

We implemented the GNN training in PANDA using TensorFlow [110] with Adam

optimizer [111]. We trained the GNN classifier using the giant connected component

of the HMIN as the input network. The number of layers of our GNN was set to

4. We set the dimension of the embeddings to 10. The hyperparameters of α, λ

were tuned by grid search on the cross-validation partitions. Considering the model

variance, we repeated the five-fold cross-validation 20 epochs. We reported the accu-

racy from the epoch with the lowest validation error. We evaluated the autism gene

ranks predicted by PANDA by validating using data from an independent sequencing

study and comparing the prediction performance with three other machine learning
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methods.

Algorithm 1: The learning algorithm in PANDA.

Input: HMIN G = (V , E); node properties and labels(X,Y); confidence

vector ξ; number of PANDA layers K; model parameters θ = (W,b)

Output: Predicted probabilities P̂, node label predictions Ŷ, and trained

parameters θupdated

1 h0
v ← xv, ∀v ∈ V

2 repeat

3 for k = 1, .., K − 1 do

4 for v ∈ V do

5 hk−1nb[v] ← 1∑
u ξu

∑
u ξuh

k−1
u + 1

B

∑
u′ h

k−1
u′

6 hkv ← ReLU(Wk · (hk−1v ⊕ hk−1nb[v]) + bk)

7 end

8 hkv ← hkv/||hkv ||, ∀v ∈ V

9 end

10 ŷv, p̂v = σ(WK · hK−1v + bK)

11 Lhybrid = Lsu + αLun + λLreg

12 use stochastic gradient descent to update the parameters θ

13 until converge;

14 return P̂ = {p̂v, ∀v ∈ V}, Ŷ = {ŷv, ∀v ∈ V}, θupdated

4.3.1 Classification performance of PANDA

We computed several performance measurements to evaluate the classifier in PANDA.

The GNN classifier has a sensitivity of 0.95, a specificity of 0.86, and a classification
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accuracy of 0.89. We further looked at Precision@k, defined as the proportion of

genes in the top-k ranking list by PANDA that are known associated with autism

(positive genes), and computed as

precision@k =
|∆top-k ∩∆asd|

k
. (4.8)

Here, ∆top-k and ∆asd are the set of top k genes from the predicted ranking list and

the set of known autism-associated genes, respectively. ∩ is the operation of set inter-

section. Figure 4.6 shows that 24.7% of the top-2000 ranked genes are known autism-

associated genes, i.e., 494 (= 2000×24.7%) out of a total 760 autism-associated genes

have been successfully identified by PANDA in the first decile of its ranking list.

4.3.2 Model sensitivity and specificity

Apart from testing the computational results in silico, we used an independent se-

quencing study [29] to validate the autism genes prioritized by our method. This

whole exome-sequencing study examined 2,508 autism probands (autism affected chil-

dren), 1,911 unaffected siblings, and their parents in the Simons Simplex Collection

(SSC) [112]. This study focused on identified de novo likely gene-disrupting (DN-

LGD) mutations. It reported 353 target genes identified in autism probands with 27

recurrent genes, and 176 DN-LGD genes in unaffected siblings.

We looked at the genes in each decile of the rank list R produced by PANDA and

compared them with the three gene sets, i.e., DN-LGD in probands, recurrent DN-

LGD in probands, and DN-LGD in unaffected siblings, reported in the independent

validation study. For each comparison, we applied a one-tail binomial test [113] in

order to assess the significance of the overlap. Figure 4.7 shows the overlap of these
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Figure 4.6: Precision@k chart. Precision@k is the proportion of genes in the top-k

ranking list that are known associated with autism. We compared our PANDA with

support vector machine (SVM), random forest (RF), and linear genetic programming

(LGP) using the measure of Precision@k.

independently discovered autism-genes in our PANDA rank R. DN-LGD genes were

found enriched in our top 10% of the ranking list (103/353, p = 2.467 × 10−5).

