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Abstract: In this study, we describe the viral composition of adult Antricola delacruzi ticks collected
in a hot bat cave in the state of Rondônia, Western Amazonia, Brazil. A. delacruzi ticks, are special,
compared to many other ticks, in that they feed on both bats (larval blood feeding) and bat guano
(nymphal and adult feeding) instead of feeding exclusively on vertebrate hosts (blood feeding).
Considering this unique life-cycle it is potentially possible that these ticks can pick up/be infected
by viruses not only present in the blood of viremic bats but also by virus shed through the bat
guano. The viral metagenomic investigation of adult ticks showed that single-stranded negative-sense
RNA viruses were the dominant group of viruses identified in the investigated ticks. Out of these,
members of the Nairoviridae family were in clear majority constituting 88% of all viral reads in the data
set. Genetic and phylogenetic analyses indicate the presence of several different orthonairoviruses
in the investigated ticks with only distant relationship to previously described ones. In addition,
identification of viral sequences belonging to Orthomyxoviridae, Iflaviridae, Dicistroviridae, Polycipiviridae,
Reoviridae and different unclassified RNA viruses showed the presence of viruses with low sequence
similarity to previously described viruses.

Keywords: Ticks; Antricola delacruzi; virus; metagenomics; high-throughput sequencing;
Nairoviridae; bats

1. Introduction

Vector-borne diseases are of major concern for many human and animal populations and there are
many viruses of great importance that are maintained and spread by blood-sucking arthropods, such as
mosquitos and ticks [1]. Many of these arboviruses are maintained in nature by a natural vertebrate
reservoir, such as birds, rodents and wild boars. One other potential reservoir for arboviruses, that is
known to harbour many known and potentially emerging viruses, are bats. Most viral families can be
found in bats, but particular viral richness lies in the families of Flavi-, Bunya- and Rhabdoviridae [2].
Bats seem to be able to tolerate potential zoonotic viruses in greater numbers [3] and can therefore act as
a reservoir for many future emerging diseases. The question regarding if bats can act as reservoirs for
arboviruses is being discussed [4] and so far no consensus has been reached but it is at least known that
bats and various blood-sucking arthropods share ecological niches and that there are many arthropods
that feed on bats.
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After mosquitoes, the second most important arthropod vector for arboviruses of public health
concern is ticks and they have been shown to harbour viruses belonging to different families,
such as Rhabdoviridae, Reoviridae, Flaviviridae and to various orders, such as, Bunyavirales and
Mononegavirales [5–7]. There are up to one thousand tick species known and these have been classified
into three families, Argasidae, Ixodidae and Nuttalliellidae [8]. Examples of tick-borne viruses of
importance for animal and/or human health are African swine fever virus transmitted by Ornithodoros
spp. [9], Crimean-Congo hemorrhagic fever virus (CCHFV) transmitted by Hyalomma ticks [10] and
tick-borne encephalitis virus transmitted by Ixodides ticks [11]. As mentioned earlier, the ecology of
these viruses, normally includes the circulation of the virus between a reservoir animal and the tick
species. For example, in the case of CCHFV the main viral reservoir is the tick itself with several
amplifying hosts, such as hares, deer and domestic livestock. Humans can be infected via tick bites or
when handling infected animals [10].

In the neotropical region, bats are known to sustain a variety of ticks of at least three genera of the
Argasidae family (soft ticks): Antricola, Nothoaspis, Ornithodoros [12,13]. Of particular interest is the
genus Antricola, composed of 17 species, all inhabiting hot caves supporting thousands of insectivorous
Mormoopidae bats, especially of the genus Pteronotus [13,14]. As opposed to the majority of tick species,
which are blood-feeding through all post-embryonic stages (larvae, nymphs, adults), only the larval
stage of Antricola is hematophagous. The subsequent stages of nymphs and adults are non-parasitic,
and are considered to be “guanophagous”; i.e., they are supposed to feed on bat guano, which is very
abundant in these hot caves [15]. Interestingly, bat guano is a food source consisting of an iron and
chitin-rich substrat that harbours a rich microbiota that grows on it [16,17].

Recently, the viral diversity of Rhipicephalus microplus in southern Brazil was determined [5].
Apart from that study, very little is known about the virome of ticks in other parts of Brazil and in
other tick species. Therefore, in this paper, we investigated the virome of adult Antricola ticks collected
in a hot bat cave in the state of Rondônia, Brazilian Amazonia, and through this study, we identified a
large number of novel viral sequences from various families.

2. Materials and Methods

2.1. Collection of Ticks

In July 2017, we collected 180 adult Antricola delacruzi ticks from bat guano in a hot cave in
Porto Velho Municipality, state of Rondônia, western Amazon, northern Brazil. The cave structure
was composed by a hot and humid ecosystem that generates high temperature (33–38 ◦C) and an
atmosphere rich in nitrogen compounds throughout the year. The guano inside the cave was abundant
(approximately 10–30 cm in depth), moist, and sticky, as previously described [15,18,19]. Collected
ticks were brought live to the laboratory.

