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Abstract. In an attempt to explain the tendency of Foucault pendula to develop elliptical orbits, Kamer-
lingh Onnes derived equations of motion that suggest the use of great circles on a spherical surface as a
graphical illustration for an anisotropic bi-dimensional harmonic oscillator, although he did not himself
exploit the idea any further. The concept of anisosphere is introduced in this work as a new means of
interpreting pendulum motion. It can be generalized to the case of any two-dimensional (2-D) oscillating
system, linear or nonlinear, including the case where coupling between the 2 degrees of freedom is present.
Earlier pendulum experiments in the literature are revisited and reanalyzed as a test for the anisosphere
approach. While that graphical method can be applied to strongly nonlinear cases with great simplicity,
this part I is illustrated through a revisit of Kamerlingh Onnes’ dissertation, where a high performance pen-
dulum skillfully emulates a 2-D harmonic oscillator. Anisotropy due to damping is also described. A novel
experiment strategy based on the anisosphere approach is proposed. Finally, recent original results with
a long pendulum using an electronic recording alidade are presented. A gain in precision over traditional
methods by 2-3 orders of magnitude is achieved.
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1 Introduction

New interest in a nicely functioning Foucault pendulum
may be revived in preparation for the Great American
Eclipse on 21st August 2017. Anomalies in the response of
many types of pendula, particularly during solar eclipses,
have already been reported by different researchers dur-
ing the last 60 years [1-12]. However, most attempts to
reproduce those observations have failed. Needless to say,
successive eclipses always occur under different conditions
of celestial environment. This makes the task of replicating
experiments more complicated. On the other hand, there
has not yet appeared a Foucault pendulum standardized
in such a way that its response to the surrounding poten-
tial could be prescribed. Most of the time, the physical and
environmental parameters recorded differ so much that it
is not generally possible to conclude on the characteristics
of the pendulum used, especially the inherent anisotropy
parameters which drastically govern the response.

From Huygens’ time, the one-dimensional (1-D) pen-
dulum and coupling between neighboring 1-D pendula
have extensively been studied [13]. In two-dimensional
(2-D) pendula, a new problem arises from the inherent
anisotropy of the system, since the eigenfrequencies in
each dimension are in general different. It all boils down
to an intricate combination of two types of anisotropy:
circular and linear. The ideal Foucault pendulum is
assumed to possess pure circular anisotropy in the form of
two different translation speeds along the two clockwise
(cw) and counter clockwise (ccw) circular orbits which
correspond to the eigenstates of the system [14,15].
However, when set into rectilinear oscillation within
vertical planes at various azimuths, a real 2-D pendulum
always shows, for any given amplitude, a period of oscil-
lation that varies with azimuth (linear anisotropy). If a
Foucault pendulum is set into rectilinear oscillation, pure
circular anisotropy causes the swinging azimuth to precess
cw or ccw, the oscillation remaining essentially rectilinear
to the naked eye, while pure linear anisotropy will show up
as a tendency for the rectilinear orbit to become elliptic
and even possibly circular.

At this point, a word should be said about nomencla-
ture. Linear/nonlinear pertaining to pendulum differen-
tial equations designates oscillators. A 2-D linear oscillator
is a harmonic oscillator which normally has two distinct
eigenfrequencies and may have two distinct viscous damp-
ing constants. Pendula operating at atmospheric pressure
with amplitudes over 1° are definitely not linear oscilla-
tors. Both the restoring torque and the main damping
torque involve higher powers of the angular coordinates
and their derivatives. However the pendulum studied by
Kamerlingh Onnes in his dissertation [16] was a good
example of a linear oscillator, since it was operated at
amplitudes not exceeding 1°, and at low enough pressures
to guarantee viscous damping, originating principally from
the deformation of the suspension knives instead of from
the surrounding gas.

Linear /elliptic/circular pertaining to bob orbit desig-
nates orbit polarization, in analogy with linear/elliptic/
circular polarization of light. Since the bob of a spherical
pendulum lies on a spherical surface, a stereographic pro-
jection of bob orbit on a horizontal plane will conserve all
the angles already on the spherical surface containing the
bob trajectory. Hence, a trajectory in a vertical plane will
appear as a straight line in the stereographic projection, a
small circle on the spherical surface will be projected as a
circle, and any trajectory in between will be very close to
an ellipse in the projection, assuming that the pole of that
stereographic projection is the anti-rest point, one pendu-
lum length vertically above the suspension point. With
those definitions, by analogy with optics where a propa-
gating medium may show linear birefringence (e.g., quartz
for propagation of light along a-axis), circular birefrin-
gence (e.g., quartz for propagation of light along c-axis)
or in general elliptic birefringence when both are present
(e.g., quartz for propagation of light along any arbi-
trary direction), Foucault pendula may also show linear
anisotropy (two rectilinear eigenstates swinging at 90° to
one another), circular anisotropy (two circular eigenstates
respectively with ccw and cw circular orbits as seen from
the suspension point) or in general elliptical anisotropy
when both types are present. In this latter case, the eigen-
states are two elliptical orbits with the same ellipticity,
with their major axes at 90° to each other and with
opposite senses of bob travel along the ellipse.

Among the numerous serious experimenters who have
claimed anomalous behavior of their pendula, none of
them succeeded in convincing the scientific community
that they had sufficiently controlled all the parameters
that presumably influence a spherical pendulum. In 1879,
despite the very high skill demonstrated in implementing
his pendulum setup, Kamerlingh Onnes [15] could not,
by design, reproduce his anisotropy axes to better than
~10° between successive experiments. In aftermath analy-
sis, those axes appear to wander during the day. In the
fifties, Allais [4,5] designed two high quality pendula, the
first one anisotropic by design (linear anisotropy) and the
other one allegedly isotropic. After experimenting for 6
years and finding statistically significant anomalies related
to alignment of celestial bodies, his work was brought into
controversy and finally dismissed by the French Academy
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of Sciences. Oddly enough, both scientists became Nobel
laureates for other work later in their career.

Except for the above two persons who stand aside by
the scope and the quality of their work, insofar as recent
Foucault pendulum experiments are concerned, too little
or no information is given about instrument calibration,
anisotropy axis determination, detailed environmental
conditions, etc. It remains impossible to scientifically
assess such experiments and to distinguish between nor-
mal and anomalous response of those various pendula
reported in the literature. On the other hand, many con-
testants of anomalies allege such possible causes as air
drafts, rapid atmospheric pressure changes, etc., but, to
the author’s knowledge, neither has ever shown in which
way such phenomena could quantitatively influence a
Foucault pendulum.

The present work is to be considered as part I of an
operational description of Foucault pendulum response
to the non-symmetric potential well that surrounds it.
The new formalism of the anisosphere is introduced. It is
first applied in aftermath to Kamerlingh Onnes’ (KO here-
after) original data which will serve as a 2-D harmonic
oscillator test bench for the anisosphere approach.
Incidentally, KO was confronted with a problem which
also falls under linear effects, namely the differential
damping coefficients of his orthogonal suspension knives
(the analogue of dichroism in optics). The special aniso-
tropy induced from that mechanical dichroism is analyzed
using the anisosphere formalism. Finally, an operational
method of using spherical pendula in the search for anom-
alies is proposed. It is illustrated with the help of some
recent original data.

Part II, to be published separately, will address non-
linear effects. Airy precession [17] is modeled on the aniso-
sphere. Since Allais’ highly nonlinear pendula were by
design based on the exploitation of Airy precession, the
anisosphere sheds a new light on the controversial results
that seemed to be correctly interpreted only by their
author. The particular procedure of enchained experiments
introduced by Allais will also be discussed in part II.

2 Graphical representation of Kamerlingh
Onnes’ theory

Treating the small differences in angular eigenfrequencies
(Foucault effect) and in orthogonal swinging frequencies
(linear anisotropy) as perturbations, KO ends up in part
1, chapter 2, equations (120 ff) with the following set of
equations (N.B.: KO’s original symbols have been primed
in order to avoid confusion with symbols of the present
work):

cosyy’cose’ + sing)’sine’cos2 (D) + &)
+sine’sin2(D; + ¢'), (1)

cos2X’cos2y’

sin2X’cos2y’
where X' is the azimuth of the major axis a;

tany’ = b/a, the axis ratio, (2)

cot)) = —(¢' — p')/27 is the ratio of the difference in
linear eigenfrequencies over twice the Foucault precession

rate;
1

Dy = [ =)+ 7)), (3)

designates the time dependent phase of the characteristic
circle travel along the time circle at a rate D} /t given by
the two rates of linear and circular phase changes com-
bined in quadrature.