Moreover, the recurrent DN-LDG genes validated in probands were enriched in the

first decile (15/27, p = 4.786×10−5). No significant enrichment of the DN-LGD genes

in unaffected siblings was found by PANDA (26/176, p = 0.3744).
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Figure 4.7: Distribution of the PANDA ranks for autism genes identified in the in-

dependent exome-sequencing study. (a) Genes with de novo likely gene-disrupting

(DN-LGD) mutations in probands (autism affected children). (b) Genes with recur-

rent DN-LGD in probands. (c) DN-LGD genes identified in unaffected siblings. The

first and second highest deciles are highlighted in blue.

Furthermore, we evaluated the specificity of the gene rankings by PANDA, which is

the ability to downweight non-autism genes or to ensure we were not simply observing

an enrichment for genes involved in brain function. It specifically can be used to test

if our enriched genes were associated with general neurological disorders, rather than

specifically with autism. Figure 4.8 shows the distributions of the PANDA ranks for

genes associated with Alzheimer’s disease, Parkinson’s disease, and epilepsy. None

of the three neurological disease genes were significantly enriched in the top decile

of the PANDA ranking list. The results suggested that our method was able to

identify autism genes rather than genes associated with a broader range of neurological

disorders.
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Figure 4.8: Specificity results of PANDA gene ranking list. (a) The distribution of

PANDA ranks of genes associated with Alzheimer’s disease (AD). 1 out of the total

35 AD genes was in the top decile of PANDA ranking and its binomial test p-value

is 0.472. (b)The distribution of PANDA ranks of Parkinson’s disease (PD) genes. 3

out of 43 PD genes were ranked in the top decile (p = 0.833). (c) The distribution of

PANDA ranks of epilepsy genes. 11 out of 32 genes were in the top decile (p = 1).

4.3.3 Methods comparison

To evaluate the classification performance of PANDA, we compared the results of

PANDA with using three other machine learning methods, including support vector

machine (SVM) [114], random forest (RF) [115], and linear genetic programming

(LGP) [116]. The parameters of the compared methods are selected by grid search

with cross-validation [117]. We used the Radial Basis Function kernel for SVM. The

number of estimators in RF was set to 100. We set the population size, number of

generations and number of runs in LGP to 1000, 1000 and 100, respectively, and

the crossover and mutation rates to 0.9 and 0.05. To ensure a fair comparison, all

methods used the same five-fold cross-validation partitions. Figure 4.6 shows the
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comparison result using precision@k. PANDA achieved the best ranking quality of

the top-2000 genes among all four methods. Figure 4.9 shows the comparison result

using the measure of prediction accuracy. PANDA achieved the best classification

accuracy among all four methods.

0.89

0.67
0.63 0.61

0.0

0.2

0.4

0.6

0.8

1.0

PANDA RF LGP SVM

A
c
c
u

ra
c
y

Figure 4.9: Comparison of the classification accuracy using PANDA, support vector

machine (SVM), random forests (RF), and linear genetic programming (LGP).

4.4 Biological interpretation

Prioritizing the candidate autism-associated genes from the HMIN is just one step

toward deciphering the etiology of the disease. As our goal is to facilitate downstream

biological validation tests on potential autism-associated genes, the next step after

ranking the genetic variants via PANDA classifier is to explore the top-ranked genes.

To better understand the genetic attributes of the top 10% ranked autism-associated
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candidate genes(˜2300 genes), we conducted experiments from two aspects. First, we

extracted the disease module from the HMIN using the top 10% ranked genes. Then,

we utilized DAVID database [118] to analyze the biological characteristics of the top

ranked genes.

4.4.1 Characterization of prioritized autism-associated genes

We took a closer look at the top 10% genes in the PANDA ranking list and investigated

their properties as nodes in the HMIN. Inspired by the proposed concept of disease

module in network biology [19], we defined the autism module as an induced subgraph

of the HMIN that includes the top decile genes predicted by PANDA with regard to

their autism association. The autism module has 2,346 nodes and 11,668 edges.