2.2. Nucleic Acid Extraction

The 180 ticks were washed twice with sodium hypochlorite before being washed in sterile water.
Thereafter, the ticks were homogenised in pools of five in TRIzol (Thermo Fisher, Waltham, MA,
USA) using Precelly ck14 tubes (Bertin Technologies, Montigny-le-Bretonneux, France) prior to RNA
extraction using a combined protocol for TRIzol and Genjet RNA extraction kit (Thermo Fisher,
Waltham, MA, USA) as described previously [6]. The RNA was eluted in 40 µL EB and DNA was
removed using the RNase-Free DNase Set (QIAGEN, Hilden, Germany). In addition, ribosomal
RNA was depleted through the use of Ribo-Zero Gold (epidemiology) rRNA Removal Kit (Illumina,
San Diego, CA, USA) according to the manufacturer’s instructions.

2.3. Nucleic Acid Amplification and Sequencing

The remaining RNA was used to obtain cDNA and amplified through a Single-primer isothermal
amplification (SPIA) approach using the Ovation RNA-seq v2 kit (NuGEN, San Carlos, CA, USA)
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according to the manufacturer’s instructions. The SPIA products were purified using Genjet PCR
purification kit (Thermo Fisher, Waltham, MA, USA) according to the manufacturer’s instructions
before being sequenced at SciLifeLab/Genome Center (Uppsala, Sweden) using the Ion S5 XL system
(Thermo Fisher, Waltham, MA, USA) and a 530 chip.

2.4. High-Throughput Sequencing (HTS) Data Analysis

The raw HTS data was imported to the CLC genomic workbench (version 11) and trimmed based
on quality (Q = 20) and length (≥50). The trimmed reads were annotated through blastx (E-value
≤ 0.0001) using Diamond (version 0.9.10) [20]. The diamond results were visualized using Megan
(ver. 6.13) [21]. The dataset containing the raw data have been deposited in GenBank under the SRA
accession: PRJNA577110.

2.5. Viral Genetic Analyses

In order to be able to analyse longer viral sequences, de novo assembly using CLC genomic
workbench (version 11) was performed to create longer contigs. This was done both on reads belonging
to, for example, a specific family extracted from MEGAN as well as on the complete trimmed read data
set. For the viral contigs studied in more detail, open reading frames were predicted using ORFfinder
(https://www.ncbi.nlm.nih.gov/orffinder/) and blastp was used to identify related viruses and determine
their similarity to each investigated contig. Muscle alignments and the phylogenetic analyses were
performed using MEGA7 [22], using the Maximum Likelihood method based on the JTT matrix-based
model [23]. The percentage of trees in which the associated taxa clustered together is shown next
to the branches of each tree. Initial tree(s) for the heuristic search were obtained automatically by
applying Neighbour-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT
model, and then selecting the topology with superior log likelihood value. The trees are drawn to
scale, with branch lengths measured in the number of substitutions per site. The analysed sequences
were deposited in GenBank with the accession numbers MN560621–MN560637.

3. Results

3.1. Sequencing Output

In total, 27,195,787 sequencing reads were obtained after the Ion S5 XL sequencing of the 180
Antricola delacruzi ticks. The majority of these were of good quality and after size and quality trimming
25,575,445 reads with an average length of 302 nucleotides (nt) remained. The majority of the reads
(>70%) remained unclassified after the blastx analysis. Of the classified reads most were eukaryotic,
while the remaining mapped to bacteria, archaea and virus (Figure 1).

71.7%  Unclassified
2.9%  Bacteria
0.002%  Archaea

22.0%  Eukaryota

3.4%  Virus

Figure 1. Classification of the reads obtained from the Ion S5 XL sequencing.

3.2. Viral Community

The blastx analysis of the 25,575,445 trimmed reads showed that 3.4% of all the sequencing reads
(i.e., 854,361 reads) were of viral origin. The reads classified to 47 viral families, however, for most of
these families few reads were found. It was only eight viral families that had more than 500 reads

https://www.ncbi.nlm.nih.gov/orffinder/


Viruses 2020, 12, 48 4 of 14

assigned to them, shown in Table 1. In addition, a number of viral reads could not be assigned to a
family and was marked as unclassified.

Table 1. Viral annotation. The main viral families identified through the blastx analysis. The table
show those families with more than 500 reads assigned to them.

Viral Type Viral Family Number of Assigned Reads % of Viral Reads

Single-stranded
negative-sense RNA

virus

Nairoviridae 753,197 88.2

Peribunyaviridae 10,515 1.2

Rhabdoviridae 11,075 1.3

Orthomyxoviridae 17,553 2.1

Single-stranded
positive-sense RNA virus

Iflaviridae 14,040 1.6

Dicistroviridae 10,224 1.2

Polycipiviridae 1271 0.1

Double-stranded RNA
virus Reoviridae 702 0.1

Unclassified viruses Unclassified
viruses 32,371 3.8

3.3. Single-Stranded Negative-Sense RNA Viruses

As shown in Table 1, single-stranded negative-sense RNA viruses were the dominant viral group
in the investigated ticks. Out of these members of the Bunyavirales were in clear majority constituting
89.4% of all viral reads in the data set but also the families Rhabdoviridae and Orthomyxoviridae were
found. Most Bunyavirales reads classified as being members of the Nairoviridae family, but also
potential Peribunyaviridae members were found. However, investigating the reads that, through
Diamond and Megan analysis, were classified as Peribunyaviridae members revealed that most of these
showed closest similarity to orthonairoviruses and, thus, the focus in the section below will be only
on the Nairoviridae family. In addition, a low number of reads (n. 7) were categorised as unclassified
Bunyavirales. Considering the abundance of Bunyavirales reads de novo assembly was performed and
the analysis focused on contigs (n. 1065) only.

3.3.1. Nairoviridae

Reads belonging to members of the Nairoviridae family (tri-segmented viruses) were in clear
majority, constituting 88.2% of all viral reads in the data set. From the 1065 Bunyavirales contigs,
1055 classified as Nairoviridae. All the segments (S, M and L) were represented although at different
proportions. The L-segment, encoding the RNA-dependent RNA polymerase (RdRp), was in majority
(55.6% of the contigs), while 34.5% and 9% of the contigs represented the M- and S-segments, respectively.
The contigs matching to an individual segment together spanned across most of the entire protein
coding sequence, however, they did not fully assemble despite some of the contigs overlapping
suggesting that they may belong to several different orthonairoviruses.

Five of the S-segment contigs were long enough to cover at least approximately half of the segment
and were, thus, analysed more in detail. The longest contig was 2005 nt in length and is believed to
contain the complete coding region of a 500 a.a. (amino acid) long nucleocapsid protein (NP). The other
four contigs only covered approximate 50% of the coding region, with two of them covering the first
half and the other two the second half. Three of the contigs show >99% a.a. similarity to each other and
only 70% similarity to the other two suggesting that there are at least two different orthonairoviruses
in the data set. Although, there are different orthonairoviruses in the investigated samples, based
on the S-segment, they are still genetically closer to each other than to those available in GenBank
as the a.a. similarity to the NP of previously described orthonairoviruses, such as CCHFV, Dugbe
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orthonairovirus and Erve virus, ranged between 35–44%. This was also confirmed by the phylogenetic
analysis (Figure 2).

S

M

L

NP 690574 Dugbe orthonairovirus

AF504293 1 Nairobi sheep disease virus

BAU51653 Tofla virus

YP 009507852 Hazara virus

AFH89034 Erve virus

MN560621 Rondonia orthonairovirus BR 1

MN560622 Rondonia orthonairovirus BR 2

AKC89360 Artashat orthonairovirus

AKC89339 Paramushir virus

AMT75430 Taggert virus

AMT75421 Sakhalin orthonairovirus

ARF07705 Pacific coast tick nairovirus

YP 009293589 Huangpi Tick Virus 1

YP 009553334 Tunis virus

AMT75376 Abu Mina virus

YP 009551666 Zirqa virus

AKC89348 Caspiy virus

YP 009551659 Great Saltee virus100

100

99

100

100

99

100

100

100

99

76

0.2

AKC89347 Caspiy virus

YP 009551658 Great Saltee virus

YP 009551665 Zirqa virus

YP 009553333 Tunis virus

AMT75375 Abu Mina virus

ARF07703 Pacific coast tick nairovirus

YP 009293588 Huangpi Tick Virus 1

AKC89359 Artashat orthonairovirus

AKC89338 Paramushir virus

AMT75429 Taggert virus

AMT75420 Sakhalin orthonairovirus

MN560623 Rondonia orthonairovirus BR 3

MN560624 Rondonia orthonairovirus BR 4

AFH89033 Erve virus

NP 690575 Dugbe orthonairovirus

ACH99800 Nairobi sheep disease virus

BAU51654 Tofla virus

YP 009507851 Hazara virus

100

100

100

100

100

100

100

100

100

100

99

100

99

99

0.2

BAU51655 Tofla virus

YP 009507850 Hazara virus

ACH99799 Nairobi sheep disease virus

NP 690576 Dugbe orthonairovirus

AFH89032 Erve virus

AKC89358 Artashat orthonairovirus

MN560628 Rondonia orthonairovirus BR 8

MN560629 Rondonia orthonairovirus BR 9

MN560627 Rondonia orthonairovirus BR 7

MN560625 Rondonia orthonairovirus BR 5

MN560626 Rondonia orthonairovirus BR 6

AMT75428 Taggert virus

AKC89337 Paramushir virus

AMT75419 Sakhalin orthonairovirus

ARF07704 Pacific coast tick nairovirus

YP 009293587 Huangpi Tick Virus 1

YP 009553332 Tunis virus

AMT75374 Abu Mina virus

YP 009551664 Zirqa virus

AKC89346 Caspiy virus

YP 009551657 Great Saltee virus100

100

96

85
100

100

100

100

99

100

99

95

80

0.1

Figure 2. Phylogenetic analysis of the S-, M- and L-segment of orthonairoviruses. The map was inferred
using the Maximum Likelihood method with a bootstrap of 500. There was a total of 238 (S-segment),
1101 (M-segment) and 208 (L-segment) positions, respectively, in the final data set. The black diamond
marks the sequences obtained from this study.
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Two of the contigs matching the M-segment appear to have the complete/near complete coding
sequence for the glycoprotein precursor and were, therefore, analysed further. The two predicted
protein sequences (1357 a.a. and 1263 a.a) showed, in the overlapping part, an amino acid similarity
of 60%. The similarity to other orthonairoviruses, such as, Artashat orthonairovirus, Erve virus and
Thiafora orthonairovirus, were 30–37%. Phylogenetically, the two glycoprotein sequences from this study
grouped together on a clade closest associate with viruses such as Nairobi sheep disease virus, Hazara
virus and Erve virus (Figure 2).

Unfortunately, no contig covered the entire L-segment. The expected size of the L-segment of
orthonairoviruses is 7–12 kb, however, the longest contig was only 2720 nt. The protein sequences of
the longer contigs were aligned and showed that in many parts of the RdRp they were nearly identical
to each other, however, as for the other two segments there were differences observed. Phylogenetic
analysis displayed a similar grouping as for the M-segment (Figure 2). The a.a. sequences obtained from
the antricola ticks were 74–100% similar, while the similarity to the orthonairoviruses were 43–64%.

3.3.2. Rhabdoviridae

The genome of rhabdoviruses range between 11 and 15 kb in size, encoding five different proteins.
No complete genome was recovered in this study; the longest contig obtained was 6787 nt in length.
This sequence contained a larger portion of the L-gene and the predicted protein (RdRp) showed a
distant relation to various rhabdoviruses, such as, Tacheng Tick Virus 7, Quarantine head virus and
Chimay rhabdovirus, with a.a. identity of around 30%. Despite the distant relationship InterProScan
could identify the following domains: Mononegavirales RNA-directed RNA polymerase catalytic
domain and Mononegavirales mRNA-capping domain V. In total, there were seven contigs >1000 nt in
length and all of them mapped partially to the L gene. In addition, one of the contigs also contained a
region (1551 nt) prior to the L gene that we believe is coding for the glycoprotein. Sequence alignment
of the overlapping RdRp protein sequences from the tick samples showed a similarity of 80–100%.
As expected, the partial RdRp sequences from the Antricola ticks grouped phylogenetically together
and it was also observed that they grouped away from lyssaviruses (Figure 3).

 AVM86063.1 Chimay rhabdovirus

 AUW34390.1 Blacklegged tick rhabdovirus 1

 AYP67539.1 Quarantine head virus

 YP 009336589.1 Wenling crustacean virus 11

 AMK09264.1 Drosophila sturtevanti rhabdovirus 1

 YP 009304985.1 Wuhan House Fly Virus 2

 YP 009337815.1 Hubei rhabdo-like virus 9

 APG78676.1 Shayang ascaridia galli virus 2

 YP 009304476.1 Tacheng Tick Virus 7

 MN560630 Rondonia rhabdovirus BR 10

 MN560631 Rondonia rhabdovirus BR 11

 MN560632 Rondonia rhabdovirus BR 12

 MN560633 Rondonia rhabdovirus BR 13

 ARO50044.1 Apis rhabdovirus 2

 AUW34395.1 Dog Tick rhabdovirus 1

 ARO50029.1 Apis rhabdovirus 1

 YP 009177021.1 Alfalfa dwarf virus

 AZB50438.1 Rice stripe mosaic virus

 AUX13124.1 American dog tick rhabdovirus 2

 ALP83494.1 Australian bat lyssavirus

 AYE39656.1 Rabies lyssavirus

 ATY74621.1 European bat 1 lyssavirus

 YP 007641406.1 Duvenhage lyssavirus

100

75

100

72

100

100

100

100

100

100

81

89

89

93

88

0.2

Figure 3. Phylogenetic analysis of the RdRp protein of rhabdoviruses. The map was inferred using the
Maximum Likelihood method with a bootstrap of 500. There was a total of 492 positions in the final
data set. The black diamond marks the sequences obtained from this study.



