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Abstract. It is customary to describe the behaviour and stability of oscillators with the 
help of phase space representation. However, two-dimensional (2D) oscillators like the 
Foucault pendulum call for a 4D phase space that is not simple to visualize. Applying 
celestial body perturbation theory to the Foucault pendulum in his doctor dissertation, 
Nobel laureate Kamerlingh Onnes showed that the essential features of a Foucault 
pendulum are its inherent circular and linear anisotropies. A spherical differential 2D sub-
space can be defined, where the group of the points of a spherical surface with respect to 
the operation  rotation about a diametral axis is isomorphic with the group of sequential 
states of oscillation of a 2D pendulum with respect to the operation translation in time. 
Any Foucault pendulum is then characterized by two elliptical eigenstates which are 
represented by the poles of that rotation axis on the so-called anisosphere. Such poles play 
the role of attractor/repellor when “dichroic” damping is present. Moreover, they move 
drastically within a meridian plane when nonlinear restoring torque giving rise to Airy 
precession occurs. The concept of anisosphere constitutes a very powerful tool for 
analysing and optimizing actual Foucault pendulum implementations. That feature is 
illustrated by a numerical model. 

1. Introduction 
Textbooks and research articles usually represent the behaviour and stability features of one-
dimensional (1D) pendulums with the help of 𝜃-𝜃̇ phase space [1,2]. For n-multidimensional 
systems like double pendulums or synchronizing Huyghens clocks, a subspace of the 2D or 2nD 
phase space must be chosen for graphical representations. A typical example of such a subspace is 
the Poincare map [3] representation. In spite of its apparent simplicity, a Foucault pendulum is a 
very sophisticated compound pendulum incorporating some flexible parts and for which as many 
as twelve degrees of freedom have been identified [4]. In its simplest idealization (for instance, 
Bravais’ conical pendulum [5]), a Foucault pendulum in a rotating reference frame can be regarded 
as a 2D linear oscillator (linear pertaining here to differential equations) with two non-degenerate 
circular orbits or eigenstates at slightly different clockwise (cw) and counter clockwise (ccw) 
rotating velocities with respect to the rotating laboratory frame (circular anisotropy, an analogue 
of circular birefringence or optical activity in optics). According to that model, a rectilinear or 
planar oscillation resolved into those two circular eigenstates should remain rectilinear and 
undergo a mere precession of its swinging azimuth. However this model failed to describe real 
pendulums, which all show a tendency to develop elliptical orbits after a few minutes of operation. 
Kirchhoff finally addressed the problem by making it the thesis subject of his student Heike 
Kamerlingh Onnes (KO) [6]. The new essential feature introduced by KO is the unavoidable 
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variation of swinging frequency as a function of swinging azimuth for rectilinear oscillations 
(linear anisotropy, an analogue of linear birefringence or double refraction in optics). Therefore, in 
any physical implementation of a Foucault pendulum, simultaneous presence of circular and linear 
anisotropies must be dealt with, both of which are orthogonal properties in the mathematical sense. 

KO’s pioneering work was based on the Hamiltonian of the pendulum orbit in the earth 
gravitational field and on perturbation methods used, until then, exclusively for the orbits of 
celestial bodies [7]. Since his pendulum incorporated a suspension on crossed knives, he also 
addressed the problem on uneven wear of the knife edges causing differential damping factors and 
a corresponding contribution to linear anisotropy. The name mechanical dichroism is proposed for 
that phenomenon, in analogy with dichroism in crystal optics [8]. KO recognized that the output of 
his mathematical treatment can be illustrated on a sphere, since his formalism involved equations 
of spherical trigonometry. He could associate each elliptical orbit of the pendulum to a great circle 
on a sphere, his so-called characteristic circle. The evolution of the pendulum ellipses with time 
was associated with a precession of that great circle on the sphere, as if that great circle would 
delimitate a disk wobbling on a plane surface. The great circle parallel to this plane surface was 
named time circle. Finally, a third great circle (lengtecirkel), freely translated by this author as a 
longitude circle along which the angular measure is twice the swinging azimuth of the major axis 
of the ellipse, should be taken as the equator of the KO sphere.  

However, KO is not very loquacious about his graphical description and its sole figure 2 about 
the three great circles is not self-explanatory, to say the least. Incidentally, it is only after the 
concept of anisosphere [9] had been elaborated that this author was in a position, in retrospect, to 
interpret the KO sphere representation, after realizing that the anisosphere is, in the mathematical 
sense, a dual of the KO sphere. Indeed, a great circle on the KO sphere corresponds to its two 
poles (or symmetry axis) on the anisosphere, and vice versa. However, the reverse correspondence 
from poles to circles has not been exploited by KO, while it is very rich in information on the 
anisosphere. Some essential features of the anisosphere are recalled in appendix A. In a sense, the 
anisosphere appears more universal than the KO sphere, for it is also an analogue of the Poincaré 
sphere [10,11] used in crystal optics for representing the elliptical states of polarized light 
propagating through anisotropic media. The analogy stands in the fact that the group operation 
rotation about a diametral axis on the Poincaré sphere corresponds to the group operation 
translation in space for elliptically polarized light, while it corresponds to the group operation 
translation in time (evolution) for the pendulum elliptical orbits. 