Following the intuition that functionally related genes tend to share many con-

nections and develop local “neighborhoods” within a larger network, we applied a

fast-greedy community detection algorithm [119] to the autism module in order to

identify the functional neighborhoods. Figure 4.10 shows the communities identified

in the autism module. The modularity rate of the autism module is 0.385, indicating

a significant occurrence of community structures, i.e., nodes have significantly more

connections with others within a community than with nodes from different commu-

nities. Figure 4.11 shows the pairwise correlations among the six network metrics in

the autism module.
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Figure 4.10: The histogram of the community sizes in the autism module. For the

consideration of clarity, the figure only displays communities with at least 2 nodes.
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the figure.

50



0.00

0.02

0.04

0.06

0.08

0.10

be
tw

ee
nn

es
s

0.00

0.02

0.04

0.06

0.08

0.10

0.12

clo
se
ne

ss

0.0

0.2

0.4

0.6

0.8

1.0

ei
ge

nc
en

trl

−0.0025

0.0000

0.0025

0.0050

0.0075

0.0100

pp
r

0

50

100

150

200

250

de
gr
ee

0.00 0.05 0.10
betweenness

0

5

10

15

20

25

co
re
ne

ss

0.00 0.05 0.10
closeness

0.0 0.5 1.0
eigencentrl

0.000 0.005
ppr

0 100 200
degree

0 10 20 30
coreness

Figure 4.11: The pairwise correlations of six network metrics in the autism

module, including betweenness centrality, closeness centrality, eigenvector central-

ity(eigencontrl), personalized pagerank(ppr), degree centrality, k-coreness.
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4.4.2 Enrichment analysis

The Database for Annotation, Visualization and Integrated Discovery (DAVID) pro-

vides a comprehensive set of functional annotation tools to understand biological

meaning behind a given list of genes [118]. We first submitted the first 10% genes

to DAVID database and extracted the results under the categories of Gene Ontology

(GO), Disease, Pathways. Table 4.2 presents the most significantly enriched func-

tional categories.

We analyzed the functional enrichment tests of the first 10 communities detected

in the autism module and applied multiple testing correction to adjust the resulting

p-values. For each community, the threshold of gene count is set to 15, indicating that

only functional categories containing more than 15 of the total submitted genes were

included. The significance cutoff as 0.05, i.e. Fisher’s exact test p < 0.05. Table 4.3

shows most significantly annotated diseases enriched for the top 10 communities. We

found that tobacco use disorder had the highest appearance in 8 of the 10 commu-

nities under the GAD DISEASE category, with Schizophrenia for community 4 and

Neuroblastoma for community 7.

We then looked into the enriched KEGG pathways in the 10 communities. For

the pathway enrichment tests, the threshold of gene count is set to 5, indicating that

only functional categories containing more than 5 of the total submitted genes were

included. The significance cutoff as 0.05. Table 4.4 shows the most significantly

enriched pathways for each community. The results suggest several pathways, which

have been examined in order to determine the involvement in autism.

For example, MAPK signaling pathway is enriched in community 1. The MAPK
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pathway is a prominent intracellular signaling pathway regulating various intracellular

functions [120]. Studies have revealed that components of this pathway are mutated

in a related collection of disorders that are associated with autism [121]. Another

example is cAMP signaling pathway in community 5. cAMP (a.k.a. Cyclic AMP)

is a second messenger involved in many processes including mnemonic processing

and anxiety [122]. It has previously been investigated with regard to its role in

autism [123].

DAVID enrichment tests have yielded insights into the top-ranked genes. First,

the autism module derived using these genes has organized into several functionally

distinct communities. These communities have relevant associations with autism.

Community 1 was enriched for several signaling pathways with previous evidence

of association with autism, such as PI3K signaling pathway, HTLV-1 infection, and

MAPK signaling pathway. Communities 2 and 4 reflected multiple biological pro-

cesses, including chromatin remodeling, histone modification, and transcriptional reg-

ulation that have prior implication in autism. Furthermore, the detected communities

captured a number of developmental processes. Community 5 showed embryonic de-

velopment. Neuron fate commitment and nervous system development were enriched

in community 6. Enrichment of axonal and dendritic development and morphogenesis

was contained in community 3.