¢’ is a constant angle determined by the values of v/,
X{) and x{.

The geometrical significance of those equations is
demonstrated in Figure 1, which reproduces Figure 2 of
plate I in the dissertation. Figure 2 (this work) is a remake
of KO’s Figure 2, in such a way that the great circles have
been extended over the complete sphere. In the spheri-
cal triangle P'L'Z’ between the longitude great circle L/,
the time great circle Z’ and the characteristic great
circle K’, the variables pertain to the initial conditions of
a pendulum launched into an elliptical orbit. The colors
of angles and opposite arcs have been matched, for clar-
ity. X{ is the initial azimuth of the major axis; tany( =
(b/a)o; ¢ is the initial phase lag between the components
of the initial oscillation along the two rectilinear eigen-
states. That graphic representation establishes a unique
correspondence between the set of all the sequential oscil-
lating states of the pendulum as time evolves and a family
of characteristic great circles that cross the time circle at
the constant angle &' and are generated by turning the
initial characteristic circle like a 3-D object around the
rotation axis MN normal to the plane of the time circle.

Summing up, the behavior of a given pendulum setup
can be assessed by looking at the spherical triangle
P'L'Z'. The acute angle near point P’ gives informa-
tion about the ratio of linear to circular anisotropy. The
smaller that angle, the more Foucault-like the behavior is.
A large angle at P’ is indicative of much linear anisotropy.
At any instant, i.e., for any given arc length along the
time circle, the arc length along the longitude circle is
twice the azimuth of the ellipse major axis with respect
to the X-axis (Fig. 3).

Similarly, the complement angle 2y’ = 2 arctan(b/a)
of the angle facing the arc of time circle in the P'L'Z’ tri-
angle yields the information about the axis-ratio of the
elliptical orbit. Although the above graphical analogue
was not exploited any further by KO, it leads the way
to a much simpler graphical representation for the motion
of a 2-D pendulum.

Incidentally, it is worth mentioning that the geometri-
cal representation of equation (1) by spherical trigonom-
etry has nothing to do with the fact that they describe a
spherical pendulum. Strictly speaking, the potential well
of a perfect pendulum is spherical and leads to nonlinear
differential equations, which will be the subject of part
IT of this work. KO’s treatment deals rigorously with the
paraboloidal potential of the harmonic oscillator. It only
applies to the pendulum in so far as the latter, in the
low amplitude limit, can be approximated by a harmonic
oscillator.
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Fig. 1. Graphical representation of KO’s equations of motion
for a 2-D harmonic oscillator. In the spherical triangle PLZ
between the longitude great circle L, the time great circle Z
and the characteristic great circle K, the variables pertain to
the initial conditions of a pendulum launched into an elliptical
orbit (N.B.: KO used a tilde symbol in front of ¢ to replace +
or F according to particular experimental conditions). X is
the azimuth of the major axis; tanyxo = (b/a)o;d is the initial
phase lag between components along the eigenstates; coty =
—(q — p)/2v, i.e., the ratio of linear anisotropy to circular
anisotropy, expressed in terms of the rates of phase lag between
eigenstates; € is a constant angle determined by a combination
of the initial ellipticity and the anisotropy ratio.

3 The concept of anisosphere

The anisotropy parameters included in equations (1)
and (3) have been incorporated into Figure 2. They con-
sist of angular velocity vectors proportional to the rates
of increase of the phase difference between the two com-
ponents of any oscillation resolved along the appropriate
eigenstates: left-handed (L) and right-handed (R) circular
orbits for pure circular anisotropy, or rectilinear oscilla-
tions along the X- and Y-axes for pure linear anisotropy.

More precisely, the rate of progression of the character-
istic circle along the time circle can be seen, according to
equation (3), to be governed by an angular velocity vector
with magnitude Dj}/t and normal to the plane of the time
circle. It is obviously composed of two orthogonal com-
ponents. The first one with magnitude 2v/(= 2pr later
in this work) along the polar axis of the sphere is twice
the Foucault precession rate, hence equal to the rate of
change of the phase difference between the cw and the
cew circular eigenstates, the cw circular state being the
faster state in the northern earth hemisphere. With only
Foucault effect present, one would have ¢/ = 90°, and
with an arbitrary phase §’ in equation (1), all three circles
would coincide. Then 2x’ = 0° and the minor axis
vanishes. In that case, all the points of the equator of
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©
=1
2
=
o
2
5]
5]
©
Ee
(8]

Fig. 2. Extension of Figure 1 on the complete sphere and
relation of KO’s great circles to the anisotropy parameters.
The longitude circle becomes the equator. The circular phase
rate of change 27 rad/s (twice the Foucault precession rate) is
the magnitude of an angular velocity vector pointing towards
the lower pole. The linear phase rate of change due to the
difference in swinging frequencies, in rad/s, is the magnitude
of an angular velocity vector in the equatorial plane pointing
toward the longitude of the faster swinging axis OX. The
resultant angular velocity vector (in blue) on the diameter
M N controls the travel speed of the characteristic circle along
the time circle. The normal to the plane of the characteristic
circle pierces the surface at longitude 2X{} and latitude 2x;
with respect to the slow axis OY.

Y
Ellipticity 7 = tan ' (b/a)

)
Azimuth 14

Fig. 3. Proposed nomenclature in this work for the orbit
parameters, as seen from the suspension point. a and b are
the semi-axes and the angles are positive ccw.

the sphere will represent rectilinear orbits with different
azimuths. Let us therefore define the equator of the new
anisosphere as the locus of the points representing rec-
tilinear pendulum orbits in such a way that the longi-
tude 2v along the equator equals twice the swing azimuth
(0 < 1 < 180°). Contrary to KO but in accordance with
most recent experimenters, 2¢ is counted positive ccw
when looking onto the anisosphere from above its north
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pole. In this way, orthogonal azimuths parallel to the axes
of a laboratory coordinate system XY will determine on
the anisosphere equator two longitudes of diametrically
opposed points, X and Y.

The second component of angular velocity vector has
the magnitude (¢’ — p’) and lies in the equatorial plane,
pointing toward the faster rectilinear state X. It actually
measures the rate of increase of the phase difference
between the two components of an oscillation resolved
along the rectilinear eigenstates X and Y. This designates
X and Y as the natural axes of a horizontal coordinate
system to measure the swing azimuths, X representing
the azimuth of the faster eigenstate, hence with the short-
est period. Later in this work (¢’ — p’) will be changed to
5 = (wX - u.)y) == 27T(1/TX — I/Ty)

Finally, the resultant angular velocity vector determin-
ing the rotation speed along the time circle identifies the
rotation axis M N normal to the time circle plane on the
anisosphere. From KO’s equations, that vector expresses
the rate of increase of the phase difference between two
elliptical orthogonal eigenstates which can be graphically
represented by the diametrically opposed points M and
N. As for the other cases, the fast eigenstate must be the
point M toward which the angular velocity vector points.

Up to now, the new anisosphere has proved capable
of representing pairs of orthogonal eigenstates in the form
of rotation axes joining two diametrically opposed points
of the surface. In fact, such orthogonal eigenstates uni-
quely characterize individual pendula. Perfect Foucault
pendula in the northern earth hemisphere are character-
ized by the anisosphere polar axis RL, the fast state being
the cw circular orbit corresponding to the lower pole R of
the anisosphere. Pendula operating on the earth equator
should theoretically show pure linear anisotropy and be
characterized by a rotation axis X Yin the equatorial plane
of the anisosphere, since Foucault effect disappears on the
earth equator. In this case, KO’s time circle is made up of
a meridian/anti-meridian pair defining a plane perpendic-
ular to the XY diameter on the anisosphere. In general, the
double infinity of combinations between the ratios of
polar to equatorial components of the angular velocity vec-
tor and the azimuths of the XY equatorial axes correspond
to the double infinity of the points on the whole surface of
the anisosphere. The anisosphere appears therefore suit-
able for characterizing any pendulum anisotropy through
an appropriate rotation axis MN. From usual mathemati-
cal conventions, when looking onto the sphere surface from
outside, rotation is ccw about the fast state M.

Through equation (1), KO has established a correspon-
dence between the oscillation state of a pendulum and
a particular characteristic circle, while no simple way to
visualize that circle has been provided. But since the plane
of the characteristic circle and the plane of the time circle
meet under the constant angle ¢, the normal to the char-
acteristic circle plane must pierce the sphere surface on a
small circle with radius € centered on the point M, which
is the pole of that plane in spherical trigonometry (Fig. 4).
Obviously, this small circle is always parallel to KO’s time
great circle. In order to preserve future development on

nonlinear pendula, the name phase circle is proposed.
It will be seen later that in nonlinear cases, this circle
deforms into a general non circular phase curve where the
rate of phase increase is no longer constant. For ¢ < 90°
with linear oscillators, the phase circle lies on the faster
hemisphere with ccw rotation about the fast eigenstate M
as seen from a viewpoint above state M. For € > 90°, the
opposite holds concerning the slow eigenstate N.

Looking back at Figure 2, according to KO’s results,
the acute angle 2y = tan™!b/a at point L’ between the
characteristic circle and the local meridian must also
appear between the characteristic circle normal and the
normal to the meridian plane (the latter normal lying in
the equatorial plane). Therefore, the latitude of the pierc-
ing point of the normal to the characteristic circle bears
the information about the axis ratio of the instantaneous
pendulum orbit.

Similarly, the intersection line O P’ between the planes
of the characteristic circle and of the equator is perpendic-
ular to the plane containing the angular velocity vectors
and the linear anisotropy axis XY. Since P’ is the origin
of the longitudes 2X’ (after KO), the piercing point will
have the same new longitude 2¢) with respect to OX as
point L’ with respect to OP’. Consequently, the piercing
point on the anisosphere shows the same azimuth as the
azimuth of the orbit major axis.

In summary, it is first possible with the new aniso-
sphere to represent all the possible oscillation states of a
pendulum by associating the azimuth (—7 < ¢ < 7) to
the longitude (—27 < 2y < 2m) of a representative
point on the surface and the ellipticity angle x =
tan~!(b/a) within the domain (-1 < b/a < 1) to the
latitude (—7/2 < 2x < 7/2) of the same representa-
tive point. Conversely, every point of the spherical surface
can be associated with an oscillation state. That includes
trivial points like the upper and lower poles for which no
longitude is defined. They correspond respectively to the
ccw and cw circular orbits for which no azimuth is defined.
Similarly, the points of the equator which have zero
latitude correspond to rectilinear oscillations for which
ellipticity is zero. Like the upper pole L, the whole
upper hemisphere is associated with ccw ellipses, while the
lower one with negative latitudes is associated with cw el-
lipses. Accordingly, cw ellipses must be associated with
negative values of the minor axis b. Orthogonal states
having in general their major axes at 90° to each other and
opposite senses of travel in the ellipses are represented by
diametrically opposed points on the anisosphere. Since the
surface points of the anisosphere and the oscillation states
(or orbits) of the pendulum are both structured sets, and
since the relation from one set to the other as well as the
inverse relation both preserve the structure, the two sets
can be declared isomorph.

Secondly, it is also possible to uniquely characterize
on the anisosphere the anisotropy of a given pendulum
setup by specifying a rotation axis joining the diametri-
cally opposed points M and N which correspond to the
two eigenstates that will remain unchanged in the course
of time if the pendulum is excited into one of them. If the
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Time circle Z’

Fig. 4. Determination of the phase circle, i.e., the trace of
the pole to the plane of KO’s characteristic circle as this one
revolves like a solid body about the M N diameter. Numbering
1, 2, 3 designates three successive positions of the characteristic
circle with its pole representing the pendulum orbits on the
phase circle.

anisotropic character does not change during a pendulum
experiment, the position of the rotation axis MN remains
constant and the phase curve is a perfect small circle cen-
tered either on point M (fast state) with ccw rotation
or on point N (slow state) with cw rotation, respectively
depending on which one of the fast eigenstate or the slow

eigenstate the initial state was closer to, on the anisosphere.

It must be kept in mind that the anisosphere is not
exclusive to pendula. It applies to any 2-D oscillating
system where a phase difference between the individual
components can build up as a function of time or some
other variable. Examples can range from Huygens syn-
chronizing double-clocks up to the electric vector of the
transverse electromagnetic wave during the propagation
of polarized light. This latter case has been dealt with by
Poincaré [18]. Using a completely different approach, he
described the spatial patterns of polarized light in birefrin-
gent crystals due to orthogonal eigenstates of electromag-
netic vibration propagating at different speeds. He could
uniquely associate to each polarization state along the
optical path the ratio of complex amplitudes of both com-
ponents. The resulting ratios covered the complete com-
plex plane which could then uniquely be mapped onto
a sphere (the so-called Poincaré sphere) through stereo-
graphic projection. Light is a pure case of 2-D harmonic
oscillator where, unlike the time dependence of the pen-
dulum, progression along the phase circle is proportional
to the distance travelled in the birefringent medium.

Contrary to Poincaré’s original sign convention, the
sign convention for the anisosphere is in accordance with
a comprehensive application of the Poincaré sphere for-
malism in optics by Ramachandran et al. in the sixties [19]
and with a previous work in magneto-optics by the
author [20]. For the azimuths of ellipse major axis referred

to the X-axis in the X Y-plane of the pendulum, ccw sense
is counted positively. For the doubled azimuths taken as
longitudes on the anisosphere, the positive sense is ccw
about the upper pole L. When working in the vicinity of
the slow axis Y, it is customary to use the slow axis as
origin for the longitudes, as it is done in Figure 2. Finally,
when referring the oscillation azimuth to the geograph-
ical coordinates of the earth (what will be called world
azimuth), Allais’ convention is followed, where the world
azimuth is measured positively ccw from north.

4 Kamerlingh Onnes revisited

Kamerlingh Onnes’ dissertation, written in Dutch, has not
been readily available to the English speaking community,
except for a few theoretical aspects that have been com-
mented by Schulz-DuBois [14] and for a recently trans-
lated chapter on its experimental setup [21]. His aim was
to obtain a measure of Foucault precession rate experi-
mentally even by using a highly anisotropic pendulum.
By analyzing elliptic orbit evolution, the three indepen-
dent measurements, namely:

e mean angle between the time great circle and the
longitude great circle,

e mean azimuth of the most extreme ellipses,

e repetition period of the ellipse pattern,

yield solutions for the three unknowns:

e azimuths of linear anisotropy axes,
e amount of linear anisotropy,
e amount of circular anisotropy or Foucault rate.

The main construction details significant for the
present article are the following:

e a cardan suspension consisting of orthogonal knives
articulated in the same plane: an inverted fixed knife
bearing the mobile knife structure and the pendulum;
the rigid pendulum rod extends above the knives and
bears a small round table supporting counterweights
in order to adjust the pendulum ellipsoid of inertia,

e double amplitudes ranging from 7 mm down to 2 mm
measured with a cathetometer; then actual amplitudes
in the range (0.5-2.5 mrad) are sufficient for harmonic
oscillator behavior,

e an zy coordinate system where the xz-direction is
always that of the fixed knife, which is not necessary
an anisotropy axis; the slow anisotropy axis is deter-
mined by the azimuth of an extra balancing weight
placed near the rim of the round table; in the experi-
ments, one of the anisotropy axis is positioned in the
vicinity of the fixed z-direction; however in the simu-
lations of plate I, x is used as the azimuth of the slow
axis; in KO’s thesis, the variable X is an azimuth angle
measured with respect to Ox.

Concerning the anisosphere, azimuths measured in the
laboratory with respect to any convenient external refer-
ence (e.g., north) are named world azimuths, while the
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azimuth of the normally variable fast axis of the pendu-
lum is called X, by definition, on the anisosphere.

That particular value acts as origin for the azimuth v
of the major axis for any given ellipse.

