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1 Introduction 

In the abundant litterature on the spherical pendulum and in 
particular on the Foucault pendulum, the system generally con-
sidered consists of a point mass constrained to move on a spheri-
cal surface, when not projected on a horizontal plane. However if 
one is interested in studying very subtle perturbations of the 
spherical pendulum, it is necessary to deal with the "physical 
pendulum" altogether. An oscillating mass with 3-D extension 
usually lacks rotational symmetry about the spin axis, which is 
the line joining the instantaneous suspension point and the centre 
of mass, hereafter called the "bob", of the pendulum. The spin 
constitutes therefore an inherent third degree of freedom (df) for 
every physical pendulum. For the usual Foucault pendulum 
where a heavy mass is suspended by a metal wire, the third df 
takes the form of a torsion pendulum with a restoring torque 
originating from the elastic properties of the wire. However, for 
the ballborne pendulum of the Allais (paraconical) or Goodey 
type, [1][2] the spin motion is more complicated since there is es-
sientially no restoring torque, except for a very small rolling fric-
tion torque at the area of contact. Spin motion is nevertheless ob-
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served in practically every run, but to the author's knowledge, 
nobody, including Allais and Goodey, [1] has published on the 
subject. The experimental data suggest that there is a connection 
between the ellipticity of the bob orbit, the precession of the el-
lipse and the growth of an angle of spin. The purpose of this arti-
cle is to study that relation and to try to find out whether, accord-
ing to classical mechanics, it plays a role in the influence of the 
relative motion of the Earth, the Moon and the Sun on a 3-df 
pendulum. 

2 Theory 

In order to estimate the possible influence of the Moon, say, 
on the pendulum motion through tidal effects, one may first con-
sider the main tidal components over a few days interval. On 
such a short arc compared to the whole Earth orbit, the motion of 
the Earth-Moon centre of mass is considered rectilinear enough to 
be the origin of an inertial system. However, the centre of the 
Earth is also moving at 0,73 Earth radius from that origin. If ΩM is 
the orbital angular velocity of the Moon, the centripetal accelera-
tion of the Earth centre is 0,73rΩM2 , which, unlike the surface cen-
tripetal acceleration  rΩ2 , is neither constant nor included in the 
apparent gravitational acceleration g at the Earth surface. The 
three orders of magnitude ratio between the two justifies taking 
the Earth centre coordinate system as inertial. The ΩM2  term 
could be added in a refined study if necessary.  

As already pointed out by Munera, [3] the suspension point 
S is not a good laboratory reference for pendulum motion since, 
in a ballborne or paraconical pendulum for instance, S wanders 
somewhat erratically on a flat surface when the bob is moving. 
Even for a standard Foucault pendulum, the true height of the in-
tersection point S between the vertical and the wire centre line 
changes with the amplitude and with the azimuth (suspension 
anisotropy) of the oscillation. This is namely responsible for the 
Kamerlingh-Onnes ellipses and precessions which are observed 
in practically every physical pendulum. [4] Therefore, experimen-
tal measurements are best made with reference to some alidade 
centre C which is fixed relative to the earth surface. Figure 1 
shows the various vectors pertaining to that situation. The equa-
tion of motion in the laboratory system takes the form: 
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Figure 1. Pendulum geometry referred to the centre of the Earth. 

Equation (1) is equivalent to Allais' Equation (4), p. 127 of his 
book, [5] except for a change of the laboratory origin in favor of 
the alidade centre C instead of the suspension point S. 

It must be said at this point that the normal tidal effect due to 
the body i as the Earth rotates amounts to a periodical tilt of the 
local vertical at the ith synodic rotation period of the Earth, 
eventually including some harmonics. For a 20-meter Foucault 
pendulum at mid latitudes, the centre of the elliptical bob orbits 
will describe its own ellipse with semi-axes of the order of 0,1 
mm, under the influences of the Moon and the Sun. Such a tidal 
tilt would decenter a 1-meter pendulum by approximately 50 µm. 

3 Precession through gyroscopic effect 

The airplane pilot's way of looking at gyroscopic effects is: if 
you want the horizontal axis of a rotating disk (propeller) to point 
upwards as per pushing on the bottom part of the disk plane, the 
effect will be as if the same push were applied 90° farther in the 
rotation direction. A cw rotating propeller as seen by the pilot 
will precess toward the right on a nose-up command, and vice-
versa. This reasoning can be applied to the pendulum in each 
half-cycle as the Earth deviates the horizontally lying axis of 
swing at a steady rate. 
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Let us assume that a pendulum at the equator is swinging in 
a north-south vertical plane, after a start from the southern 
hemisphere at t = 0. The angular momentum vector about S is 
pointing eastwards for the first half-cycle. The Earth rotation is 
commanding "nose-down", so the pendulum will precess to the 
left. On the next half-cycle, the pendulum angular momentum is 
now point west and the Earth commands "nose-up". The result is 
a precession to the right exactly cancelling the effect of the 
preceding one. Hence the principal normal tidal effect due to the 
Moon and observable in the laboratory is:  

1° from Section 2: an extremely small alternating tilt of the 
vertical with a 12,4-hour period and an amplitude of  ~10-6 rad;  

2° from above: absolutely no net precession due to that tilt. 

4 Precession and elliptical orbits due to perturbations 

at the pendulum frequency ω 

Perturbations having a rigid phase relation with the pendu-
lum oscillation are especially prone to induce parametric amplifi-
cation of some of the parameters. For instance, parametric ampli-
fication of the b-axis results in the growth of elliptical motion. Us-
ing perturbation methods, Pippard wrote an illuminating paper 
on that subject. [6] He considers, on the right-hand side of the dif-
ferential equations, a perturbing force resolved into four compo-
nents as follows (index c for cosine, and so on): 

 tFtF asac ωω sincos +       along the major axis, (2a) 

 tFtF bsbc ωω sincos +        along the minor axis, (2b) 

It turns out that the force component in phase with the mo-
tion on any axis generates elliptical motion, while a component at 
90° out of phase with the motion on any axis generates preces-
sion. This is just a generalization of what happens with the Fou-
cault precession, where the Coriolis force is at 90° out of phase 
with the motion along the major axis. More precisely, the preces-
sion angular velocity is given by 

 ωε maFF acbsp 2)( +=Ω    (3) 

where ab=ε ; and the rate of growth of ellipticity is given by 

 ωεε maFF asbc 2)( −−=ɺ . (4) 



 Tidal accelerations and dynamical properties of 3-df pendula 5 

5 Lunar tidal effects on the pendulum 

In Equation (1), the tidal term from the Moon is )( MEM gg − . 

It is however pertinent to separate, as Allais did, the tidal contri-
butions at various frequencies: first a rapidly varying term at the 
period of the pendulum T=2π/ω , and second, a slowly varying 
term involving the Earth synodic period  TE ≈ 24,8 h  and the 
Moon synodic period TM ≈ 29,5 d.  For that purpose, let us define 
an intermediate point C as the centre of the pendulum orbit, 
which coincides with the instantaneous rest point of the bob if the 
swing amplitude were zero. Refining Allais' formalism,  one has 

 )()()( MEMSMSMMEM gggggg −+−=−     (Allais) (5a) 

 or  )()()()( MEMSMSMCMCMMEM gggggggg −+−+−=− . (5b) 

Allais' last term above has already been dealt with in Section 
3, at least for the Earth rotation period. It has been found that it 
results in tilting the vertical. So, added to any motion of the sus-
pension S at frequencies well away from pendulum resonance, 
point C will describe a tiny ellipse, submillimeter in size, which 
could possibly be modulated at the longer lunar obital period TM. 
That tilting should be measurable. There remains now the short-
period term, which can be interpreted with the help of Figure 2. 
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Figure 2. Tidal accelerations acting at the pendulum frequency (the vector mod-
ules have been exagerated for clarity). 

The main tidal accelerations experienced during the Earth 
rotation are indeed very slightly modified along the way by the 
fact that the pendulum oscillation superimposes the extremely 
small swing motion to the rapidly changing Moon-pendulum 
distance. Let the Moon-pendulum distance increase rapidly due 
to the Earth rotation entraining the laboratory away from the 
Moon and/or to the Moon orbit gaining altitude after its perigee. 
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The average acceleration MCg  decreases in a "smooth" fashion 

while the instantaneous bob acceleration  Mg   decreases more 

rapidly when the swing has a component away from the Moon 

and less rapidly when the swing is toward the Moon. This phe-

nomenon amounts to another tidal contribution exactly in phase 

with the pendulum swing along each axis (cosine terms in Equa-

tion 2). It could be measured, if large enough, in the lab coordi-

nates. Concerning the possibility of ellipse generation by the tidal 

tilting action, it is clear that the tilt tidal frequency is far too low 

to induce parametric amplification of b and, moreover, it is not 

commensurate with the pendulum period. So, the answer is no. 

Allais has properly recognized those situations on page 127 

of his book, [5] where he correctly neglects his term 

" )( iTiS UgradUgrad −  = déviation de la verticale" [( MSg - MEg ) of 

Equation  (5) above], which is now known to induce neither 

pendulum precession nor ellipse formation in the lab coordinates. 

He retains only his term " )( iSiG UgradUgrad − "  [( Mg - MSg )  of 

Equation  (5) above].    

Admittedly, he made an estimation of this term without con-
sidering the instantaneous rapid change in the Earth-Moon dis-
tance (from one to a few kilometers per pendulum period). The 
present author has addressed this problem in an unpublished 
paper. It turns out that for uniform and rectilinear relative Moon-
pendulum motion, the result would be identical with the situa-
tion at rest, since over a finite number of swing periods, the aver-
age of the instantaneous positions of the bob and the average po-
sition of the ellipse centres coincide. On the other hand, at the ex-
treme situations of relative acceleration, namely with the Moon 
near its perigee or apogee and with the laboratory at the latitude 
of a subsolar or sublunar eclipse point, the means of bob posi-
tions and ellipse centres no longer coincide. That non inertial 
tidal effect is at most of nearly the same magnitude of the linear 
one, mainly canceling it in the receeding lab extreme or doubling 
it in the other extreme. To find out how the pendulum motion 
would be affected in the non accelerated case, let us assume the 
simpler situation of fixed Moon-pendulum distance and extremal 
lateral accelerations (polar experiment with equatorial eclipse). 
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From Equations (2) and Figure 2, one finds   0=asF  ;  0=bsF  ; 

 ψcos)( max MCMac mF gg −=   ;  (6a) 

 ψsin)( max MCMbc mF gg −=  .  (6b) 

Equation  (3)  states  that  there  is  no  precession without the 

presence of an  ellipse.  bcF ,   which  is  the  tranverse  component 

when the bob is at the end of the a-axis, generates an ellipse when 

there is none or amplifies an existing positive one. At the same 

bob position, the velocity along the b-axis is maximal if there is an 

existing ellipse and acF  is tranverse to that velocity, which creates 

a precession of that ellipse.  

Therefore, this submicroscopic tidal effect at the lab scale (or 
swing scale) will theoretically create no precession directly but 
the onset of an ellipse if there is none. Once there is an ellipse, a 
precession speed will grow up proportional to the b-axis. 

For the other extreme situation of an equatorial experiment 
with Sun and Moon at zenith, there is no perturbing force in the 
orbit plane. Classical mechanics can only affect the period.  

In short, Allais estimate is confirmed as to the magnitude of 

his tidal accelerations, namely as being 8 orders of magnitude be-

low the values of  mF /µν   that would account for the observa-

tions (µ = a,b; ν = c,s) . 
Of course, this last analysis may look very academical since 

this submicroscopic tidal effect originating from the Moon or any 
other celestial body can certainly not be measured by today's 
technology. But the situation may be different if large perturbing 
masses lie very close to the pendulum, like a concrete column or 
obese observers… In principle, an asymmetrical mass distribu-
tion around the pendulum leads to an anisotropy of the gravita-
tional field potential well in which the pendulum evolves. For in-
stance, suspension anisotropy can be analysed in terms of a very 
weak saddle-like field at point C, superimposed to the ideal 
spherical well. After all, Cavendish's torsional balance works on 
the principle of a saddle-like gravitational field. The question 
arises whether such a rotating saddle-like field originating from 
celestial bodies (space anisotropy) and from Earth rotation is suf-
ficient to explain the tendency of the pendulum azimuth toward 
the low-energy axis. It seems that classical mechanics fails to an-
swer the question so far.  
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6 The spin degree of freedom 

In accelerated reference systems, nonlinear phenomena real-
ize a coupling between otherwise independant df. The rigid body 
ballborne physical pendulum may be considered with 5 df, if the 
vertical motion of the suspension plane is neglected : 

• 2 high-energy df of oscillation about the instantaneous 
suspension contact point, 

• 1 medium-energy df of spin, with essentially no restoring 
torque, about a line through the moving contact point and 
the centre of mass,  

• 2 low-energy df of horizontal translation of the average 
position, over a integer number of periods, of the contact 
point on the suspension plane. 

On the other hand, one may find for the standard Foucault pen-
dulum as many of 12 df: 

• the 2 usual high-energy angular oscillation df about a 
slowly moving point in space; 

•  4 medium-energy df : 1 spin with restoring torque about 
the wire centre-line; 2 transient orthogonal wobbling mo-
tions of the bob about the insertion point of the wire near 
its upper surface; 1 transient longitudinal wire vibration 
mode; 

• 6 low-energy df: 1 long-term low-energy df being the pen-
dulum length affected by temperature, and affecting the 
period; 3 long-term low-energy df of horizontal and 
vertical oscillation of the suspension point; 2 transient 
transversal vibration modes of the wire. 

It is interesting to note that, once the initial bob wobbling 
and wire vibrations have died out, the bob-wire unit seems to act 
as a rigid body, at least for a time scale larger than the wobble 
natural frequency. The perturbing effect of the spin can be best 
visualized at the beginning of a swing cycle when the swing an-
gular momentum is zero. Let us assume then that the pendulum 
has the spin velocity ϕ

�
ɺ . Momentarily, the spin momentum consti-

tutes by itself the total angular momentum of the pendulum.  

In Figure 3a, the gravitational torque  dtdmgl /max θθ Li =   

tends to bring the vector  ϕ
�
ɺ   parrallel to the vertical axis. How-

ever, the Z-component of the angular momentum must stay con-
stant. Indeed, ϕ  and ψ  do not appear explicitly in the Lagran-
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gian for an isotropic pendulum with no spin restoring torque. For 
such ignorable variables, the vertical components of angular mo-
mentum constitute constants of the motion. [7] Even with a small 
restoring torque ϕD−  or with suspention anisotropy being a 
very weak function of the azimuth ψ , ϕɺ  and ψɺ  are practically 
constant over one period.  
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Figure 3. Perturbation originating from the spin. The horizontal scale has been 
exagerated for clarity. 

Consequently, the allowable motion at the start is in an hori-

zontal plane instead of downwards as commanded by gravity. 

The support will therefore provide a reaction torque along the 

vertical axis corresponding to ψL  and  ψɺ  in Figure 3a. The verti-

cal momentum component associated with ψɺ  is 

 abLLL +−= θϕψ cos  ,  

abab IL ψψ ɺ=   measures the vertical component of the orbital angu-

lar momentum associated with an elliptical orbit. It appears in 

Figure 3b as the height, in momentum units, of the hodograph of 

L  above (or below, as here) the suspension point S.  

 abmLLLab ωθθθθ =⋅±≈±= maxmax)(sin)( ,      (sign of b).  

The bob ,then, starts an horizontal motion towards the nega-
tive X, thus initiating an elliptical orbit. In the above example, 
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 In fact, the rather large value of εɺ  takes the form of a short 

side-kick impulse at the begining of the cycle, so that the ellipse 

remains at first quite narrow. For after a time dt of a few millisec-

onds, the increment θLd   become larger than the spin momen-

tum  and overrides it, starting to bring the bob down. From then 

on, it is the spin that becomes the peturbing agent for the princi-

pal angular momentum θψϕ LLLL ++= .  

Since vrL ×= 3  must at all times be perpendicular to the ra-

dius vector 3r  and to the velocity v  of the bob along the right-

handed orbit of Figure 3, it points slightly below the horizontal 

plane (dotted ellipse) containing the suspension point as the 

momentum origin. In practice, maxθ  being small, the hodograph 

of L  lies very close to that plane. Moreover, the part of ψL which 

lies above the origin represents the perturbation due to the spin, 

namely a precession of the orbit at the rate 

 ψϕϕψ IIp ɺɺ −=      s-1. (8) 

(a) (b) (c)  

Figure 4. Monthly (a) and semi-monthly (b and c) averages of precession angles, 

spin angles and minor axis values within 14 min from start. The angle units are 

grads. The Foucault effect is 94,2−=Fψɺ  grads ( 64,2− °) per 14 minute run 

( 41055,0 −⋅−  s-1).  [8]  Adapted from Allais' memoir to the NASA. [9]  

7 A new interpretation of Allais' results 

For the ballborne pendulum with no restoring torque, Equa-

tion (8) should be reversible, so that the onset of a precession 

should generate a corresonponding spin. This can be seen in Al-
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lais's Graph IV of its memoir for the NASA, [9] reproduced here 

in Figure 4. Allais' so-called "gyrostaticity coefficient" 

ψϕθϕ θγ IIII max== . So, at the start of Allais' experiment, 

325,0max == θγψϕ II , making the slope of the spin angle 

("bracket plane" in Figure 4) 3,08 times steeper than the negative 

of the Foucault slope. The tangent lines added on Figure 4 illus-

trate the very good agreement with the above theory. 

When spin kinetic energy or minor axis kinetic energy are 
growing, the energy must come either from a separate excitation 
or from a coupling between degrees of fredom. Combining Equa-
tions (7) and (8), one has 

 εψϕ ϕεϕψ ɺɺɺ cc p +=  (9) 

From Equations (7) and (8), 08,3−== ϕεϕψ cc  . 

Representing as in Figure 3b the momentum space with an 
origin at S, it can be seen that the precession and ellipse growing 
contributions from the spin are separated by the origin level: ccw 
precession and ccw elliptical increments belong to the positive 
(above S) half of momentum space, and vice-versa. The coupling 
involved in Equation (9) obviously comes from the motion con-
straint that the vertical component of angular momentum must 
remain constant if ϕ  and ψ  are ignorable variables. Although 
the Airy precession speed, [10] not shown in Figure 3, is usually 
too small to be illustrated for a long Foucault pendulum, it is far 
from negligible in Allais' paraconical pendulum, where l2 is O(1) 
m2. Equation (9) should then be re-written: 

 εψψϕ ϕεϕψ ɺɺɺɺ cc AF ++= )(  , (10)   

 with         2/)8/3( labA ωψ =ɺ . (11) 

It is interesting to note that, in accordance with Equation (10) 

where 0<ϕεc , the maximum growth rate of minor axis coincides 

with a minimal slope of the spin curve in Figure 4. 

Allais' data on swing amplitude are not precise enough to 
enable an assessment of energy transfer from that df to the other 
ones. However, it is found that the only precession contribution 
other than Foucault precession (circular anisotropy characterized 
by non degenerate circular eigenmodes) is Airy precession, [11] 
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and that the external influence from any source takes the form of 
linear (suspension or space) anisotropy characterized by non de-
generate linear eigenmodes with different periods for swing di-
rections at 90° from one another.  Allais states indeed in his equa-
tions, [11] that the precession angles that he observes outside the  
Foucault effect are solely explained by the Airy effect on the ellip-
ses generated from suspension and/or space anisotropy.  

However, from the minor axis value of Figure 4 after 14 min-

utes ( 0=εɺ ), Equation (11) gives  FA ψψ ɺɺ 0,2s101,1 -14 −=⋅= −  , giv-

ing, after 14 min, 5,4 grads of Airy precession.  But from the ex-

perimental slope of the precession angles at that time, 

Fψψ ɺɺ 5,0exp −≈  , allowing for other precession contributions. 

Roughly 4 grads of Airy effect are missing.  
There should also be an "Airy-like" contribution arising from the 
asymmetry of the ellipsoid of inertia, whose axes stay within a 
few degrees of the swing azimuth. From Allais' asymmetry data, 
[12] the disk-shaped vertical bob lies indeed in a plane close to the 
major-axis azimuth. The resulting longer swing period in the ma-
jor axis direction should then enhance the Airy effect, contrary to 
what is observed in Figure 4. The missing positive Airy-like pre-
cession speed that is due to anisotropy axes which are somewhat 
bound to the swing azimuth, is obviously transferred to a negative 
spin contribution 3 times as large which is subtracted from the 
Foucault-induced spin (9,0 grads after 14 min). The missing 6,3 
spin grads can therefore account for +2,15 grads of precession, 
which is rather close to the missing 2,5 grads of Airy effect alone. 
Allais seems to affect space anisotropy solely to changes in minor 
axis. There might also be a direct precession effect which does not 
explicitely show up in building ellipses, and which may be 
masked by the buffering behavior of the spin df. That would be 
consistent with eclipse effects on torsion pendula. [13] [14] 

8 Spin characteristics of the Foucault pendulum 

Because of the spin restoring torque of the Foucault pendu-
lum, a steady spin-inducing perturbation cannot build up spin 
angle indefinitely. Its action in a given direction is limited to a 
fraction of the spin period. Hence, the coupling constants be-
tween spin angle, minor axis swing amplitude and precession 
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angle must be much smaller than with the short and rigid ball-
borne pendulum. Thanks though to the high precision video re-
cording of pendulum motion achieved in the 2001 Chicoutimi 
experiment, [15] the first evidence of spin-orbit coupling with a 
long Foucault pendulum has been demonstrated by the author. 
The observations involve the simultaneous imaging of an array of 
luminous spots on an alidade fixed to the laboratory floor at the 
same height as the bob top surface, and a similar array of lumi-
nous spots attached to the top surface of the bob itself. Strictly 
speaking, this system records the relative motion of the insertion 
point of the flexible wire into the bob top surface. Through the 
use of deflecting mirrors, the camera, no matter its size, has a 
bird's view from a point ~2 cm beside the suspension point, thus 
measuring essentially parallax free angles from the vertical. In 
practice, once the initial wobbling and string modes have died 
out, it is assumed that the motion of the centre of mass is re-
corded. Moreover, since the deflecting mirror is solidary with the 
suspension rig, suspension motion appears as a relative alidade 
motion in the image. In the 2009 Gifu experiment (Japan), alidade 
pseudo-oscillations in phase with the pendulum could demon-
strate suspension-beam flexion and torsion as small as 10-7 rad for 
a swing amplitude of 0,015 rad. That ended up in measurable 
pendulum anisotropy in the form of orthogonal swing periods 
differing by 3 parts in 10-5. Similarly, in the above mentioned 12-
hour Chicoutimi experiment, the direct lunisolar tide effect could 
at most be seen as a complete conical sweep of the vertical along 
a 0,4 mm-radius circle on the floor. [15] Comparing it with the 
expected value in Section 2, this may include a small strain of the 
hosting cathedral as the Sun shines around the stone walls.  

That particular experiment was started with a one-turn spin 
angle in order to see eventual interactions between spin and pre-
cession. In aftermath, the author argues that the Longden corked 
wire anisotropy can be eliminated this way, [16] since the even-
tual anisotropy axes actually swept an angle range between π and 
π/2 for the totality of the experiment (spin time constant = 16 h). 

Incidentally, beside spin-orbit coupling and a Foucault effect 
of  25,11−=ΩF  °/h , the precession angle of that 17,4 m long 
pendulum showed ocsillations components in phase with the 3 
most important harmonics of the tide in the nearby Saguenay 
River, albeit with different amplitude ratios (as Allais also found 
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out). Needless to say, both the direct lunisolar influence and the 
gravitational influence of the alternating water mass in the river 
fall short of explaining the measured accelerations by 8 and 4 or-
ders of magnitude respectively. The data fit the precession equa-
tion below to ±15%, except for the last spin-orbit term: ±30%. 
N.B.: The precession speed oscillation due to the 360° spin had a 
non negligible amplitude :  7,2

max
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Figure 5.   Effect of an initial spin on a 7,2-meter long Foucault pendulum in Ta-
hiti. The bob design allowed for rapid spin damping over a few swing cycles.  

A recent experiment in Tahiti (2010) is now in preliminary 
processing using a new proprietary pendulum analysis software. 
Different parameters are obtained at every half cycle with a preci-
sion unattained before. That experiment could be run with no 
spin by feeding the wire through the bob in a fixed capillary and 
then clamping it underneath. The wire torsion was hindered by 
friction inside of the capillary. Figure 5 shows the correspondence 
between minor axis and precession speed after an undesired 10° 
initial spin. The 7,2-meter pendulum had a spin period of 8,5 
swing periods. A +3-mm b-axis yields a ccw precession speed 
increment of 0,8 °/h, which fades out within ~30 swing cycles. It 
reaches up to 20% of the ccw, 4,53 °/h, Foucault effect in Papeete. 
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9 Conclusion 

It can be seen from the above that the spin df plays an essen-
tial role in the short ballborne pendulum. It may yield a buffering 
action that will mask eventual direct precession contributions 
arising from an external pendulum perturbation. In that sense, 
Allais might have erroneously reserved exclusively minor axis 
changes to all the external influences, explaining his precession 
observations merely by the subsequent Airy effect. The long Fou-
cault pendula show unexplained precession contributions orders 
of magnitude larger than the practically negligible Airy preces-
sion. Direct precession reveals the existence of circular anisotropy 
in the surrounding field, which appears consistent with many ob-
servations on torsion pendula.  

The author acknowledges a significant instrumental facilita-
tion of this fundamental research by Rio Tinto Alcan. 
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