Viruses 2020, 12, 48 7 of 14

3.3.3. Orthomyxoviridae

All Orthomyxoviridae reads classified as thogotoviruses, a group of segmented viruses that are
known to infect arthropods, such as, ticks as well as in some cases vertebrates. To analyse these reads
further de novo assembly was performed and from the 17,553 Orthomyxoviridae reads only 40 reads
remained un-matched while the remaining reads were assembled into 29 contigs ranging from 206 to
2369 nt in length. Unfortunately, the complete segments were not recovered through the data analysis
but contigs and reads could be found that matched to all the proteins of the six expected segments
i.e., to polymerase PB2, polymerase PB1, polymerase PA, glycoprotein (GP), nucleoprotein (NP) and
matrix (M). However, for M the complete/near complete coding sequence was recovered, as were parts
of the 3′UTR. The obtained M protein (246 a.a.) was divergent showing a protein sequence identity of
around 45% to known thogotoviruses available in GenBank, such as, Bourbon-, Oz- and Dhori virus.
Comparisons to other thogotoviruses indicate that potentially about 15–30 a.a. are missing at the
5′UTR. In the phylogenetic analysis our sequence grouped on a separate subclade of thogotoviruses
(Figure 4).

 AHB34059.1 Upolu virus

 AHB34065.1 Aransas Bay virus

 AED98373.1 Jos virus

 AAO49494.1 Thogoto thogotovirus

 MN560634 Rondonia thogotovirus

 AJP32540.1 Bourbon virus

 YP 009553283.1 Oz virus

 QBQ64974.1 Dhori thogotovirus

 APP91609.1 Sinu virus

 YP 009134753.1 Influenza D virus

 YP 089657.1 Influenza C virus

 NP 056664.1 Influenza B virus

 BAU68355.1 Influenza A virus

 AIY25034.1 Wellfleet Bay virus

 AFB81541.1 Cygnet River virus

 AFN73051.1 Tjuloc virus

 ACY56280.1 Quaranfil quaranjavirus

91

99
93

91

96

97

96

98

99

96

90

0.5

Figure 4. Phylogenetic analysis of the complete matrix protein of members of the Orthomyxoviridae
family. The map was inferred using the Maximum Likelihood method with a bootstrap of 500. The
black diamond marks the sequence obtained from this study.

Despite the divergence of the M sequence, partial sequence conservation was observed in
the UTR. The sequence AGCAATCCCAAGGGTTGCCTCT found in the 3′terminus (genomic
orientation) is similar to that of other thogotoviruses, for example that of Dhori virus
(AGCAATAACAAGCAGTACTAGA). Investigation of the other thogotovirus-related contigs showed
that the protein coverage and a.a. identity varied between the proteins, as shown in Table 2.
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Table 2. Protein coverage and a.a. identity in relation to Dhori thogotovirus.

Segment Protein % Coverage % a.a. Identity

1 PB2 68 97
2 PB1 92 82
3 PA 47 54
4 NP 73 61
5 GP 38 53
6 M 100 47

3.4. Single-Stranded Positive-Sense RNA Viruses

Although single-stranded negative-sense RNA viruses were found in abundance also positive-sense
RNA viruses were found in the ticks. Below follows a description of the viruses detected in the three
main viral families found in this group, i.e., in Iflaviridae, Dicistroviridae and Polycipiviridae.

3.4.1. Iflaviridae

By assembling all the Iflaviridae reads the complete polyprotein was recovered including parts of
the UTR. The polyprotein is encoded by 8922 nt and, thus, consist of 2973 a.a. Protein blast analysis
showed that the identified Iflaviridae polyprotein was highly divergent to presently known iflaviruses
showing around 30–40% a.a. identity across the complete polyprotein. In addition, a near complete
polyprotein of a second iflavirus was recovered from the data. The polyprotein is 2882 a.a. in length
and is missing the 3′end. This iflavirus showed only a 39% a.a. sequence identity to the first one
but was instead more similar to those iflaviruses available at GenBank showing a 73% a.a. sequence
identity to Helicoverpa armigera iflavirus (YP_009344960). In the phylogenetic analysis (Figure 5),
the identified viruses were grouped with iflaviruses found in different insects.

 YP 009002581.1 Antheraea pernyi iflavirus

 YP 009162630.1 Bombyx mori iflavirus

 YP 009116875.1 Thaumetopoea pityocampa iflavirus 1

 YP 009026409.1 polyprotein Heliconius erato iflavirus

 MN560636 Rondonia iflavirus 2

 YP 009026409.1 Heliconius erato iflavirus

 MN560635 Rondonia iflavirus 1

 YP 009315906.1 King virus

 AWK77848.1 Darwin bee virus 3

 YP 145791 Varroa destructor virus 1

 AYN79718.1 Deformed wing virus

 YP 009337284.1 Hubei picorna-like virus 28

 YP 009337760.1 Hubei odonate virus 4

 YP 009345906.1 Bat iflavirus

 ABS84820 Slow bee paralysis virus

 AWC26954 Culex picorna-like virus 1

 YP 009337666 Hubei picorna-like virus 35

 NP 049374 Sacbrood virus

 YP 009336629 Hubei arthropod virus 1

 AAQ64627 Ectropis obliqua picorna-like virus

 NP 277061 Perina nuda virus

 CAA25416 Foot-and-mouth disease virus

 NP 056777 Encephalomyocarditis virus

 NP 041277 Enterovirus C

 BAA00168 Human rhinovirus 1B

100

100

100

98

100

100

100

100

100

100
99

100

99

99

100
100

100

99

99

0.5

Figure 5. Phylogentic analysis of the polyprotein of iflaviruses, four members of the Picornaviridae are
also included. The map was inferred using the Maximum Likelihood method with a bootstrap of 500.
The black diamond marks the sequences obtained from this study.

Further sequence analysis of the polyproteins confirmed the presence of several conserved regions
including a domain that occurs in the capsid protein of picornaviruses and caliciviruses. In addition,
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three helicase domains, previously described by Koonin and Dolja (1993) [24], were identified between
position 1640–1761 (iflavirus 1) and 1570–1689 (iflavirus 2). Similar to other iflaviruses and picorna-like
viruses a protease domain was identified with the conserved motifs GxCG in position 2469–2473
(iflavirus 1) and 2422–2426 (iflavirus 2) and GxHxxG in position 2404–2409 (iflavirus 1) and 2439–2444
(iflavirus 2). In addition, eight conserved RNA-dependent RNA polymerase domains were identified
in position 2640–2902 for iflavirus 1. As the complete polyprotein for iflavirus 2 was not recovered
only domain I–VI was present in position 2676–2869.

3.4.2. Dicistroviridae

The 10,224 reads mapping to the Dicistroviridae family classified to three genera: Aparavirus (n. 382),
Cripavirus (n. 2866), Triatovirus (n. 6437). In addition, a portion of the reads were marked as being
unclassified Dicistroviridae (n. 539). The genomes of members of the Dicistroviridae are approximately
8–10 kb in length, however, assembling the different genera reads only yielded shorter contigs.

The longest Aparavirus contig was 1010 nt in length and matched with a high nucleotide identity
(78–95%) to the capsid gene of various Acute bee paralysis viruses. A contig of 786 nt matched to
another region of the capsid protein with similar identities. Also, contigs matching three regions
of the replicase gene of the same virus were found. For these the nucleotide identity was around
80%. However, more divergent Aparavirus contigs were also found showing only 30–40% amino acid
identity to characterised Aparavirus available in GenBank indicating that several Aparavirus may be
present in the investigated ticks. The longest Cripavirus contig yielded a 757 a.a. long protein sequence
showing highest protein identity (45–49%) to the non-structural protein of viruses such as, for example,
Drosophila C virus and Cricket paralysis virus. Contigs matching the structural/capsid protein of the
mentioned viruses to a similar protein identity were also identified. Also, in the Triatovirus contig set
both structural and non-structural sequences were identified. The sequences matched to viruses such
as, for example, Homalodisca coagulata virus 1, Triatoma virus and Himetobi P virus with the a.a.
sequence identity varying from approximate 45–68%.

3.4.3. Polycipiviridae

Only 1271 reads classified within this family, majority of these matched to viruses within
the genus Sopolycivirus, a few to genus Chipolycivirus and a few were marked as unclassified
Polycipviridae. The Sopolycivirus reads showed similarity to a number of viruses found in various
insects, such as, for example, Lasius neglectus virus 1, Myrmica scabrinodis virus 1 and Solenopsis
virus. Only shorter contigs were obtained and the protein sequence identity varied between 25–90%.
All of the Chipolycivirus reads classified as Hubei chipolycivirus, through the blastx analysis, and
more specifically to Hubei picorna-like virus 81 and 82. These are both picorna-like viruses that were
identified and partially genetically characterised from insects through a large metagenomic study
in China [25]. The protein sequence identity was, however, for both of these viruses low ranging
between 22–66%. The unclassified reads showed closest similarity to two viruses, Linepithema humile
polycipivirus 1 and Linepithema humile polycipivirus 2, identified in Argentine ants. The protein
sequence identity was, as seen for the other Polycipiviridae viruses, most often low ranging from 23–60%.

3.5. Double-Stranded RNA Viruses

Although Partitiviridae, Totiviridae and unclassified double-stranded RNA viruses were identified
through the blastx analysis the vast majority of double-stranded RNA reads (94.2%) belonged to
Reoviridae and was, thus, analysed in more details. These viruses have 10–12 segments and have been
found in a wide range of different hosts.

Reoviridae

Majority of the Reoviridae reads classified as rotaviruses and, thus, to further analyse the rotavirus
reads identified in the data set the reads were de novo assembled and each contig were inspected to
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identify its protein sequence identity to rotaviruses present in GenBank. In addition, as rotaviruses
have 11 segments coding for different proteins it was investigated if all the segments/proteins could be
identified. The results are shown in Table 3 and as the contigs consistently mapped against human and
porcine rotaviruses and one of the top hits were the adult diarrheal rotavirus strain J19 this strain was
used in the comparison. In summary, all but one protein (NSP6) could be detected. Unfortunately,
no complete coding sequence was recovered, and the coverage of the different proteins varied between
27.7–92.6%. The protein sequence identity varied between the different segments and the different
positions in the protein and ranged between 49–94%. The fact that some of the contigs matched to
the same position in certain proteins but had assembled to different contigs indicate that the sample
contain at least two rotaviruses.

Table 3. Protein cover and a.a. identity in relation to the adult diarrheal rotavirus strain J19. “n.d.”
marks that a specific protein was not detected in the analysis.

Segment Protein % Cover % a.a. Identity

1 VP1 88.5 74–87
2 VP2 75.7 60–94
3 VP3 38.9 55–59
4 VP4 62.7 64
5 NSP1 67.3 52–57
6 VP6 67.9 84
7 NSP3 76.0 63
8 NSP2 92.6 79–81
9 VP7 54.7 63

10 NSP4 27.7 49–53
11 NSP5 87.5 61
11 NSP6 n.d. n.d.

In addition, two of the contigs obtained from the rotavirus de novo assembly did not map to
different vertebrate rotaviruses, but instead showed closest similarity (39% and 43% on protein level)
to the RNA-dependent RNA-polymerase of Fako virus (isolated from mosquitoes) and Rice gall dwarf
virus, respectively. Also, among the reads that remained unmapped after the de novo assembly were
those that showed similarity to different plant and insect Reoviridae viruses further indicating the
presence of other rotaviruses from this family.

3.6. Unclassified Viruses

The 32,371 unclassified viral reads matched, with a varied protein sequence identity (approximate
25–70%), to a vast number of different viruses having mainly an arthropod or plant host. For many of
these only a low number of reads matched each respective virus and will therefore not be discussed
more in detail. However, for some viruses in the unclassified group a large number of reads were
identified and, in some cases, long contigs could be retrieved when de novo assembled.

A 11,482 nt long contig yielded a 3770 long a.a. sequence. No stop codon was observed indicating
that the contig is missing coding sequence the 3′ end. Through blastp analysis it was shown that
the protein had closest similarity to various unclassified viruses such as Hubei picorna-like virus 55,
Changjiang crawfish virus 6 and Rosy apple aphid virus. However, it should be noted that only 910 of
the 3770 a.a. matched these viruses and then to a very low identity of around 23%. The part matching
was in the predicted RNA-dependent RNA polymerase region. Together this indicates that this is
a completely novel RNA virus. In addition, other longer contigs included a 6585 nt long sequence
coding for a partial RdRp with closest a.a. similarities (30–37%) to viruses such as Ingleside virus and
Hubei virga-like virus 14 and a 6342 nt sequence with a 1881 nt long ORF (no stop codon) coding for a
protein showing 42% similarity to the first half of a hypothetical protein of Hubei coleoptera virus 2.
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4. Discussion

It is estimated, by the World Health Organization, that 17% of all infectious disease are caused by
vector-borne pathogens. Ticks have been somewhat overlooked as important viral arthropod vectors,
as few tick-borne viruses of human and animal concern have been known. However, in the last decade
several pathogenic tick-borne viruses have been detected showing their importance [26]. In this study,
we identified numerous viruses present in adult A. delacruzi ticks collected from a hot bat cave in
the Amazonia. These tick are different from most other tick species in that it is only the larvae that
is hematophagous, i.e., feeding blood from the bats in the cave, while the other two stages (adults
and nymphs) are “guanophagous” i.e., feeding on the bat guano on the ground of the cave [15,19].
Considering this unique cycle, it is possible that these ticks can pick up/be infected by viruses not only
present in the blood of viremic bats but also by virus shed through the bat guano. It should be noted
that as the whole body of the ticks were used it is not possible to determine if the viruses identified in
this study are tick-borne or bat viruses. Also, as the bats in the cave are insectivorous the identified
viruses could also be, for example, insect-viruses shed from the bats.

The results show that a vast number of viruses, from different families and orders, are present in
this special ecosystem of ticks and bats. One viral family did, however, stand out and that was the
Nairoviridae belonging to the order Bunyavirales. Approximately, 88% of all viral reads in our data set
were categorised as belonging to this family and among these sequences matching to all three segments
(S, M and L) were identified. Most viruses in this family are tick-borne and are transmitted to different
mammals (including bats), birds, fish and reptiles through the blood meal [27]. In addition, several
viruses of veterinary and public health concern belong to this group and are known to cause mild to
severe disease and sometime even death. Exampled of these known pathogenic orthonairoviruses
transmitted by ticks are CCHFV, severe fever with thrombocytopenia syndrome virus, louping ill virus,
Erve virus and Nairobi sheep disease virus. The nairoviral sequences identified through our study are
clearly genetically different from those previously characterised as they only show 30–50% a.a. identity
to other orthonairoviruses available in GenBank. They did, however, phylogenetically group together
with viruses known to infect and cause disease in mammals and could, thus, potentially have similar
properties. The results also indicate the presence of more than one orthonairovirus in the samples as
there are variation between some of the overlapping sequences. However, as the sequences have been
obtained from a purely metagenomic approach it is not possible to know which S, M and L segments
belong together, for this viral isolation would be required.

