
https://doi.org/10.15388/namc.2020.25.16660
Nonlinear Analysis: Modelling and Control, Vol. 25, No. 3, 461–481

eISSN: 2335-8963
ISSN: 1392-5113

Some asymptotic properties of SEIRS models with
nonlinear incidence and random delays

Divine Wanduku, B.O. Oluyede

Department of Mathematical Sciences, Georgia Southern University,
65 Georgia Ave, Room 3042, Statesboro, Georgia, 30460, USA
dwanduku@georgiasouthern.edu; wandukudivine@yahoo.com

Received: March 16, 2019 / Revised: October 5, 2019 / Published online: May 1, 2020

Abstract. This paper presents the dynamics of mosquitoes and humans with general nonlinear
incidence rate and multiple distributed delays for the disease. The model is a SEIRS system of delay
differential equations. The normalized dimensionless version is derived; analytical techniques are
applied to find conditions for deterministic extinction and permanence of disease. The BRNR∗0 and
ESPR E(e−(µvT1+µT2)) are computed. Conditions for deterministic extinction and permanence
are expressed in terms of R∗0 and E(e−(µvT1+µT2)) and applied to a P. vivax malaria scenario.
Numerical results are given.

Keywords: endemic equilibrium, basic reproduction number, permanence in the mean, Lyapunov
functionals techniques, extinction rate.

1 Introduction

Malaria has exhibited an increasing alarming high mortality rate between 2015 and 2016.
In fact, the latest WHO World Malaria Report 2017 [14] estimates a total of 216 million
cases of malaria from 91 countries in 2016, which constitutes a 5 million increase in
the total malaria cases from the malaria statistics obtained previously in 2015. Moreover,
the total death count was 445000, and sub-Saharan Africa accounts for 90% of the total
estimated malaria cases. This rising trend in the malaria data signals a need for more
learning about the disease, improvement of the existing control strategies and equipment,
and also a need for more advanced resources etc. to fight and eradicate, or ameliorate the
burdens of malaria.

Malaria and other mosquito-borne diseases such as dengue fever, yellow fever, zika
fever, lymphatic filariasis, etc. exhibit some unique biological features. For instance, the
incubation of the disease requires two hosts – the mosquito vector and human hosts,
which may be either directly involved in a full life cycle of the infectious agent con-
sisting of two separate and independent segments of sub-life cycles, which are completed
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separately inside the two hosts, or directly involved in two separate and independent half-
life cycles of the infectious agent in the hosts. Therefore, there is a total latent time lapse
of disease incubation, which extends over the two segments of delay incubation times,
namely: (i) the incubation period of the infectious agent (or the half-life cycle) inside the
vector, and (ii) the incubation period of the infectious agent (or the other half-life cycle)
inside the human being (cf. [13, 14]). In fact, the malaria plasmodium undergoes the first
developmental half-life cycle called the sporogonic cycle inside the female Anopheles
mosquito lasting approximately 10–18 days, following a successful infected blood meal
from a human through a mosquito bite. Moreover, the mosquito becomes infectious. The
parasite completes the second developmental half-life cycle called the exo-erythrocytic
cycle lasting about 7–30 days inside the exposed human being [13, 14], whenever the
parasite is transferred to human being in the process of the infectious mosquito foraging
for another blood meal.

The exposure and successful recovery from a malaria parasite, for example, falci-
parum vivae induces natural immunity against the disease, which can protect against
subsequent severe outbreaks of the disease. Moreover, the effectiveness and duration of
the naturally acquired immunity against malaria is determined by several factors such as
the species and the frequency of exposure to the parasites (cf. [7, 14]).

Compartmental mathematical epidemic dynamic models have been used to investigate
the dynamics of several different types of vector-borne diseases (cf. [1]). In general, these
models are classified as SIS, SIR, SIRS, SEIRS, SEIR, etc. [3,6,7,10] epidemic dynamic
models depending on the compartments of the disease classes directly involved in the
general disease dynamics. Many compartmental mathematical models with delays have
been studied [6, 9].

Some important investigations in the study of population dynamic models expressed
as systems of differential equations are the permanence, extinction of disease in the
population, and also stability of the equilibria over sufficiently long time. Several papers
in the literature [4, 10, 12] have addressed these topics. The extinction of disease seeks to
find conditions that are sufficient for the disease related classes in the population, such as
the exposed and infectious classes, to become extinct over sufficiently long time. The
permanence of disease also answers the question about whether a significant number
of people in the disease related classes will remain over sufficiently long time. Disease
eradication or persistence of disease in the steady state population seeks to find conditions
sufficient for the equilibria to be stable asymptotically.

The primary objectives of this paper include to investigate (i) the extinction, and
(ii) the permanence of disease in a family of SEIRS epidemic models. In other words,
we find conditions that are sufficient for a disease such as malaria, to become extinct from
the population over time, and also conditions that cause the disease to be permanent in
the population over time.

The rest of this paper is presented as follows: in Section 2, the mosquito–human
models are derived. In Section 3, some model validation and preliminary results are
presented. In Section 6, the results for the permanence of the disease are presented.
Moreover, simulation results for the permanence of the disease in the population are
presented in Section 7. In Section 4, the results for the extinction of the disease are
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presented. Moreover, the numerical simulation results for the extinction of disease are
presented in Section 7.

2 Derivation of the mosquito-host dynamics

The following assumptions are made to derive the epidemic model. Ideas from [5] will
be used to derive the model for the mosquito–human dynamics.

(A) The delays T1 and T2 are the random incubation periods of the disease (plasmod-
ium or dengue fever virus etc.) in the vector T1 and in the human host T2, respectively.
T3 is the random natural immunity period. fT1 (t0 6 T1 6 h1, h1 > 0), fT2 (t0 6 T2 6
h2, h2 > 0), and fT3

(t0 6 T3 <∞) are the densities of Ti, i = 1, 2, 3 (cf. [7]).
(B) The vector (e.g., mosquito) population consists of two classes, namely: the sus-

ceptible vectors Vs and the infectious vectors Vi. Moreover, the total vector V0 is constant
at any time, i.e., Vs(t) + Vi(t) = V0 > 0 for all t > t0. Therefore, the birth and death
rates of the vectors are equal and denoted µ̂v . The susceptible vectors Vs are infected by
infectious humans Î , and after the delay T1, the exposed vectors become infectious Vi.
There is homogenous mixing between the vector-host populations. It is assumed that the
turnover of the vector population is very high, and the total number of vectors V0 at any
time t is very large, and as a result, µ̂v is sufficiently large number. In addition, it is
assumed that the total vectors V0 is exceedingly larger than the total humans present at
any time t, denoted N̂(t), t > t0. That is, V0 � N̂(t), t > t0.

(C) The humans consists of susceptible (Ŝ), exposed (Ê), infectious (Î), and removed
(R̂) classes. The susceptibles are infected by the infectious vectors Vi and become exposed
(E). After the delay time T2, the exposed individuals become infectious Î . The infectious
class recovers from the disease with temporary or sufficiently long natural immunity and
become (R̂). Therefore, the total population at time t is N̂(t) = Ŝ(t)+Ê(t)+ Î(t)+R̂(t)
for all t > t0.

Furthermore, it is assumed that interaction between infectious vectors Vi and sus-
ceptible humans Ŝ exhibits nonlinear behavior due to overcrowding of vectors (see (B)),
leading to change of behavior that limits the disease transmission rate. The nonlinear
character for the incidence rate is characterized by the nonlinear function G. G satisfies
the conditions of Assumption 1.

Assumption 1.

(A1) G(0) = 0;
(A2) G(I) is strictly monotonic on [0,∞);
(A3) G ∈ C2([0,∞), [0,∞)), and G′′(I) < 0;
(A4) limI→∞G(I) = C, 0 6 C <∞;
(A5) For all I > 0, G(I) 6 I;
(A6) For all x, y > 0, (

G(x)

x
− G(y)

y

)(
G(x)−G(y)

)
6 0. (1)
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These assumptions clearly form an extension of the assumptions in [3, 7, 8]. Some
examples of incidence functions include G(x) = x/(1 + θx), θ > 0, etc.

(D) There is constant birthrate of humans B̂ in the population, and all births are
susceptibles. The natural deathrate of humans in the population is µ̂, and individuals die
additionally due to disease related causes at the rate d̂. From a biological point of view,
1/µ̂v � 1/µ̂. Thus, assuming exponential lifetime for all individuals (both vector and
host) in the population, then the survival probabilities over intervals of length T1 = s ∈
[t0, h1] and T2 = s ∈ [t0, h2] satisfy

e−µ̂vT1 � e−µ̂T1 and e−µ̂vT1−µ̂T2 � e−µ̂(T1+T2). (2)

Applying similar ideas in [5], the vector dynamics from (A)–(D) follows the system

dVs(t) =
[
−Λe−µ̂vT1 Î(t− T1)Vs(t− T1)− µ̂vVs(t) + µ̂v

(
Vs(t) + Vi(t)

)]
dt, (3)

dVi(t) =
[
Λe−µ̂vT1 Î(t− T1)Vs(t− T1)− µ̂vVi(t)

]
dt, (4)

V0 = Vs(t) + Vi(t) ∀t > t0, t0 > 0, (5)

where Λ is the effective disease transmission rate from infectious humans to susceptible
vectors. Observe, the incidence rateΛe−µ̂vT1 Î(t−T1)Vs(t−T1) represents new infectious
vectors occurring at time t, which became exposed at time t−T1, and survive natural death
over the incubation period T1 with survival probability rate e−µ̂vT1 , and are infectious at
time t.

For the host population dynamics, at time t, it follows from (C) that when susceptible
humans Ŝ and infectious vectors Vi interact with β̂ effective contacts per vector, per
unit time, then β̂Ŝ(t)Vi(t) is the incidence rate of the disease into humans. Also, due
to overcrowding effects of the vectors, it follows from (C) that the incidence rate becomes

β̂Ŝ(t)G
(
Vi(t)

)
, (6)

where G is the nonlinear incidence function satisfying the conditions in Assumption 1.
It follows easily (cf. [7]) from assumptions (A)–(D) and (6) that for Tj , j = 1, 2, 3,

fixed in the population, the dynamics of malaria in the human population is given by the
system

dŜ(t) =
[
B̂ − β̂Ŝ(t)G

(
Vi(t)

)
− µ̂Ŝ(t) + α̂Î(t− T3)e−µ̂T3

]
dt, (7)

dÊ(t) =
[
β̂Ŝ(t)G

(
Vi(t)

)
− µ̂Ê(t)− β̂Ŝ(t− T2)e−µ̂T2G

(
Vi(t− T2)

)]
dt, (8)

dÎ(t) =
[
β̂Ŝ(t− T2)e−µ̂T2G

(
Vi(t− T2)

)
− (µ̂+ d̂+ α̂)Î(t)

]
dt, (9)

dR̂(t) =
[
α̂Î(t)− µ̂R̂(t)− α̂Î(t− T3)e−µ̂T3

]
dt. (10)

Furthermore, the function G satisfies Assumption 1, and the initial conditions are given
as (

Ŝ(t), Ê(t), Î(t), R̂(t)
)

=
(
ϕ1(t), ϕ2(t), ϕ3(t), ϕ4(t)

)
, t ