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Abstract. All macroscopic physical pendula undergo varioysety of damping processes which make them
irreversible devices. Their repeated use for detgaosmological micro-anomalies requires the deieation of
certain observables with very high precision desgith increased variance due to the strictly noogdexal
pendulum behaviour. Using genofields from Hadradviiechanics, data processing algorithms involvingkbaad
and forward convolutions have been developed. Tregtly improve precision in the determination wfrgying
azimuth, swinging amplitude, swinging period anégassion period. To the author’'s knowledge, thg vezak
anisotropy of a long Foucault pendulum has beemackerized for the first time experimentally inrtex of zero-
amplitude swinging period and conservative (Hamitia) amplitude oscillations.
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INTRODUCTION

The simple pendulum is idealized in practically #ktbooks as a harmonic oscillator obeying Hamiko
mechanics. However, the mere presence of someaféxidamping in a physical one-degree-of-freedendplum
prevents the trajectory in phase space from belioged and periodical. To study the damping phenamgethe
phase space trajectory is made artificially clobgdmaking the energy loss over one half-cycle staresome
imaginary potential reservoir, and then given bacthe pendulum in a time reversal process fontad half-cycle,
thus preserving the Hamiltonian description. [1leTRoucault pendulum has been thoroughly studiehisrn879
dissertation as a two-degrees-of-freedom harmosidlator by Kamerlingh Onnes [2], who was theffiis apply
the perturbation methods of celestial mechanidahéoFoucault pendulum. He considered viscous dagnairvery
small amplitudes using a perturbation Hamiltonidlowever every physical pendulum with swinging amugles
over a few centimetres undergoes dominant aerodgndamping with different power loss parameters dach
degree of freedom. Moreover, physical pendula shomon negligible 8 degree of freedom [3] in the form of
torsion about the suspension wire or rod axis (& aomacroscopic spin degree of freedom) agairh Wwg own
damping parameters. Nonlinear coupling cause ceatee energy transfer between the three degrefrsedom.

It is customary that pendulum experimenters tryneasure observables by averaging their valuestewsror
hundreds of cycles in order to increase accuraoyéver, that process has its limits since the wadaincreases
with time due to irreversible processes, so thatitistant of the measurement itself becomes inateutn the
following, typical difficulties encountered in measg pendulum properties are presented. It willshewn how
defining appropriate genounits can lead to pendubgmations that are spin invariant and time inver@aver a
larger scale, thus allowing accurate determinatibobservables such as the zero-amplitude perioasoilation,
the azimuths of oscillation and ellipticities aepcribed times, etc. The hadronic mechanics tredtafephysical
pendula not only accounts for the non-Hamiltoniaeviersibility of the damping but also improves #wuracy on
observables.


https://core.ac.uk/display/322859117?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.researchgate.net/publication/236028712_Tidal_accelerations_and_dynamical_properties_of_three_degrees-of-freedom_pendula?el=1_x_8&enrichId=rgreq-81be874f12a48b93c0da741243b76470-XXX&enrichSource=Y292ZXJQYWdlOzIzNjg4ODEyMztBUzo5NzQxODExMjY2NzY1MUAxNDAwMjM3Njk2Nzg1
https://www.researchgate.net/profile/Rene_Verreault?el=1_x_100&enrichId=rgreq-81be874f12a48b93c0da741243b76470-XXX&enrichSource=Y292ZXJQYWdlOzIzNjg4ODEyMztBUzo5NzQxODExMjY2NzY1MUAxNDAwMjM3Njk2Nzg1

IRREVERSIBLE SWINGING AMPLITUDE

Figure 1 illustrates the most drastic irreversipteperty of a Foucault pendulum: the damping resja for
the monotonous decrease of its amplitude. Applyiregturbation methods to the linearly damped harmoni
oscillator as an exact zero-order solution [4], fingt order perturbation treatment of aerodynaxhiag yields a
virtually exact formula for the irreversible attextion of the amplituda along the semi-major axis of a pendulum
with swinging periodr [’]:

a=a, /(" + Y 1)

where a =154.356 mmis the amplitude att=0; 1/a=6.6517 his the viscous time constant;
1/8= 3T/85a0 =10.065 h is some sort of aerodynamic time constaht; 0.000387 m' is taken from a “mild”
version of Santilli's Equation (5.17) in Ref. [6]:

mdy dt= kv+ k¥ with a=k /2,5=k,. )
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FIGURE 1. (a) Swinging amplitude of an 8-meter €ault pendulum that ran for 18 hours in Gifu, JaanJuly 21, 2009. The
amplitude decay is perfectly described by Equatiavithin 15 pm rms. In the inset, a detail of thef the amplitude decay law
to a small domain of the 22500 experimental paimtasured at every half swing, thanks to an algaorittvolving a genounit.
From the fitted equation in (b), it can be seen, thace the irreversible phenomenon has been atebfor, extremely faint

observables such as the Hamiltonian exchanges eetpendulum modes can be measured up totesnonic.

Since the above pendulum is meant to detect pessibiro-anomalies of the gravitational field, thecassary
extreme precision is achieved by using non intreusideographic remote sensing of a set of lumimoasks on the
pendulum bob and on its reference alidade. Sigmifibob positions are established 170 times dwuxisging cycle,
enabling the determination, at every half-cycle,tlid semi-axes and b of an “observable” called “ellipse”.
However, at the precision needed, the bob orlttténaboratory frame is rather the superpositioaroéllipse and a
hypocycloid, both of them being modulated by a dasing spiral. In the data processing algorithnigdesl to
study Fig. 1, an invariant ellipse arc is recongi&d for every sequence of 42 images centered @nngiant of
passage across a semi-axis extremity. Within thevaation process, each image is genomultiplied avy
appropriate genounit to compensate back and fanthtHe non-Hamiltonian damping and for the Hamilhon
precession due to earth rotation. Then the ellyasameters become true observables.

IRREVERSIBLE SWINGING PERIOD

In a similar manner, to access the observable “aemplitude swinging periodT,, an algorithm must cope with
the irreversible decrease of the period with tirae tb nonlinearity [2], following the decrease mgitude:



a’ (1)

8°*

T(t) =T, [1+
() 0 162

=T,(1+ e < | (3)
wherel is the pendulum leng.

By differentiating Equation 1, the reader may vetifat, for the first few hours wheth < @™ < ,8'1,
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FIGURE 2. Evolution of the period of oscillation of an 8&tar Foucault pendulum during a continuous 18-leaperiment in
Gifu, Japan, on July 21, 2009. Except for a fewsinig data, some 22 500 individual half-cycle perieehsurements are fitted
by the curve. A periodic variation (Hamiltonian)retif the Foucault precession period (20.68 hharacteristic of an anisotropy
of the field in which the pendulum oscillates. Hawe due to an irreversible, non Hamiltonian, transphenomenon during the
first hours, the invariant observable “zero ampléyeriod” is not readily accessible for measurémen

Figure 2 very neatly shows the transient changheénmeasured period during the first hours of gredrent.
The transient time constant from the fitted curseirideed (2.02 £ 0.16) h for the Gifu pendulum,pirfect
agreement with the value of (2.005 = 0.001) h etgdifrom Fig. 1b and Equation (4). Most experimentese the
pendulum for a duration of the order of 1 hour. rElfiere, their period measurements cannot be cormside
independent of amplitude damping and, as sucmegatively affected by irreversibility.

ANISOTROPY CHARACTERISTICSAS TRUE OBSERVABLES

It has been shown by Kamerlingh Onnes [3] that snsipn anisotropy is responsible for two non degere
eigenmodes with different swinging periods at 98aiths from one another. Starting the pendulura quadrant
between those eigenazimuths gives rise to elliptichits whose major axis will show alternating gssion
velocities with a 180° cycle, independently of 8&0° Foucault precession cycle. As the pendulunepwgrough
the azimuths due to Foucault precession, each &genth is encountered once every 180°, but nonsgtrically
in time because of the fluctuating precession spleedto elliptical orbits (hence there is generatdd harmonics).
In Fig 2b, fitting a three-harmonic wave to the algields a long-term mean swinging period of (5688 +
0.000001) s and fundamental wave period of 20.7h lexcellent agreement with the half-Foucault peston
period in Gifu.
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FIGURE 3. (a) Evolution of the zero-amplitude Hamiltongminging period, unaffected by the damping procfssa
complete Foucault precession period of 41.36 hEgmjution of the ellipse semi-minor axis as a @neence of the azimuth
dependence of the period due to suspension anigof{@ Evolution of the Hamiltonian, energy conseg amplitude of the

semi-major axis, unaffected by the damping proaiss,to the energy taken by the semi-minor axis.

It is interesting to note in Fig. 3c that the ample wave with a fundamental period at half the daoit
precession period in Gifu (20.68 h) is not affected the damping process. It shows precisely theatinesg
waveform of the semi-minor axis (Fig. 3b) as arrgpeonservation exchange between the two vibratinges.
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