Although a graphical simulation of KO’s theory is pre-
sented in plate I at the end of his thesis, no graphical illus-
tration of the experimental results is given. KO reported
26 meticulous pendulum experiments, but complete sets
of data are given only for four of them. He usually con-
ducted his experiments in pairs, first starting the pendu-
lum in the vicinity of the slow anisotropy axis, and then
starting it in a similar manner at a 90° larger azimuth.
Since the pendulum is assumed to exhibit a symmetrical
behavior near each eigenaxis, KO observed that he could
reduce the sources of error by averaging such pairs of ex-
periments, after conversion for major axes of the ellipses
at 90° to each other and for rotations in opposite senses
along the ellipses.

4.1 Pendulum simulations by Kamerlingh Onnes

Figure 5 shows in the zy-plane a sequence of nine orbits
calculated by KO at equal time intervals for an experi-
mental situation classified as B-II. In this class, both ccw
and cw ellipses are present, but precession goes in the anti-
Foucault sense at least for part of the orbit pattern cycle.
The value of 1) < 45° is indicative of predominant linear
anisotropy wx —wy > 2p, i.e., the difference in rectilinear
eigenfrequencies is greater than twice the Foucault pre-
cession rate. The particular value ¢ = 135° is determined
by the azimuth Xy & 17° of the initial rectilinear oscil-
lation, labelled 0. The first two cw ellipses are followed
by a rectilinear oscillation again, in KO nomenclature at
X1 ~ —Xy. That marks the end of what he names the
normal sub-period (normale onderperiode). Then the ab-
normal sub-period starts with ccw ellipses, and shortly
after, precession goes backwards until shortly before the
end of that second sub-period with orbit 8 returning to a
rectilinear state identical with the initial one at Xo = Xj.
In general, the two sub-periods are delimited by the time
of appearance of rectilinear oscillations. For cases where
the pattern period involves only ccw or only cw ellipses,
the eventual sub-periods are delimited by the flipping time
of precession rate.

In this work, a computer model of KO’s theory has
been elaborated. The ellipses calculated by KO are ob-
tained using a phase period (period of orbit pattern) Tk =
11.1 h. The model output for the ellipticity angle versus
major axis azimuth is shown in Figure 6a. As in Figure 5,
one can indeed observe that the ellipse orientations are
very close for the orbits 2 and 5, as well as for the orbits 6
and 7. Although that graph gives a fair appreciation of the
instantaneous precession rate, it is not particularly useful
as a diagnosis tool for a given linear to circular anisotropy
ratio.

Figure 7 shows the same results using the anisosphere,
where the longitude is twice the major axis azimuth and
the latitude is twice the ellipticity angle. The representa-
tive points for the nine orbits are now evenly distributed

(a)
He A

(b)

Fig. 5. Composite picture from Figures 5 and 6 in KO’s thesis
where 1’ = 30° and £ = 135°, a situation classified by him as
B-II. Linear anisotropy amounts then to v/3 times the Foucault
circular anisotropy in that example. Note that ellipses 2 and
5 have practically the same azimuth, and the same holds for
ellipses 6 and 7. (a) Normal sub-period, (b) abnormal sub-
period.

along the phase circle. The cotangent of the latitude of
center IV of the phase circle is precisely the ratio of linear
to circular anisotropy amounts. Finally, the longitude of
N is twice the azimuth of the slow eigenaxis Y. In order to
convince oneself of the exact shape of the trajectory on the
anisosphere described by the representative point of the
ellipses, its stereographic projection is given in Figure 6b.
The adjusted circle fits the data perfectly, thus justifying
the nomenclature phase circle. Note that the points are
not evenly spaced in that figure since stereographic pro-
jection preserves the shapes and the angles, but not the
distances on the anisosphere.

Figures 8-10 illustrate a case of KO class B-1, with the
same anisotropy characteristics but with an initial recti-
linear state at azimuth Xy = 36.3° which determines the
value € = 105°. On the anisosphere, the phase circle starts
from the equator at the longitude 2¢y = 72.6°. The center
N is still at 30° latitude and since the arc radius of the
phase circle is 75°, the phase circle passes 15° behind the
pole L, thus ensuring that the precession always remains
in the Foucault sense. Therefore, the cases of class B-I
have two normal sub-periods, but with strongly increas-
ing precession rate when the representative point passes
near one of the poles. In this particular case, according to
Figures 9a and 9b, the azimuth undergoes a sudden de-
crease of 145° over 33 min (40% of the time step), which
amounts to 22 times the Foucault rate in the Netherlands.
On the other hand, it can be noted on the anisosphere of
Figure 10 that the rate of phase change between points 5
and 6 remains constant. It is the rapid crossing of many
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Fig. 6. Computer simulation of the situation of Figure 5.
(a) Graph of ellipticity angle as a function of major axis
azimuth. Note that the precession rate is much higher for
higher values of ellipticity, notwithstanding the fact that the
phase difference changes linearly with time. The negative
cw ellipses belong to the normal sub-period, always in the
Foucault sense. The positive ccw ellipses belong to the
abnormal sub-period. On this graph, the fortuitous azimuthal
proximities for pair 2-5 and for pair 6-7 are observed. (b) Stere-
ographic projection of the eight points that represent the same
ellipses on the anisosphere of Figure 7. The perfect circle fit in
that projection means that the nine points effectively lie on a
small circle on the anisosphere.

Fig. 7. Perspective view of the nine orbits of Figure 5 on the
anisosphere. ¢ is the great arc distance from fast eigenstate
M to point 0 representing the initial pendulum state. The orbit
representative point travels cw at constant angular speed on
the phase circle. The radius of the phase circle about the slow
eigenstate N is a great circle arc equal to m—e = 45°. The phase
period (or pattern period) comprises one normal sub-period (in
red), monotonously in the Foucault sense, and one abnormal
sub-period (in blue) where precession is against Foucault sense
for a part of its duration.

meridians that are crowded near the pole which is respon-
sible for the increased precession rate.

The above two simulations give only a partial picture
of the power of the anisosphere for visualizing extreme
pendulum behavior. It will be shown hereafter, thanks
to the anisosphere analysis, that KO’s thesis was by far a
better pendulum study than he himself could appreciate.

and ¢ = 105° a situation classified by him as B-I. There is
no abnormal sub-period in that class, although the orbits are
partly cw, partly ccw.

B
Y

Major axis azimuth y (%)

Fig. 9. (a) Graph of ellipticity angle as a function of major axis
azimuth for the case of Figure 8. (b) Stereographic projection
of the nine points that represents the same ellipses as in (a) on
the anisosphere of Figure 10. Despite the somewhat surpris-
ing shape of the (x vs. ¥) graph, the stereographic projection
confirms the perfect circle travelled by the orbit representative
point on the anisosphere.

4.2 Pendulum experiment classification

From now on, some symbols used by KO will be dropped
in order to avoid confusion with more recent work. This
goes for the linear to circular anisotropy ratio, where v’
of Figures 7-10 becomes 7 in this work:

cot ) = o\ St G i = cot 1.
2p 2p
Based on the starting state which determines the angle
of Figure 11 and on the linear to circular anisotropy ratio
which determines the angle 7, nine experiment classes can
be defined. For a given general value of 7, class E consists
of only two points on the anisosphere, namely the two
eigenstates M and N which leave the initial state invariant
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Fig. 10. Representation of the nine orbits of Figure 8 on the
anisosphere. The arc radius of the phase circle is m — e = 75°.
Since the phase circle encompasses the pole L, precession re-
mains in the Foucault sense at all times.

if the pendulum is started in the elliptical orbit M or .
Classes A, D, F-I and F-II consist of circles separating
adjacent classes like B-I, B-II and C-I which consist of
annular segments of the anisosphere surface or C-II, which
is a polar cap centered on one of the eigenstates M or N.
The mathematical conditions defining each class are as
follows:

A: cos®e = sin? ) > cos? 1.

B-I: (0082 £ < cos? 77) and (sin® 7 > cos? 7).

B-1I: (cos2 £ > cos? 7]) and (sin? 7 < cos? 7).
C-I: (cos? e < cos?n) and (sin®n > cos?n).

C-II: (cos?e > cos?n) and (sin®n < cos? 7).
D: cos?e = sin? 7 < cos? 1.

E: sine = 0.

F-I: (cos?e = cos?n) and (sin®n > cos? 7).

F-II: (cos? e = cos? ) and (sin?n < cos?n).

Figure 11 shows how those various classes of experi-
ment are distributed on the anisosphere. For the sake of
clarity, only the hemisphere having the slow eigenstate NV
as a pole is shown. The same classes exist symmetrically
in the fast hemisphere having the fast eigenstate M as
pole. It is to be understood that class B-I is limited by
the two small circles F-I respectively lying in the slow and
fast hemispheres. Note that in Figure 11a with tan®n < 1,
classes A, C-T and F-I do not exist. Similarly, in Figure 11b
with tan?n > 1, classes B-II, D and F-II do not exist.

In practice, experiments are normally performed by
launching the bob into a rectilinear oscillation from a
static position away from the pendulum rest point. The
initial state is then a point on the equator of the aniso-
shere, so that the experiment class is either B-I or B-II.
There are then two rectilinear states in each phase cycle:
the initial one and a symmetrical one on the other side
of the slow axis Y or of the fast axis X depending on

tan’n < 1 tan®n > 1

Fig. 11. Classification of the possible pendulum experiments
in the slow eigenstate hemisphere with pole N, depending on
linear to circular anisotropy ratio and on initial oscillation
state. The same classification exists symmetrically in the fast
eigenstate hemisphere with pole M. Class B-I consists of the
symmetrical belt between the fast and slow classes D in (a) or
between the fast and slow classes F-I in (b). For the limiting
case tan?n = 1, classes B-II and C-I disappear and classes A,
D, F-I and F-II merge together.

whichever eigenaxis is closest to the initial state. More-
over, there are two sub-periods separated by the rectilin-
ear states. Both sub-periods are normal in class B-I while
one of them is abnormal in class B-II.

Exceptionally, one may wish to run an experiment in
class F-I or F-II, where the initial state is the only recti-
linear state over a complete phase cycle. However, if there
is a malfunction during the launch, the experiment might
end up accidentally in class C-I or C-II, where the phase
circle exclusively consists of elliptical orbits in the same
sense.

4.3 Experimental results — strong anisotropy

In KO’s thesis, the 26 experiments last between 2.5 h
and 3.3 h. Those with complete data sets are experiments
A-I, A-TI, L-IT and M. For the rest of them, only the
times marking the sub-period limits and the extreme val-
ues of ellipticity angles, the azimuths of those events and
finally the major axis amplitude at the sub-period limits
are recorded, since they suffice for the determination of
the Foucault precession rate.

With the exception of L-I, L-IT and M, the experiments
were performed in far more anisotropic conditions than the
above calculated simulations, in order to be able to observe
at least one complete pattern cycle in the 3 h or so of the
experiment duration. Some experiments covered three or
four consecutive sub-periods. As mentioned before, they
were performed in symmetrical pairs with respect to the
fast and slow eigenaxes. A-I was performed near the fast
axis and lasted 2.98 h. A-II was performed near the slow
axis and lasted 3.21 h.

After the first two experiments, KO declared himself
unsatisfied with the behavior of the instrument, because
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< 3, A
Fig. 12. Stereographic projections of two anisospheres on
which KO’s results for the respective experiments A-I and A-IT
are displayed. (a) Experiment A-I, where the initial rectilinear
state is in the vicinity of the fast eigenaxis M. The phase cir-
cles progress in the ccw sense. There are two weak breaks in
anisotropy after 0.90 h and 1.64 h. The centers M; of the circle
arcs show the wandering of the fast eigenstate in a ccw sense.
(b) Experiment A-II, where the initial rectilinear state is in the
vicinity of the slow eigenaxis N. The phase circles progress in
the cw sense. There are two strong breaks in anisotropy after
1.33 h and 1.93 h. The centers N; of the circle arcs show the
large wandering of the slow eigenstate in a cw sense.

the azimuth of the eigenaxis did not stay constant from
one sub-period to the next. He reported that, as a gen-
eral tendency, the mean azimuth of the second sub-period
drifted toward lower values in the fast axis vicinity (KO
y-axis) while it drifted toward higher values in the slow
axis vicinity. He attributed the phenomenon to differen-
tial damping from his perpendicular knives, which were
observed to become unevenly dull during an experiment.
In the thesis, a few chapters are concerned with pertur-
bation theory of differential damping. However, since that
parameter did not prove easily controllable. It is the very
reason why it was decided to always take the average
over pairs of experiments alternately performed by spec-
ifying similar anisotropic conditions (KO ¢’ value) for
experiments conducted in opposite eigenaxis vicinity. Only
then could he achieve a somewhat reasonable agreement
between experiment and theory. Nevertheless, in the final
conclusions of the thesis, KO confesses that differential
damping did not explain everything and that still un-
known perturbing causes seemed to act on the pendulum.

Oddly enough, though, reanalysis of experiments A-I
and A-II with the help of the anisosphere reveals quite a
different picture. Incidentally, it is worth mentioning that
the experimental error analysis made by KO states inac-
curacies of 0 = 0.3° on the angles, which can be visualized
by considering that the diameter of the dots in Figure 12
is 40. Thus, 95% of the dots for double azimuth vs double
ellipticity angle on the anisosphere should touch a single
phase circle for the complete experiment, which clearly is
not the case. This can be better appreciated on the stere-
ographic projections of the anisosphere phase circles in
Figures 12a and 12b.

Note that the stereographic projection planes of
Figure 12 are tangent to the equator of the anisosphere

at the coordinates pairs (2¢,2x) = (0°,0°) and (180°,0°)
respectively for the fast eigenstate vicinity M and for the
slow eigenstate vicinity N. The horizontal and vertical
coordinates of the projection plane tangent to the
equator are:

2 sin 29 cos 2y

X5 = ,
® 14 cos2icos2y

2sin 2y
1+ cos 2t cos 2y

S

The reverse transformation is:

14X,
2) = sin~! > ,
(4+ X2 +Y2)cos2x
o 4Ys
o= \rxz )

This latter transformation is useful for transferring onto
the anisosphere the centers of the circles in the projection
and to determine the exact position of the rotation axis
MN which describes the nature and amount of anisotropy
of the pendulum.

It will be also necessary further below (Fig. 14) to
use a projection plane tangent to the upper pole of the
anisosphere, namely for Foucault pendula with low linear
anisotropy where the eigenstates M and N are respec-
tively close to the anisosphere points R and L represent-
ing cw (R) and ccw (L) circular orbits. In this case, the
transformation equations are:

_ 2cos 29 cos2x

1 +sin2y

2sin 21) cos 2y
1+ sin 2y

Y.
2 =tan" ! [ =
P an (XS),

4Y;
2x = cos™ ! - .
(4+ X2 +Y2)sin 2y

Back to the experimental results, it must first be pointed
out that the consecutive data points in Figure 12 show
very little scatter, in good agreement with the small
measuring errors stated. In fact, three different arcs of
circle fit the results very precisely with 95% confidence
level in each experiment for time lapses ranging from 0.6
to 1.5 h. It is therefore observed that KO’s law is indeed
far better obeyed than its author could himself recognize
at that time.

As a matter of fact, KO’s calculation of the Foucault
precession rate was based on averaging, over A-I and
A-II, the initial azimuth, the azimuth of the next passage
to a rectilinear state and, for the mid-azimuth ¥ p of the
respective sub-periods, the minimum ellipticity angle
and the maximum ellipticity angle. In doing so, for the sec-
ond experiment, the sign of ellipticities must be changed
and 90° must be subtracted from the azimuths. Even then,
since the azimuth spans of the two sub-periods were not

s =
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yet equal, the second sub-period was adjusted equal to the
first one and the extreme ellipticity angles corrected by
the same percentage. After all those corrections, the four
pOintS (’(/}()aoo)a (wD7Xmin)7 (’(/}1700) and (wD7Xmax) are
obtained. Now using the anisosphere analysis, the points
(2¢0,0°), (29D, 2Xmin), (2¢1,0°) and (29D, 2Xmax) drawn
on the anisosphere effectively lie nicely on a small
circle, which proves KO’s law on the average. However, the
anisosphere analysis, through Figure 12, shows that that
law is extremely well obeyed already with the raw data,
without the above corrections. The corrections
actually served only for masking some un-understood
phenomenon out of KO’s control.

Really, the novel and most important feature of
Figure 12 is effectively the occurrence of sudden breaks
in the anisotropy character of the pendulum, as marked
by the time labels. In each experiment, two anisotropy
breaks can be neatly identified.

4.4 Damping anisotropy or mechanical dichroism

KO operated his pendulum in conditions where viscous
damping was largely predominant, as shown by Figure 13.
Such friction proportional to velocity is a linear phenom-
enon described by an added term in the linear differen-
tial equation of the pendulum, contrary to aerodynamic
damping, proportional to v2, which is dominant in usual
pendulum implementations at atmospheric pressure.
Modern pendulum suspensions use flexion of an elastic
wire of circular cross-section or rolling of a ball on a pol-
ished surface (paraconical pendulum). As such, unless an
intentional anisotropic wire is utilized, rolling or flexion
losses are presumed isotropic. However, with a cardan sus-
pension, isotropy of losses in the knives may be as hard to
achieve as the realization of perfectly isotropic oscillations.

According to the perturbation equations in KO’s
thesis [22] for the angle ¢, the perturbation on the aniso-
sphere due to differential knife friction amounts to a nuta-
tion of the rotation eigenaxis MN in phase with the motion
of the ellipse representative point on a fast hemisphere
phase circle, and at 180° out of phase with it in a slow
hemisphere phase circle. In other words, the eigenstates
M and N undergo a small circular motion about their
frictionless positions in such a way that the radius of the
original phase circle becomes steadily shorter in the fast
hemisphere in the vicinity of state M, while it gets steadily
larger in the slow hemisphere in the vicinity of state V.
Therefore, the phase curve is no longer a circle but an
inward spiral in the fast hemisphere, as shown by the gen-
eral trend of Figure 12a, and an outward spiral in the slow
hemisphere as roughly exemplified by Figure 12b. So, if an
experiment initiated in an elliptic oscillation state close to
the slow eigenstate N would last sufficiently long to cover
many cycles of the phase curve on the anisosphere, the
trajectory of the ellipse representative point would repro-
duce the path of a right hand knife peeling an apple from
top to bottom in one stroke.

It must be kept in mind that KO had no access to
a graphical representation like Figure 12. His analyses
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Fig. 13. Damping characteristics of KO experiments A-I
and A-II, showing the evolution of the total energy. The
arrows mark the times of the anisotropy breaks of Figure 12.
On the A-T damping curve, the dot diameter 40 provides an
appreciation of the experimental error. In A-II, dot diameter
is arbitrary.

were solely based on five special data points: the three
times Ty, 71 and T where xy = 0° and the two extremes
values Ymax and Ymin at the azimuth ¥ p. In his words,
the above apple analogy was expressed in terms of class
mutations, so that an experiment started near the slow
axis say, in class C-II (see Fig. 11a) would migrate suc-
cessively to classes F-1I, B-1I, D, B-I, D, B-II, F-II, C-II
for (tan?n < 1) or to classes A, C-I, F-I, B-I, F-1, C-1, A,
C-1II for (tan®n > 1) (Fig. 11b).

Thus far, there is no definitive clue regarding the cause
of the sudden changes in anisotropy of Figure 12. Experi-
ment A-IT seems consistent with a mention by KO stating
that the sharpness of the knives degraded at different rates
during the experiment, thus generating anisotropy from
differential damping. The onset of the second anisotropy
regime in Figure 12b effectively coincides with the first dis-
continuity in the exponential damping curve of Figure 13.
This could be caused by a sudden rupture in the micro-
scopic shape of a knife edge followed by sporadic crushing
of the debris. Finally, exponential damping is resumed but
at a new rate and roughly half an hour after the beginning
of the third anisotropy regime.

On the other hand, the significant anisotropy changes
in Figure 12a bear no apparent relation to global damping,
which remains strictly described by a single exponential
curve within the very small measuring errors (Fig. 13).
Hence, no significant change in damping regime can be
detected in A-I. This suggests that some unknown cause
other than differential damping may be responsible for
those small changes in anisotropy for the pendulum.

An attempt to fit inward and outward spirals respec-
tively to Figures 12a and 12b would leave residuals by
far incompatible with the experimental errors. It can be
seen though that the eigenstates M and N do wander in
the sense predicted by KO friction theory, but they do so
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Fig. 14. Experiments L-I, L-IT and M in a polar stereographic
projection of the anisosphere, the image plane being tangent to
the anisosphere at the upper pole. The black circle that crosses
the axes at Xy = +2 and Ys = +2 (coordinates not shown in
the graph) is the projection of the equator. It represents the
phase circle of an ideal Foucault pendulum. Circle arcs that
lie inside the black circle represent positive, ccw ellipses while
those lying outside represent negative, cw ellipses. Note that
the anisotropy axes are common to the three experiments.

stepwise and stand still in between. More experimentation
is necessary to verify the theory of differential damping.
However, cardan pendulum suspension seems to have been
abandoned by present day experimenters.

4.5 Experimental results — weak anisotropy

The last experiments L-I, L-II and M reported by KO
are conducted with very good compensation of linear ani-
sotropy, thus approaching the ideal Foucault pendulum.
The ratio of residual linear anisotropy to Foucault aniso-
tropy is ~30%. This is typical of well-designed long
pendula in the height range 6-10 m, which is very good
for a 1.4 m pendulum. These experiments belong to KO
class B-I where no abnormal sub-period is present.

Figure 14 shows a polar stereographic projection of
the anisosphere, the image plane being tangent to the
anisosphere at the upper pole. The black circle that crosses
the axes at Xy = +£2 and Yy = 42, is the projection
of the equator. It represents the phase circle of an ideal
Foucault pendulum. Circle arcs that lie inside the black
circle represent positive, ccw ellipses while those lying
outside represent negative, cw ellipses.

Experiment L-I is somewhat precarious. It is initiated
in the neighborhood of the slow axis. The initial recti-
linear state is represented by the lowest blue dot at the
crossing of the blue phase circle (Fig. 14) and the equator
circle. Only the three points shown as blue dots were
actually measured; the fourth one (small blue circle) with
zero ellipticity was assumed symmetrical to the initial

a 'ML-II
My

S

Fig. 15. lustration of experiments L-I (in blue) and L-II (in
red) on the anisosphere. The linear to circular anisotropy ratio
0/2p = 0.32. For L-I, the initial azimuth (big blue dot on the
equator) is closer than 45°(2¢9 < 90°) to the slow axis Y
determined by the meridian plane containing the blue
anisotropy rotation axis Mry,_1N1,—1. With cw rotation about
the slow eigenstate N, one obtains cw ellipses in the first
sub-period, then ccw ellipses in the second one. Similarly, for
L-II, the initial azimuth (big equatorial red dot behind the
anisosphere) is closer to the fast axis X. One then obtains
ccw ellipses in the first sub-period and ¢w ones in the second
sub-period.

state on the other side of the presumed slow anisotropy
axis, as theory would dictate, but it was annotated by
KO: niet waargenomen (not observed). That experiment
was intended to be paired with L-II and have the same
anisotropy characteristics. Hence the blue phase circle
should be concentric with the red one, but strict experi-
mental data is not sufficient to support such an assertion.
If this were true, the third experimental point on the
extreme right should lie on the fast anisotropy axis, since it
is presented by KO as the state with maximum
ellipticity. By anisosphere analysis, this is obviously not
the case. Notwithstanding the lack of accuracy, the qual-
itative evolution of the phase circle is correct, showing,
with cw travel around the slow eigenstate Np_p, first cw
ellipses toward the slow axis, and then wider ccw ellipses
in the vicinity of the fast axis. The perspective view of the
anisosphere in Figure 15 allows a better visualization of
the situation.

Experiments L-I and L-IT were meant to be identical
except for an interchange of fast and slow axis vicinity.
However, the anisosphere shows that the anisotropy axis
remained the same but the amount anisotropy, measured
as 0 in Figure 15, fell short in L-I by ~30% of the value
realized in L-II. It can be noted in Figure 14 that the blue
circle, instead of being concentric with the red circle as it
should, is concentric with the green one of experiment M,
which was designed with the same anisotropy axis but 30%
less linear anisotropy than experiment L-II.
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Experiment L-II, on the other hand, was performed
very meticulously in the neighborhood of the fast axis.
In Figure 14, the initial state (small red circle) lies at the
upper intersection of the red phase circle with the equator
circle. Cw travel around the slow eigenstate Np,_i; gener-
ates first ccw ellipses, then a rectilinear state symmetrical
with the initial state on the other side of the fast axis.
This marks the end of the first sub-period and the start
of the second one with the same precession sense but cw
ellipses. In the vicinity of the equator of the anisosphere
(Fig. 16), the phase circle is well approximated by the
Lat-Lon relation:

2x = (e — 90°) + ncos 27 (2¢) — 2 x) /360°],

where,

¢ is the arc radius of the phase circle from the fast
eigenstate M taken as center on the spherical surface (see
Fig. 7);

n = cot™! (%) is the inverse cotangent of linear to

circular anisotropy ratio;

1x is the world azimuth of the fast linear anisotropy
axis, identified as X on the anisosphere.

Using the complete experimental information by con-
sidering the fitted curve of Figure 16,

er—1 = (80.24° £0.17°) ,
and MNL—11 = (17.550 + 0.200) .

The latter must be compared to,
-1 = Yo = 18.57° and 17.85°,

as calculated by KO using respectively the first and second
sub-period data. Hence, with the anisosphere and using
the same data, pendulum parameters can be determined
more precisely than with KO’s method.

Summarizing the revisit of KO’s thesis, the anisosphere
analysis proves to be an extremely efficient tool to study
pendulum behavior. Qualitatively, it permits an outstand-
ing visualization of the evolution of pendulum orbits
throughout the experiment. This is particularly useful for
distinguishing the various classes of experiments that were
described through conditions on certain critical angles in
KO theory. Quantitatively, by using stereographic projec-
tions on planes tangent to the anisosphere either at the
equator or at the poles, it is possible to calculate the exact
shape of the phase curve on the anisosphere by fitting
circle arcs or, in general, any computable shape to the
experimental data, since shapes are conserved in that kind
of projection. Thanks to the anisosphere analysis, it has
been shown that KO theory was verified by his experi-
ments in a far better way than he effectively could
appreciate with the limited analysis means at his disposal.
Finally, anisosphere analysis allowed the detection of
unexpected changes in the anisotropy character of the pen-
dulum within a single experiment (e.g., A-II) or between
supposedly identical experiments (e.g., L-T and L-II).
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Fig. 16. Least squares fit of a phase circle of the anisosphere to
the data of experiment L-II. The vertical dimension of the data
point symbols is equal to 20r.t = 1.4°. The precession rate
being negative, the initial state lies at the extreme right. The
fast-(slow-)axis azimuth is given by the maximum (minimum)
of the fitted cosine function.

5 Experiment strategy

In the last six decades, the numerous experimenters
referred to in the introduction above have tried in various
ways to look for anomalous behavior of their 2-D
pendulum in conjunction with possible perturbing phe-
nomena. In that sense, Allais’ direct search [1-3] for a
change in the anisotropy characteristics of his pendulum
constitutes a pioneering work. Alternately, his followers
were rather looking for changes in precession speed or in
period of oscillation. However, without stating it explic-
itly, they were addressing parameters which respond
respectively to circular anisotropy or linear anisotropy.
Consequently, thanks to the present new approach
describing pendulum anisotropy via the anisosphere, pen-
dulum experiments can be conducted with the aim of mea-
suring quantitatively the changes in the ratio of linear to
circular anisotropy amounts as well as the changes in the
azimuth of the anisotropy axes. The anisosphere analysis
shows that a pendulum’s behaviour is not determined by
the sole amount of linear anisotropy (wx — wy) but by its
comparison to 2p, the doubled Foucault precession rate.
Hence, an essentially isotropic pendulum at mid-latitudes
with (wx —wy) < 2p may prove readily anisotropic near
the equator, whereas the same value of (wx — wy ) is much
greater than twice the local Foucault rate.

In practice, the circular phase rate of change 2p due to
Foucault effect is easily calculated. Thereafter, the experi-
mental procedure should include the following stages:

(a) an approximate determination of anisotropy axes and
linear phase rate of change by conducting a series of
short experiments at different azimuths in the range
0°-180°, and by measuring the various swinging period
values T for rectilinear oscillations. Fitting a cosine
function to a graph of period vs. azimuth yields, for
the eigenaxis azimuths, those of the period extrema
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Ty,Tx, and for the amount of linear anisotropy, the
value:

2T (Ty - Tx) o 81 (Ty - Tx)

b= (x—wy) = (1) (Ty + Tx)2 ’

a precise determination of the anisotropy axes by
launching an experiment at an azimuth just a few
degrees higher than the approximate value of azimuth
for that axis, so that Foucault precession will provide
an azimuth scan through the minimum latitude of the
phase circle for a slow axis, or through the maximum
latitude of the phase circle for a fast axis. Again, from
fitting a cosine function to a graph of anisosphere lati-
tude vs longitude, a far better estimate of the eigenaxis
azimuth is obtained as the azimuth of the latitude
extremum.

Ideally, the short experiments of stage (a) should be
evenly distributed within the 180° azimuth domain in
order to maximize the statistical significance of the least
squares fit of the cosine function. Indeed, Allais [3] has
shown that the azimuths of the eigenaxes may vary with
time within a day. Therefore, it is best to choose the
sequence of launching azimuths at random, so that a
temporal bias in azimuth is avoided.

Finally, the value of a period measurement is strongly
dependent on amplitude and on temperature, in the range
of interest for anisotropy determination. Therefore, care
must be taken so that all period measurements be taken
at precisely the same swinging amplitude.

In so far as temperature is concerned, the author has
already measured temperature variations of 10 K between
day and night near the suspension structure in certain
implementations of a pendulum. Steel and most metals
that can be used for suspending the bob have a thermal
expansion coefficient of the order of 0.00001 K—', which
means an increase in period of ~25 us/K for a typical
pendulum with a period of 5 s. In stage (b), precision
is of the utmost importance. Depending on the retrieval
method for bob motion, various launching disturbances
can occur, some of them fortunately decaying with time.
In many cases, a rigid pointer coaxial with the suspension
wire extends below the pendulum bob. Its instantaneous
position is measured either from visual observation against
some kind of alidade or from timings via some sort of elec-
tronic device (video camera, optical beam interruption or
any convenient type of electronic alidade). Contrary to
manual observation, electronic recording can yield para-
meter values for each individual cycle; it renders efficient
computerized data processing possible.

However, among the most annoying perturbations at
that precision level, one counts the initial transient nod-
ding of the bob which is caused by misalignment between
the pre-start retaining thread and the center of mass of
the bob-stem assembly, plus a permanent nodding that is
generated by the non-constant returning moment applied
by the suspension line at the stem attach point. The stem
is a rigid rod between the bob per se and the attach

point of the flexible suspension wire. Its role is to pro-
vide a lever arm in order to force the bob axis of revolu-
tion symmetry to stay aligned with the suspension wire
at all times, in spite of the ever changing angular velocity
of the bob about a horizontal axis perpendicular to the
oscillation plane. The bob-stem unit has its own, rather
high, eigenfrequency of angular oscillation about this
horizontal axis. The peak returning torque at the end of
each half-cycle generates a nodding oscillation which beats
with the pendulum oscillation proper and causes aliasing
in the recorded bob position. To minimize permanent
nodding, the stem must meet a compromise between
length, stiffness and small moment of inertia about a
horizontal axis. To minimize initial nodding, the correct
hook height of the retaining thread to be burnt must be
found by trial and error.

Another small mishap which is often seen as a
perturbation is a launch before the bob is completely sta-
bilized at the end of the retaining thread. This gener-
ates an initial elliptical orbit with unpredictable sense
of travel. This is rather difficult to interpret using con-
ventional analysis. However there is really nothing to it
when analyzed with the anisosphere. That initial ellipse
is forcibly somewhere on the normal phase circle repre-
senting that pendulum’s evolution. As an example, for an
experiment in the vicinity of the slow axis, a ccw ellipse
(positive semi-minor axis) means that the initial state lies
above the equator of the anisosphere, so that a rectilinear
state will soon appear at the start of the first sub-period.
Thereafter a situation like the one of Figure 12b follows.
If, on the other hand, the initial ellipse is cw, everything
will proceed as if the experiment in Figure 12b would have
started at some time later than zero. That cw ellipse will
grow wider up to an extremal ellipticity at the azimuth of
the slow axis, then become thinner up to the rectilinear
state at the end of the first sub-period, and so on. Such
an experiment will suffer no significant lack of precision in
the determination of the slow axis azimuth according to
stage (b).

6 Original experimental results

The author is a member of a team of designers-
experimenters who operate a Pendularium (permanent
pendulum site) in Horodnic-de-Jos, Romania. The partic-
ulars of that Pendularium will be described elsewhere [23].
Suffice it to mention that pendulum motion is retrieved
from a sequence of 16 timings per cycle as a pointer
under the bob crosses four narrow beams of light in an
M-configuration. As soon as an experiment is over, the
following physical parameters are immediately obtained
by software for each cycle: period, amplitude, azimuth of
major axis, value and sign of semi-minor axis, x- and y-
coordinates of oscillation center, latitude on the aniso-
sphere and cumulative Airy precession, together with a
set of useful diagnosis graphs.

Figure 17 shows a graph of swing period as a function
of swing azimuth resulting from a stage (a) experiment
described in the preceding section. This graph has the
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Fig. 17. Period of a Foucault pendulum as a function of swing-
ing azimuth, according to stage (a) of the original experiment
of this work. The data are corrected for temperature and tem-
perature gradient along the wire. The values are retrieved by
software as an average over a 25-cycle interval centered on a
cycle always taken at the same swinging amplitude.

particular merit of giving directly the parameters corre-
sponding to the very definition of pendulum linear aniso-
tropy, namely the difference in extreme frequencies (from
the extreme periods) together with the slow and fast eige-
nazimuths. The standard error of estimate 0.6° (see insert
of Fig. 17) for the eigenaxes is quite sufficient as a guide
for designing experiments of stage (b). But above all, this
graph is among the most dependable methods of measur-
ing a pendulum’s amount of linear anisotropy averaged
over the time span necessary for the whole series of short
experiments to be completed.

Following the above three-day preliminary stage
ending on April 9, 2016, stage (b) consisted of a series of
71 longer experiments all initiated from a rectilinear state
at the world azimuth 60°. Figure 18 shows the result of
#53 of that series, realized on April 21.

First of all, the slow axis azimuth of (55.66° & 0.01°) is
clearly quite different from the value (44.8° +0.6°)
measured on April 7-9. As a matter of fact, without chang-
ing anything to the pendulum suspension, a general drift
toward higher azimuths has been observed from day to
day. Also, within a given day, eigenaxis fluctuations
apparently related to the outdoor temperature have been
observed. Those phenomena will be published separately.
Within the scope of the present work, note that the slow
axis azimuth is very accurately obtained by fitting a
cosine function to the data around the minimum of the
phase circle latitude on the anisosphere (Fig. 18). This
method really seems indisputable on the basis of KO
theory, assuming the pendulum to act as a 2-D harmonic
oscillator.

Harmonic oscillator behavior is best realized by long
pendula at low amplitude, or by short pendula at
extremely low amplitude as in KO’s thesis. However, real
pendula all show nonlinear behavior to a certain extent.
As it will be shown in part II of this work, nonlinearity
results in a phase curve on the anisosphere that departs
from the circular shape. In the example of Figure 18,
the consistency of the 681 cycles that led to the close

05 Date: 2016-04-21

0 + + + =t

90 -60 -30 0 30 60 90
World azimuth (degrees ccw from North)

Anisosphere latitude (degrees)
3

World azimuth (degrees ccw from North)
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01 | \\ / ]
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o
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o
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Slow axis azimuth:
55.66° +0.01°

Fig. 18. Adjustment of a cosine function to the experimen-
tal data points translated to latitudes on the anisosphere,
according to stage (b) of the original experiment of this work.
For graph clarity, only one cycle every half degree is shown,
although 681 consecutive cycles are included in the curve fit-
ting. The dot diameter represents 4o, so that 95% of the dots
make contact with the theoretical curve. The insert shows the
equivalent of Figure 16, the extrapolated part of the curve
being based on the short interval of measured values between
the azimuths 49° and 60°. Slow axis determination benefits a
gain in precision by 2-3 orders of magnitude over KO’s method.

fit illustrated there should lead to a phase circle tilted,
with respect to the anisosphere equatorial plane, at the
angle (90° —7n) = tan~! ((wx — wy) /2p) from which the
amount of linear anisotropy can be obtained. Of course,
such huge extrapolation as illustrated by the insert of
Figure 18 is not a dependable method of measuring linear
anisotropy, contrary to the direct procedure of Figure 17.
However, the fit of Figure 18 actually consists of a cosine
with a period of 180° and an amplitude dictated by the
result of Figure 17, plus 3.5% of a single higher harmonic
content. In this case, therefore, the phase curve on the
anisosphere is a slightly distorted circle. Its departure from
the perfect circle becomes a way of assessing the amount
of nonlinearity present in the Pendularium setup.

7 Conclusion

Based on the equations of motion derived by Kamerlingh
Onnes for the 2-D pendulum, the anisosphere has been
introduced as a new graphical method to describe and
analyze such pendula. This part I of anisosphere descrip-
tion has dealt with harmonic oscillators, a situation cor-
responding indeed to very few implementations of real
pendula, but constituting a passage obligé before address-
ing the more sophisticated study of nonlinear oscillators.
The high performance pendulum built by KO in 1879
as well as some long Foucault pendula at low amplitude
are among those that may qualify as linear oscillators.
Through re-analysis of KO’s thesis using the anisosphere,
the outstanding visualizing power of that new approach
has been demonstrated. The largely hermetic canonical
equations describing Foucault pendulum motion as well
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as the hard to visualize conditions at the origin of the
different classes of Foucault pendulum experiments all
take a new significance when illustrated on the aniso-
sphere. Thanks to anisosphere analysis, it has been shown
that KO theory was far better obeyed in his own
experiments than he could himself imagine. Some of his
questions about unreliability of certain experimenting
situations have received an answer, especially the new dis-
covery of sudden breaks in anisotropy properties of his
pendulum in the course of a given experiment.

By representing the anisotropy character of a given
pendulum implementation on the anisosphere, a new
experiment strategy could be elaborated. The search for
anomalies in pendulum behavior when the instrument is
submitted to various types of perturbation finally boils
down to recording changes in the anisotropy properties of
the surrounding pendulum potential well. A very efficient
method of measuring the azimuth of the anisotropy axes
has been presented. Coupled with modern electronic
devices for recording the pendulum physical parameters at
each cycle of oscillation, the anisosphere approach permits
an exhaustive exploitation of all the redundant recorded
information to determine the anisotropy axis position with
unprecedented accuracy. In this way, any minute change
in pendulum anisotropy can be monitored precisely. Now
that a systematic method of conducting pendulum
experiments has been established, it is hoped that all the
various experimenters will take advantage of this to
develop standardized experiments allowing credible com-
parisons between sites and epochs. In the upcoming part
IT of this work, nonlinearity analysis with the help of the
anisosphere will be introduced. It will be applied in ret-
rospect to the impressive work of Maurice Allais with his
paraconical pendulum. This highly nonlinear instrument
was the heart of an outstanding research program con-
ducted by a man well ahead of his time. It is hoped that
the anisosphere analysis of his data will shed a new light
on his experimental results.

The author is deeply indebted to Thomas J. Goodey for inde-
fectible collaboration, very pertinent suggestions and for soft-
ware development. Beneficial discussions with Jean-Bernard
Deloly are gratefully acknowledged, as well as access to a draft
translation of Kamerlingh Onnes’ thesis by Victor O. de Haan.
Finally, the original measurements reported in this work were
skillfully performed by Dimitrie Olenici in his Pendularium.
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