One other interesting finding, especially considering the association of the tick and bats, was
the presence of viral sequences belonging to the family Rhabdoviridae. These are non-segmented
negative-sense RNA viruses known to infect a wide range of hosts, including, vertebrates, invertebrates
and plants [28]. Of major public health concern are those belonging to the lyssavirus genus including,
rabies virus and European bat lyssavirus 1 and 2 [29]. The rhabdoviral sequences from this study was
highly divergent showing only around 30% to known rhabdoviruses and did not group together with
lyssaviruses in the phylogenetic analysis indicating that they do not belong to that particular genus.
Instead, phylogenetically, they grouped together with Tacheng tick virus 7, which is a virus that was
discovered in ticks in a large arthropod viral metagenomic investigation [30].

Sequences matching to all segments of thogotoviruses were also identified. These are segmented
viruses belonging to the Orthomyxoviridae and are known to be transmitted to vertebrates by ticks [31].
A number of viruses within this genus, such as, Dhori, Thogoto, and Bourbon viruses have been
shown to infect and even cause disease in humans and animals. Phylogenetic analysis of the complete
matrix protein grouped our sequence with the mentioned thogotoviruses rather than with other
Orthomyxoviridae members. Depending on the segment investigated the a.a. identity varied between
47–97% to Dhori thogoto virus indicating that the thogotovirus in these ticks most likely belong to its
own species within the thogotovirus genus.

An additional finding that could be of interest from a veterinary and public health perspective is
the presence of sequences being classified as members of the Reoviridae and particularly within the
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rotavirus genus. Rotaviruses are globally spread viruses that cause gastroenteritis and in development
countries they are a major cause of death among young children [32]. These are double-stranded
segmented RNA viruses and the rotaviral sequences from this study matched to all the 11 expected
genome segments [33]. The closest similarity of the rotaviral sequences from our study were to human
and porcine rotaviruses, however, it was significant sequence differences and it is therefore not possible
to conclude if this virus could infect humans and/or domestic animals such as pigs. Rotavirus is
not considered a vector-borne virus transmitted by ticks, however, it is known that bats can harbour
rotaviruses and it is therefore most likely that ticks have ingested rotavirus while feeding on the bat
guano but are probably not being infected by/transmitting the rotavirus.

In addition, to the above discussed viruses a number of other highly divergent viruses were
identified in the samples. For many of the viruses identified the similarity to other viruses was
low, even on protein level, indicating that these might represent novel viruses within previously
uncharacterised genera.

Taken together, the virome of the A. delacruzi ticks have both similarities and differences to those
reported from other tick species and from other parts of the world. Vandergrift, K. and Kapoor A.
(2019) investigated eight viral metagenomic articles and compared the virome of ticks collected from
five different countries (United states, Norway, France, Australia and China) and concluded that
flaviviruses were the most common positive-sense RNA virus [26]. Unlike those studies and the study
from Brazil investigating the viral diversity of Rhipicephalus microplus [5] no flaviviruses were identified
in our study. The most common negative-sense RNA viruses, from the five mentioned countries,
belonged to the orders Bunyavirales and Mononegavirales and more specifically to the families Chuviridae,
Rhabdoviridae, Phenuviridae, Nairoviridae and Orthomyxoviridae. These results are similar to ours as the
main negative-sense RNA viruses in our study belong to the families Nairoviridae, Orthomyxoviridae
and Rhabdoviridae. However, we could not identify any member belonging to the Chuviridae but it
is known that viruses from this family are present in Brazil as it has been identified in Rhipicephalus
microplus ticks collected in the southern part of the country [5]. The only double-stranded RNA viruses
that have been identified in ticks all belong to the genus Colitvirus of the family Reoviridae, however,
in our study members of the genus Rotavirus were identified. But as discussed previously this finding
may reflect the special feeding properties of these ticks.

Further studies are needed to determine the host specificity and possible transmission routes
of these different viruses between the ticks and bats. Considering the shared ecological niche of the
A. delacruzi ticks and the bats it is interesting to speculate whether the bats could act as a reservoir
for tick-borne viruses and potentially also being directly involved in spreading these viruses to other
mammals. In addition, as the A. delacruzi ticks in the adult and larvae stage feed on bat guano rather
than taking a blood meal it would mean that they could potentially ingest and be infected by viruses
being shed through the faeces and is, thus, not dependent on a viremic bat. Attempting viral isolation
as well as simultaneous viral investigations of ticks (adult and larvae), of bat guano and of blood
samples from bats in the same cave would be a possible approach to further investigate the origin, host
specificity and ecology of the identified viruses.
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