In a previous article [9], the anisosphere concept has been introduced and tested with the help 
of cases where the linear oscillator approximation can be considered. The most immediate source 
of dependable experimental data is KO’s thesis itself, since his pendulum was operated at 
amplitudes small enough for the sinusoidal restoring torque to be considered linear. The output of 
that re-analysis of KO’s thesis with the anisosphere is 2-fold:  

• despite the very high degree of sophistication of KO’s instrument (operation in partial 
vacuum, adjustable anisotropy in amount and direction, adjustable moments of inertia, 
remote measurements of azimuths and of minor and major axis amplitudes with the 
help of a cathetometer), KO mentioned, and the anisosphere confirmed, that his 
pendulum was very noisy, so that extensive statistical procedures were needed to make 
sure that his theory was verified at least on the average; 

• as in the case of other types of linear oscillators [2,12], very-low-frequency noise 
predominates (pink noise) in the form of sudden changes in anisotropy parameters, so 
that within each intermittent anisotropy regime lasting for many tens of minutes, KO’s 
law is obeyed in a deterministic manner with far better accuracy than KO himself could 
appreciate. 

This has established the role of the anisosphere as an efficient graphic solver based on the 
parametric equations derived by KO for predicting the behaviour of a 2D harmonic oscillator. In 
this paper, KO’s 2-D linear oscillator theory is applied on a differential basis in a scheme of 
numerical integration. It becomes possible in this way to analyse the behaviour of highly nonlinear 
pendulums in terms of Airy precession. In a final section, the consequences of angular damping 
gradient in terms of mechanical dichroism are analysed using some of KO’s experiments.  
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2. Foucault pendulum environment 
The driving torques acting on a 2D pendulum can be of many different natures. Since the present 
work deals exclusively with un-sustained pendulums, any torque of magnetic, electrostatic, 
electrodynamic or electromagnetic nature is ruled out of this analysis. Whenever an influence of 
such nature is explicitly introduced, its effect can of course be calculated as a perturbation to the 
basic pendulum. Crane [13] has built a spherical pendulum operating in a magnetic field and Hecht 
[14] has described it via perturbation theory. Pippard [15] has already addressed an impressive list 
of perturbing influences that can affect a Foucault pendulum, free running as well as 
parametrically maintained.  

Among the suspension types commonly used for Foucault pendulums, KO [6] used the crossed 
rocking knives, Allais [16] and Goodey [17,18] used a ball rolling on a plane (paraconical 
pendulum) and Verreault [19] used the piano-wire-in-chuck suspension or cantilever under 
traction. Each type of suspension may lead to suspension anisotropy. The rocking knives may 
rotate about horizontal axes at different heights and with different radii. There are fixed parts in a 
given azimuth as opposed to rocking parts causing a different moment of inertia at 90° thereof. 
The paraconical pendulum may roll on a tilted plane or be attached to a twisting beam, not to 
mention the bob consisting of a vertical disk used by Allais on purpose. An originally curled piano 
wire under traction generally fails to achieve circular cross-section by a few percent, thus 
presenting elastic properties, and possibly dissipative motion near the chuck exit, that vary with 
azimuth. The chuck lack of verticality may also have a small influence. 

2.1. Ideal Foucault pendulum.  
First of all, it must be emphasized that circular anisotropy of the Foucault type does not involve a 
physical potential well. It is of purely kinematic nature, as a result of inertia with respect to the 
rotating reference frame of the laboratory. Such an ideal Foucault pendulum undergoes pure 
precession at a constant rate. The second time derivative of precession angle being zero means that 
there is no restoring torque in precession. The differential equation for the precession angle  𝜓̇ =
𝑐&  has only a secular solution:  
	 𝜓 = 𝑐&𝑡 + 𝑐*	 (𝑐&, 𝑐*	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠).  

On the anisosphere, the fast eigenstate of an ideal Foucault pendulum in the Northern (or 
Southern) earth hemisphere is the lower pole R (or respectively the upper pole L). For an initial 
rectilinear oscillation, 𝑃4 is on the anisosphere equator. 𝑃(𝑡) remains on the equator at all times 
and the phase circle (see appendix A) is the equator itself. This means that the oscillation remains 
rectilinear and its azimuth decreases (or increases) steadily. If the initial orbit 𝑃4 is any cw or ccw 
ellipse, then 𝑃(𝑡) describes a small circle parallel to the equator: the ellipse shape and sense both 
remain unchanged while the azimuth of the major axis decreases (or increases) steadily at the local 
Foucault rate. Since a complete cycle of longitude on the anisosphere runs over 360°, the 
corresponding Foucault period of phase difference is 360°/92𝜓̇;<, namely the time needed for the 
pendulum to describe a total precession angle of 180° at the local Foucault rate 𝜓̇;, where 𝜓̇;̇ is 
typically in degrees per hour. In Groningen, the Foucault period of KO’s pendulum is 16.07 h. 
However, such an ideal Foucault pendulum cannot be realized in practice. All physical Foucault 
pendulum implementations end up with the concomitant unavoidable presence of a certain amount 
of linear anisotropy in combination with the Foucault circular anisotropy. 

2.2. The nature of suspension anisotropy 
Linear anisotropy originates from the extremal difference in the swinging frequencies for two 
orthogonal swinging azimuths. Apart from the restrictions enumerated at the beginning of this 
section, the swinging motion of all 2D pendulums is caused, to first order, by the vertical 
component of the terrestrial apparent gravitational acceleration. In the low-amplitude linear-
oscillator approximation, an ideal Foucault pendulum is assumed to possess a rotation symmetric 
paraboloidal gravitational potential well. However, for larger amplitudes, the actual spheroidal 
gravitational potential well must be considered. The paraconical pendulum implementations 
known to the author make use of rolling balls at least 6 mm in diameter. The gravitational potential 
well has then the shape of a rotation symmetric trochoidal surface. The corresponding nonlinearity 
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is slightly more pronounced than that of the sine function for the spheroidal well. The trochoidal 
gravitational well also applies to the crossed-knives suspension, since no knife can be infinitely 
sharp. In fact, all knives become dull with time, and generally not at the same rate. Nevertheless, 
the trochoid of knives is much closer to the spheroid than the trochoid of rolling balls.  

In so far as the piano-wire-in-chuck suspension is concerned, the flexion of the wire at the 
chuck exit contributes an elastic restoring torque whose effects are added over those of the 
gravitational torque. For long pendulums, the elastic potential energy may be considered negligible 
against the gravitational one, but for short pendulums, the elastic influence should be accounted 
for. In practice, the gradual flexion near the chuck exit results in a shorter effective pendulum 
length by typically ~3 mm for a 13 kg mass at the end of a 1 mm dia. wire. In accordance with 
common practice in coil spring industry, a wire life exceeding 10 million flexions is expected if 
the bending stress does not exceed 45% of the elastic limit [20]. Note that if the piano wire on the 
shelf was coiled tightly, straightening it may result in an elliptical cross-section and in significant 
suspension anisotropy [21]. 

Considering that linear anisotropy due to suspension asymmetry results in slightly different 
effective pendulum lengths for two orthogonal azimuths, and that the effective length for a given 
azimuth is the radius of curvature of the potential well cross-section containing that azimuth, linear 
anisotropy must be associated with a slight hyperboloidal deformation of the pre-existing rotation 
symmetric gravitational potential well. Consequently, suspension linear anisotropy must therefore 
be considered gravitational in nature. 

2.3. Bob asymmetry.  
If the oscillating mass does not show revolution symmetry about the local vertical when at rest, 
then a linear anisotropy contribution arises as soon as the oscillation plane differs from one of the 
symmetry planes of the bob. The rate of phase change between oscillation components 
respectively along the fast and the slow bob eigenaxes is 

																																																															𝛿̇ = 𝜔? − 𝜔A = 𝜔B
(𝐼A − 𝐼?)

2𝐼 ̅
		.																																																							(1) 

Y is the swing azimuth aligned with the bob’s largest moment of inertia. 
Then, KO precession is initiated at once toward the slow eigenaxis Y. However, if the spin 

degree of freedom on the bob is not hindered (contrary to the case of crossed knives suspension), 
and considering that there is a much smaller moment of inertia attached to the spin degree of 
freedom than those related to the two swing degrees of freedom, it is the bob that will spin to join 
the major axis of the ellipse. Once the ellipse major axis and the mobile bob Y axis coincide, each 
one of the minor axis value of the ellipse, of the spin velocity and of the opposite precession 
velocity of the ellipse major axis is maximal (spin-orbit coupling) while the linear anisotropy has 
momentarily dropped to zero. This dynamic situation goes on past the alignment of anisotropy axis 
and bob symmetry axis, due to inertia. Then the anisotropy changes sign and increases in the other 
direction. A reverse KO precession sets in until the azimuth difference between ellipse major axis 
and bob azimuth of maximum inertia becomes as large as in the initial state, but in a mirror 
symmetrical position on the other side of the coincidence azimuth. From then on, the reverse 
tendency brings the pendulum back to the initial situation, thus completing a complete KO cycle of 
bob spin oscillation.  

If the pendulum is free to spin without elastic restoring torque, as for the paraconical pendulum 
(rolling ball suspension), the above spin-orbit oscillation is governed by a strong local 
modification of the gravitational potential well. Indeed, the difference in moments of inertia is 
equivalent to a difference in length of the pendulum for two orthogonal directions, hence to a 
difference in radius of curvature of the gravitational potential well. Therefore, the spin-orbit 
coupling is also of gravitational nature. This spin-orbit behaviour has already been experimentally 
observed, and taken advantage of, by Allais [22]. 

If the suspension is of the piano-wire-in-chuck type, torsion of the wire enables the spin degree 
of freedom. However, on top of the gravitational restoring torque just described, an additional 
elastic restoring torque contribution also exists. This will result in a higher spin-orbit coupling 
potential energy and frequency.  
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At this point, it may be interesting to note that in absence of bob asymmetry, spin-orbit 
coupling still exists, due to conservation of angular momentum about the vertical axis. However, 
in this case, there is no potential well deformation and the solution is secular instead of periodic. 
For instance, when a paraconical pendulum is launched in a rectilinear azimuth, it is readily 
subject to the constant rate of cw Foucault precession, in the Northern earth hemisphere. 
Consequently, a spin at constant velocity in the ccw direction also sets in. This phenomenon has 
also been nicely illustrated by Allais [23], using a symmetrical spherical bob instead of the vertical 
disk with which he performed practically all his other experiments between 1954 and 1960.  

2.4. The Airy effect.  
The Airy effect [24] consists of a type of circular anisotropy arising from the spheroidal shape of 
the gravitational potential well. Airy first mentions that when the elliptical orbit of the pendulum is 
almost a circle (𝑏 ≈ 𝑎) [25], the orbit major axis undergoes a rotation (precession) in the same 
sense as angular velocity 𝜔 of the bob travel along the ellipse, at the particular rate 

																																																																												𝜓̇H =
3
8
𝜔
𝑎*

𝑙*
		.																																																																					(2)	

Later [26], he found out that that formula was not valid for low values of  𝑏/𝑎 . He derived the 
new formula valid for  𝑏/𝑎 ≪ 1 : 

																																																																													𝜓̇H =
3
8
𝜔
𝑎𝑏
𝑙*
		,																																																																					(3) 

and he assumed without proof that the latter formula should be valid for every axis ratio, since it 
merges into the first formula for 𝑏/𝑎 ≈ 1 . In fact, Olsson [27], applying Lindsted-Poincaré 
perturbation method to a 2D harmonic oscillator as the unperturbed starting system, proved the 
validity of Airy’s formula without any restriction on  𝑏/𝑎.  The same result was also obtained by 
Deakin [28] simply from dimensional analysis and symmetry considerations.  

3. Modelling the Airy effect 
On the anisosphere, circular anisotropy of the Airy type must be represented by an axial vector 
along the RL polar axis. Its magnitude is twice the Airy precession rate (2𝜓̇H), namely the rate of 
increase of the phase difference between the fast and the slow circular eigenstates. Since 
precession direction is in the same sense as bob travel along the ellipse, the Airy anisotropy vector 
is directed toward the faster lower pole R for cw ellipses, or toward the faster upper pole L for ccw 
ellipses. 

In order to figure out the effects of non-linearity of the restoring torque at high amplitude, it is 
very instructive to start up with KO’s original pendulum, which was operated at sufficiently low 
amplitude to be considered a 2D linear oscillator. Figure A4 shows a sequence of 8 states in the 
evolution of that pendulum over one complete KO cycle lasting 8.1 h. Note that despite the fact 
that the 360° Foucault phase cycle has a period 𝑇; = 16.07	h at Groningen, the presence of 
concomitant linear anisotropy in the amount 𝛿̇		shortens that phase cycle according to the 
expression 

																																																																		TOP =
2𝜋

R𝛿̇* + 92𝜓̇;<
*
			.																																																														(4) 

In the linear-approximation scheme, the evolution of pendulum states is represented on the 
anisosphere by a circular phase curve described at constant angular speed in the cw sense about the 
slow elliptic eigenstate N as centre. Indeed, the diameter MN characterizes the total anisotropy 
(circular plus linear) of the pendulum. The origin of longitudes 2𝜓 and latitudes 2𝜒 is taken at the 
slow rectilinear eigenstate Y, namely the azimuth of the major axis of the ellipse N. Figure 1 shows 
a plot of the phase curve for the 2D linear oscillator as a Lon-Lat graph. Since the centre N of the 
phase circle does not coincide with the origin of the plot, there is a strong distortion of this plot 
compared to the actual shape on the anisosphere. In order to give a truer appreciation of the shape 
of the phase curve on the anisosphere, it is more appropriate to utilize a stereographic projection of 
the anisosphere on a plane tangent to the sphere at the origin Y of longitudes and latitudes. 
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Figure 1. Lon-Lat plot of the phase circle for  
KO’s pendulum at 1 mm amplitude  
(0.0007 rad) on the anisosphere. Since the 
circle centre N does not coincide with the 
origin Y, the phase circle appears distorted on 
a Lon-Lat plot. The large dots represent the 9 
ellipses of the example of KO in figures A3 
and A4. 

 Figure 2. Stereographic projection of the 
phase circle on a plane tangent to the 
anisosphere at the slow eigenstate Y, the 
projection pole lying at the fast eigenstate X. 
The exact circular shape of the phase curve 
for the 2D linear oscillator can be appreciated 
in that type of projection. Amplitude: 0.0007 
rad; time step: 900 s; one cycle of precession 
per 8.1 h. 

 

 

 
Figure 3. Stereographic projection of the phase 
curve for amplitude 40 mm (0.029 rad). The large 
dots illustrate how the eight original hourly ellipses 
of KO have been altered by the nonlinearity of 
Airy effect. Time step: 455 s; approx. one pseudo-
cycle of precession per 4 h.  

 Figure 4. Stereographic projection of 
the phase curve for amplitude 140 
mm (0.1 rad). Time step: 100 s; one 
pseudo-cycle of precession per  
1h 18m. 

 

 
Although the stereographic projection does not preserve distance scales along a given circle 

arc, it preserves the angles and the shapes locally. In this way, KO theory stating that the phase 
curve of the 2D linear oscillator should be a circle can easily be verified using the low amplitude 
case of figure 2. In that figure, the coordinate axes are obtained from the Lon-Lat coordinates 2𝜓 
and 2𝜒 via the stereographic (subscript s) transformation equations 

 

𝑋V =
2 𝑠𝑖𝑛 2𝜓 𝑐𝑜𝑠 2𝜒
1 + 𝑐𝑜𝑠 2𝜓 𝑐𝑜𝑠 2𝜒

	,	



International Conference on Mathematical Modelling in Physical Sciences

IOP Conf. Series: Journal of Physics: Conf. Series 1141 (2018) 012063

IOP Publishing

doi:10.1088/1742-6596/1141/1/012063

7

 
 
 
 
 
 

𝑌V =
2 𝑠𝑖𝑛 2𝜒

1 + 𝑐𝑜𝑠 2𝜓 𝑐𝑜𝑠 2𝜒
	.	

The reverse transformation is given by 

2𝜓 = 𝑠𝑖𝑛Y& Z
4𝑋V

94 + 𝑋V* + 𝑌V*< 𝑐𝑜𝑠 2𝜒
[	;	

2𝜓 = 𝑠𝑖𝑛Y& Z
4𝑌V

4 + 𝑋V* + 𝑌V*
[	.	

Nonlinearity of the Airy type results  
• in a collapse of the phase curve onto the anisosphere equator; 
• in a shorter phase cycle due to acceleration of precession via the added Airy 

contribution; 
• in an open phase curve spiralling outward from the linear-anisotropy slow eigenstate Y 

acting as a repellor. 
These features can be observed in figures 3 and 4. Looking more closely at the pendulum’s 

behaviour, it is seen that on starting the pendulum in a rectilinear oscillation (point 0), the initial 
tangent to the phase curve is the same as in the linear-apporximation case, since the initial axis 
ratio /𝑎 = 0 . With the initial azimuth on the positive side of state Y and with the pivot state N 
lying in the upper hemisphere, cw ellipses belonging to the lower hemisphere are first developed. 
However, as soon as cw ellipses appear, more and more Airy precession rate adds up to the 
constant Foucault rate. Then the MN axis changes orientation, within the meridian plane 
containing states X and Y, in such a way that M approaches R, N approaches L and MN becomes 
more and more parallel to the polar axis RL. This situation results in a longer radius of curvature 
for the phase curve as the axis ratio increases negatively, while the total precession rate increases. 
Therefore, the phase curve is flattened and remains closer to the anisosphere equator than the 
lower branch (red dotted circle arc below the equator) of the low-amplitude phase circle. Once the 
phase curve has crossed the equator upwards on the negative azimuth side of state Y, there is a 
sudden reversal of precession rate within a few time steps. This happens because, after the slow 
state azimuth Y has been crossed, Airy precession rate becomes smaller and smaller until it 
changes sign by equator crossover of the phase curve and completely compensates the Foucault 
rate a few time steps later. Then the two eigenstates M and N swap hemispheres as the total 
precession rate also changes sign. As time goes on, eigenstates M and N swap hemispheres back 
again so that a complete cycle of alternating precession rates has been achieved, albeit without 
repeating exactly the same sequence of ellipticities. Indeed, in the nonlinear case, the phase curve 
is no longer closed: it rather describes an increasing spiral about the slow linear anisotropy 
eigenstate Y. The more nonlinearity there is, the shorter the pseudo cycles of the phase curve. In 
the examples of figures 2, 3 and 4, the phase cycle (or rather pseudo-cycle) goes from 8.1h for 
0.0007 rad amplitude down to ~4h for 0.029 rad amplitude and finally to 1h 18m for 0.1 rad 
amplitude. 

4. Dichroic damping 
Anisotropic linear damping is a well-known phenomenon in crystal optics [8, 11]. The mechanical 
equivalent in pendulums has been observed and calculated via perturbation methods by KO [6]. In 
optics, the extreme case of dichroism is met with Polaroid filters, as only one of the eigenstates of 
polarized light gets significantly transmitted by the pellicle of optical material. Similarly, 
anisotropic damping in a 2D pendulum gradually favours the most lossless eigenstate, which 
becomes an attractor while the most absorbed state becomes a repellor. 

The best illustration of that phenomenon with the anisosphere is obtained from the data of 
KO’s thesis. Since KO was annoyed by his rocking knives becoming dull at different rates, he 
planned all his significant experiments in pairs, operating once in the azimuthal vicinity of the 
slow elliptic eigenstate N and right after, with intentionally the same characteristics of inertial 
anisotropy, in the azimuthal vicinity of the fast elliptic eigenstate M, taking the average of the pair 
in order to eliminate the dichroic effect as much as possible. Figures 5 and 6 show the individual 
results for such a pair, namely Experiments A-I and A-II of KO’s thesis. It is seen that, contrary to 
strict KO theory according to which the phase curve should be a circular closed curve cw around 
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the slow elliptic eigenstate N or ccw around the fast elliptic eigenstate M, differential damping 
forces the representative point to describe an outward spiral around the repellor N and an inward 
spiral around the attractor M. Experiments A-I and A-II were each performed over a time span of 
approximately 3 hours. Assuming that an experiment such as A-II could be pursued without time 
restrictions, the anisosphere model states that the trace of the pendulum representing point 
describing the phase curve would spiral around the anisosphere from the slow elliptic eigenstate N 
until the fast elliptic eigenstate M, as would the trace of a knife peeling an apple in one shot from 
the pedicel all around until the remnants of calyx. 

 
 

 
 

  
 Figure 5. Stereographic projection of the 

phase curve for KO’s experiment A-II on a 
plane tangent to the anisosphere at the equator 
near the slow elliptic eigenstate N.  

Figure 6. Stereographic projection of the 
phase curve for KO’s experiment A-I on a 
plane tangent to the anisosphere at the equator 
near the fast elliptic eigenstate M. 

 

5. Discussion 

5.1.  Linear oscillators 
In the above sections, the anisosphere model has been applied to a linearly anisotropic Foucault 
pendulum operating in the Northern earth hemisphere. Any physical implementation of a Foucault 
pendulum is characterized by the simultaneous presence of circular and linear anisotropy. Linear 
anisotropy makes things really complicated when quantitative measurements need to be performed 
with the help of a Foucault pendulum. The anisosphere model enables one to easily visualize the 
evolution of such a pendulum experiment. In particular, the anisotropy characteristics of said 
pendulum are very simply described in the form of a diametral rotation axis MN across the 
anisosphere model, in such a way that the two surface points M and N represent the only elliptical 
(orthogonal) pendulum oscillations that still remain unaltered with time, the so-called elliptic 
eigenstates. More generally, any pair of diametrally opposed points on the anisosphere represent 
orthogonal states. In particular, the diametrally opposed points X and Y on the equator at 
longitudes 2𝜓 = 180° apart represent respectively the azimuths, 90° apart, of the fastest (X) and 
the slowest (Y) rectilinear oscillations of the bob. X and Y are at the same time the respective 
azimuths of the major axes of the eigen-ellipses M and N. 

It has been shown that at low enough amplitudes, the time sequence of the pendulum oscillation 
states is represented on the anisosphere model by a small circle centred on the MN rotation axis. 
The representing point of the pendulum state actually rotates, as time goes on, along that circle in a 
cw sense around pendulum’s slow elliptic eigenstate N, or in a ccw sense around the pendulum’s 
fast elliptic eigenstate M, when looking onto the anisosphere surface from a bird’s eye point of 
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view. If such a low amplitude linearly anisotropic pendulum were operated at the earth equator 
where Foucault circular anisotropy disappears, the anisosphere model allows one to readily 
visualize what the instrument will do. The MN rotation axis merges into the XY diametral axis. All 
the possible phase circles are in planes normal to the XY diameter. The duration of the KO cycle 
would now be given by  𝑇OP = 2𝜋/𝛿̇ . For instance, if the initial rectilinear oscillation has an 
azimuth 45° higher than the slow state Y, the initial representative point is at a longitude 90° on the 
anisosphere equator. The phase circle is then the great circle halfway between states Y and X and 
passing through the anisosphere poles R and L. Right from the start, cw ellipses develop for ¼ KO 
cycle with constant major axis azimuth +45° , but with steadily decreasing latitude 2𝜒 until 2𝜒 =
−90°, corresponding to the cw circular orbit. Then there is a sudden discontinuous jump of major 
axis azimuth from+45°	to − 45° occurs. From then on, major axis azimuth remains −45° for one 
½ KO cycle while cw ellipses become thinner, merge through a rectilinear state with azimuth 
−45° into fatter and fatter ccw ellipses with major axis at −45° until a ccw circular orbit appears 
at ¾ KO cycle (2𝜒 = +90°). Then the major axis swaps back to +45° and ccw ellipses become 
thinner until the original rectilinear state at +45° azimuth is reached after one complete KO cycle. 

For other starting azimuths at the earth equator, all the phase circles on the anisosphere are 
small circles normal to the XY diameter and described in the cw sense about the eigenstate Y or in 
the ccw sense about the eigenstate X, whichever is closer to the initial azimuth. In those cases, no 
circular orbit is possible. There is some precession of the major axis in such a way that, after ¼ 
and ¾ KO cycle, the major axis azimuth of the fattest ellipse reached coincides with Y or X, 
whichever is closer to the initial azimuth.  

So far, only 2D linear oscillators have been discussed. Incidentally, the anososphere model can 
be applied not only to pendulums but to any kind of linear oscillator with two degrees of freedom. 
This may include two coupled 1D pendulums (Huyghens clocks), wheel suspensions of 
automobiles, planar triatomic molecules, etc. 

5.2. Airy effect 
It is a well-recognized fact by every serious experimenter with Foucault pendulums that this 
apparently so simple instrument proves to be very noisy as soon as precision measurements are 
attempted. A simple glance at every graph in Allais’ book [11] is enough to convince anybody. 
KO himself was obliged to deploy a wealth of imagination in order to attain some reasonable 
precision in determining the local Foucault precession rate for Groningen. As it can be inferred 
from figure 5, the scatter of the experimental points was attributed at that time mainly to the 
uneven wear of the knife edges. However, a recent reanalysis on his data with the anisosphere 
model [9] has led to the observation that the anisotropy environment aimed at by design was often 
abruptly modified without control during the course of a typical 3-hour experiment. Fortunately 
however, KO’s precautions to stay clear of perturbing Airy precession have been successful. 

On the other hand, with the help of his anisotropic paraconical pendulum, Allais was 
specifically dedicated at nailing down the anisotropy changes of the pendulum environment. For 
that purpose, he circumvented the difficulty of measuring very small ellipticity changes by 
exploiting sensitive Airy precession changes associated with the anisotropy induced ellipticity 
contributions. In order to correctly interpret his results, it is therefore of the utmost importance to 
be able to count on a dependable model for the Airy effect in his experiments. The unavoidable re-
analysis of his data with the anisosphere model is beyond the scope of this article. However, the 
ease with which nonlinear Airy precession can be modelled on the anisosphere should help 
present-day scientists to understand the logic behind his sophisticated experimental procedure, 
contrary to his contemporary physicists of the French Academy of Sciences who rejected his 
results from sheer lack of their own scientific knowledge about the pendulum. 

The results of figures 3 and 4 are obtained from a mere application of KO’s equations during 
each time step. Notwithstanding the low-frequency noisy character of any pendulum over a finite 
time lapse, the differential time scale filters out such noise and allows very dependable numerical 
integration of pendulum motion for analysing nonlinear phenomena. In a companion publication at 
this Conference, it will be demonstrated by this author how Allais routinely started his experiments 
on the left side of the phase curve of figures 3 and 4, right at the crossing point of the anisosphere 
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equator and just before the turning point in precession. His 14-minute long enchained runs merely 
covered the part of the phase curve where precession turns about. It will be shown that the final 
azimuth of such a short experiment is strongly dependent on the azimuthal distance of the slow 
eigenaxis azimuth Y on the anisosphere. Allais could in this way monitor the wandering of the 
slow eigenaxis azimuth in accordance with the position of neighbouring celestial bodies (Moon, 
Sun …) during the year. 

At the moment of this writing, it is not yet clear whether the fact that the phase curves on 
figures 3 and 4 are not closed is real or simply an artefact due to the rather coarse time steps of the 
numerical integration. Unfortunately, time availability did not allow this author to experiment 
exhaustively with very small time steps before submitting the paper. There is indeed indication 
from a recent work with an optical analogue of the anisosphere, namely the Poincaré sphere with 
coordinates in terms of some of the Stokes parameters [11, 29], that the phase curve of Airy 
precession should a closed curve with the exact shape of the intersection curve between the sphere 
and a paraboloidal cylinder. More experimentation is needed on that subject.  

However, it must be emphasized that theoretical studies with the Hamiltonian formalism deal 
strictly with conservative systems. Real pendulums with paraconical suspension involve a third 
degree of freedom (spin) which interacts with precession but is not represented on the 2D 
anisosphere surface. It is conceivable that the introduction of spin-orbit coupling in the modelling 
algorithm of this work would involve borrowing energy from the precession degree of freedom.  

6. Conclusion 
It has been found that the anisosphere model proved very effective and simple in describing the 
subtle motions of a Foucault pendulum. The evolution of pendulum states in the form of a 
sequence of elliptical orbits corresponds to simple features on the surface of the anisosphere, 
namely the representative phase curve. Moreover, the specific anisotropy characteristics of a given 
pendulum implementation define on the anisosphere a unique diametral rotation axis whose poles 
represent the elliptical eigenstates (pendulum orbits) which remain unaltered with time. Complex 
phenomena like angular damping gradient and nonlinear Airy effect can be very simply modelled 
and visualized with the anisosphere. The novel anisosphere tool makes it now possible to re-
analyze highly misunderstood historic experiments. The same tool now enables one to carefully 
design and analyse future experiments in order to achieve particular measurement goals. The 
anisosphere model is not just another one of many theoretical approaches that elegantly describe 
pendulum behaviour. It finds actual practical use as an algorithm to evaluate routine pendulum 
experiments in quasi-real time and to conduct well planned research programs. 
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Appendix A. Essential features of the anisosphere model 
Each oscillation state or orbit of the pendulum bob, as described by figure A1, corresponds to a 
point P on the surface of the anisosphere of figure A2. The evolution of the orbit orientation and 
shape as a function of time results in a particular curve, the phase curve, described by the 
representative point P on the anisosphere. 

The equator of the anisosphere is the locus of the points representing planar pendulum orbits 
projected as rectilinear oscillations on a horizontal plane, in such a way that the longitude along 
the equator equals twice the swinging azimuth 	; (0 ≤ 𝜓 < 180°). Therefore, orthogonal azimuths 
parallel to the respective axes of a laboratory coordinate system XY will determine on the 
anisosphere equator the longitudes of two diametrically opposed points, X and Y. The longitude 
2𝜓 is counted positive ccw when looking toward the anisosphere centre from above its upper  
pole L.  
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The latitude 2𝜒 of point P is twice the inverse tangent of the minor-to-major axis ratio of the 
ellipse. Positive latitudes (upper hemisphere) represent ellipses described in the ccw direction by 
the bob. Then pole L represents a ccw circular orbit. Similarly, the lower hemisphere represents all 
the cw ellipses and the lower pole R represents a cw circular orbit. 

Figure A3 is a composite of figures 5 and 6 in KO’s thesis where, contrary to the adopted 
conventions for the anisosphere, the fast and slow eigenaxes are labelled y and x respectively. The 
anisotropy characteristics leading to the 9 orbits of this example have been incorporated into the 
anisosphere of figure A4. The initial state labelled 0 is rectilinear at an azimuth 17.5° higher than 
the slow eigenaxis azimuth Y (or x in KO’s original figure). It is seen that the orbit major axis 
oscillates about the slow axis, so that orbit 8 finally falls back onto orbit 0.  

The parameters of KO’s pendulum for pure circular anisotropy are incorporated into figure A4 
as axial angular velocity vectors proportional to the rates of increase of the phase difference 
between the two components of any oscillation resolved along the appropriate eigenstates, namely 
the ccw (L) and cw (R) circular orbits. Those for pure linear anisotropy are incorporated as vectors 
lying in the equatorial plane along the diametral axis XY. Pure circular (Foucault) anisotropy is 
represented by the polar vector whose magnitude is the rate of phase change 2𝜌̇ (twice the 
Foucault precession rate) and which is pointing toward the faster circular eigenstate R. Pure linear  

 
  

 

   

Figure A1. Pendulum orbit as seen from 
suspension point. The parameters of orbit 
orientation are referred to the linear anisotropy 
axes. X represents the fast eigenaxis, namely 
the azimuth of shortest swinging period.  

Figure A2. The ccw ellipse of figure A1 is 
represented by the surface point P whose 
longitude is twice the azimuth measured from 
the fast axis X, and whose latitude is twice the 
inverse tangent of the minor-to-major axis 
ratio. 

 
anisotropy is represented by the equatorial vector whose magnitude is 𝛿̇ = 𝜔? − 𝜔A = 2𝜋(𝑇A 	−
𝑇?	)/𝑇*, and which is pointing toward the faster rectilinear eigenstate X . 

The effect of pure circular anisotropy of the Foucault type in the Northern earth hemisphere is a 
rotation of the representative point P about the polar axis in a ccw sense when looking toward the 
centre from above the faster eigenstate R (bird’s eye view), or a rotation of the representative point 
P about the polar axis in a cw sense when looking toward the centre from above the slower 
eigenstate L.  

The effect of pure linear anisotropy is a ccw rotation of the representative point P about the 
equatorial axis XY when looking toward the centre from above the faster eigenstate X, or a cw 
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rotation of the representative point P about the equatorial axis XY when looking toward the centre 
from above the slower eigenstate Y. 

When both types of anisotropy are present, the two angular velocity vectors add up to yield a 
resultant along a new diametral axis joining the elliptical eigenstates N and M, with magnitude Δ̇ =
fδ̇* + (2𝜌̇)*h1/2 and pointing toward the faster eigenstate M. The effect of such elliptical anisotropy 
is a ccw rotation of the representative point P about the diametral axis MN when looking toward 
the centre from above the faster eigenstate M, or a cw rotation of the representative point P about 
the diametral axis MN when looking toward the centre from above the slower eigenstate N.  

The three situations above strictly apply to the 2D linear oscillator. P describes then a small 
circle centred on the diametral axis, the phase circle, since the increasing rotation angle is the 
increasing phase difference between the fast and the slow eigenstates as time runs. It will be shown 
in further publications that for 2D nonlinear oscillators, the phase curve is no longer a small circle 
and, in some cases, not a closed curve.  

 
 

 

 

 

              (a)                                    (b) 

Figure A3. Composite picture from figures 5 and 
6 in KO’s thesis, with the anisotropy parameter  
𝜓i = 30° and the initial condition parameter 𝜀 =
135°. The ellipses have been re-annotated for 
better legibility. KO’s x-axis was the slow 
eigenaxis (point Y on the anisosphere). Linear 
anisotropy amounts then to √3 times the amount 
of Foucault circular anisotropy in that example. 
Note that ellipses 2 and 5 have practically the 
same azimuth, and the same holds for ellipses 6 
and 7. (a) Normal sub-period with cw ellipses and 
precession in the Foucault sense. (b)  Abnormal 
sub-period with ccw ellipses and precession 
mostly in the anti-Foucault sense. 

 Figure A4. Perspective view of the 9 orbits of 
figure A3 on the anisosphere. 
𝜀 is the great arc distance from fast eigenstate 
M to point 0 representing the initial pendulum 
state. The orbit representative point travels cw 
at constant angular speed on the phase circle. 
The radius of the phase circle about the slow 
eigenstate N is a great circle arc equal to 𝜋 −
ε = 45°	. In this example, the phase period 
(or KO period) lasts for 8.03 h and comprises 
one normal sub-period (in red, lower 
hemisphere), monotonously in the Foucault 
sense, and one abnormal sub-period (in blue, 
upper hemisphere), where precession is 
against the Foucault sense for part of its 
duration. 
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