4.5 Summary

In this section, we first introduced the concepts and challenges of network embedding,

from which we introduced graph neural network. Section 4.1.2 described in detail the
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fundamental ideas of graph neural network. Based on the original proposal of GNN,

Section 4.2.1 presented the overview of PANDA framework. Section 4.2.2 described

the node classification procedure of PANDA. Finally, we assessed our method from

three aspects, including the model performance, the validation on an independent

study, and biological enrichment test. The results showed that PANDA was able to

achieve high classification accuracy, and that its output gene ranking was successfully

validated using an independent sequencing dataset.
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Table 4.2: Enriched functional annotation terms of the ten communities. The options

of gene count and significant cutoff are set to 15 and 0.05, respectively.

Category Term Count p-value

GOTERM CC DIRECT Nucleus 233 1.6× 10−27

GOTERM CC DIRECT Nucleoplasm 155 1.9× 10−27

GOTERM BP DIRECT Negative regulation of transcription from

RNA polymerase II promoter

71 7.4× 10−24

GOTERM MF DIRECT Zinc ion binding 92 1.2× 10−23

GOTERM BP DIRECT Transcription, DNA-templated 123 1.9× 10−23

GOTERM BP DIRECT Positive regulation of transcription from

RNA polymerase II promoter

81 3.4× 10−22

GOTERM BP DIRECT Negative regulation of transcription,

DNA-templated

52 1.2× 10−18

GOTERM MF DIRECT Protein binding 304 1.7× 10−17

GOTERM CC DIRECT Cytoplasm 198 3.2× 10−15

GOTERM MF DIRECT Sequence-specific DNA binding 65 1.9× 10−13

GAD DISEASE CLASS Chemdependency 150 8.1× 10−10

GOTERM MF DIRECT DNA binding 82 1.9× 10−9

GOTERM BP DIRECT Regulation of DNA-templated transcription 73 2.2× 10−8

GOTERM MF DIRECT ATP binding 65 7.7× 10−6

GAD DISEASE CLASS Psych 75 8.9× 10−4

GAD DISEASE CLASS Developmental 56 6.5× 10−3
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Table 4.3: Enriched disease category annotations of the ten communities. The options

of gene count and significant cutoff are set to 15 and 0.05, respectively. The category

is selected as GAD DISEASE.

Community Disease Term Gene Count p-value

Community 1 Tobacco Use Disorder 134 2.0× 10−10

Community 2 Tobacco Use Disorder 91 6.5× 10−7

Community 3 Tobacco Use Disorder 214 5.4× 10−34

Community 4 Schizophrenia 18 1.6× 10−4

Community 5 Tobacco Use Disorder 52 8.0× 10−6

Community 6 Tobacco Use Disorder 33 5.1× 10−4

Community 7 Neuroblastoma 16 6× 10−3

Community 8 Tobacco Use Disorder 76 2.1× 10−3

Community 9 Tobacco Use Disorder 17 2.2× 10−2

Community 10 Tobacco Use Disorder 19 2.5× 10−2
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Table 4.4: Enriched pathways category annotations of the ten communities. The

options of gene count and significant cutoff are set to 5 and 0.05, respectively. The

category is selected as KEGG PATHWAYS.

Community Pathway Term Gene Count p-value

Community 1 MAPK signaling pathway 16 1.5× 10−4

Community 2 Axon guidance 10 4.5× 10−5

Community 3 Glutamatergic synapse 30 4.9× 10−18

Community 4 Purine metabolism 15 4.5× 10−14

Community 5 cAMP signaling pathway 8 1.7× 10−6

Community 6 Serotonergic synapse 6 8.7× 10−5

Community 7 Lysine degradation 7 6.7× 10−3

Community 8 mRNA surveillance pathway 18 6.5× 10−15

Community 9 RNA degradation 14 1.7× 10−3

Community 10 N-Glycan biosynthesis 6 5.6× 10−3
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Chapter 5

Discussion

5.1 Contribution summary

Elucidating the genetic etiology of complex diseases is one of the greatest challenges

in modern biomedical research. Disease-gene association study is a crucial step in

understanding disease etiology. Deciphering the link between genes and diseases

is an open problem in biomedical sciences, but it presents an opportunity to better

understand disease etiology, thereby allowing for the design and development of better

mitigation strategies. As a result, various in silico methods for predicting associations

from large-volume biological data have been developed using different approaches.

Computational methods have seen increasing applications in biomedicine, thanks

to their powerful abilities to analyze large-volume, high-dimensional data. Priori-

tizing disease association genes is a research problem that can benefit from using

carefully designed and tailored computational methods. Many common and complex

diseases have observable high inheritance, however, our understanding of their genetic
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architecture is still limited. Complex network analysis and deep learning provide a

powerful toolset that can be used to characterize the inter-connective relationships of

genes in the human genome and to identify potential genes associated with diseases

based on such interaction patterns.

In this thesis, we proposed PANDA, a graph deep learning approach to prioritizing

autism genes across the entire human genome. In PANDA, we first constructed

the human molecular interaction network (HMIN) to characterize the patterns and

structure of gene-gene interactions in the human genome. We then designed a graph

neural network that was able to input graph structured data, to learn the similarity of

nodes and their interaction patterns, and to predict potential genes that were similar

and related to known autism genes. The results showed that PANDA was able to

achieve high classification accuracy, and that its output gene ranking was successfully

validated using an independent sequencing dataset.

We contribute to the understanding of autism etiology in the following aspects.

Firstly, we developed a deep graph neural network method that can operate directly

on a biological network. PANDA utilized the interaction relationships embedded in

the HMIN to learn hidden features for every node in the network. In line with our

hypothesis that these hidden features encode the connectivity patterns of the autism-

associated genes and distinguish from those of non-disease genes, the PANDA classi-

fier achieved high classification performance with 89% accuracy. Secondly, PANDA

not only trained a predictive classifier but also generated a prioritization ranking of

genes across the genome. We tested the prioritization quality using an independent

sequencing study, and the results suggest that our top 10% (2346) genes were signif-

icantly enriched for the de novo likely gene-disrupting mutations that are identified
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in autism-affected children, while no significant enrichment was shown in the autism

unaffected siblings. The result elucidates the capability of the PANDA to nomi-

nate candidate autism-associated genes, which can facilitate downstream biological

researches.

In summary, our study showcased the potential of designing advancing network

analysis and machine learning methods for the prioritization of disease-associated

genes. Apart from many existing studies where new genes were often predicted with

disease association based on their direct relationship with known disease genes, we

hypothesized that genes involved in the development of a disease may not directly

interact with each other, but may exhibit similar topological properties in the HMIN.

Using the graph deep learning approach enabled searching for these potential genes

that were multi-hops away from known autism-associated genes. We hope this study

opens future research avenues of employing more advanced modeling and learning

algorithms in order to better characterize the genetic architecture of complex diseases.

5.2 Future work

However, there are limitations in our study. First, we consider that the HMIN are

invariant for autism, meaning that the mutations on certain genes associated with

autism do not introduce a new topology in the HMIN. Second, although Alzheimer

and Parkinson diseases often occur late than autism, we ignored the onset and devel-

opment timepoints of autism and the three neurological disorders.

In future studies, we expect to explore more generic models on prioritizing genes

associated with other diseases or disease subtypes. For the top-ranked candidate
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autism-associated genes, further explorations, such as genome-wide association stud-

ies, can be conducted to gain a deeper understanding of the associations with autism.

In addition, a comparative analysis can be conducted by including more machine

learning methods, particularly other graph learning-targeted algorithms in order to

obtain robust and reasonable conclusions. Moreover, we can develop an application

with a graphical user interface for other biologists to adopt the methods exploited in

this research.

On the other hand, genes carrying mutations associated with genetic diseases are

present in all human cells [124]. Clinical manifestations of complex diseases, how-

ever, are usually highly tissue-specific [125]. Genes with tissue-specific expressions

have shown to be involved in important physiological processes for complex organ-

isms [126]. Although some disease-causing genes are expressed only in selected tissues,

the expression patterns of disease-causing genes alone cannot explain the observed

tissue specificity of human diseases. In the future, we expect to explore the applica-

tion of PANDA over tissue-specific biological networks, which are built using tissue

specificity expression data.
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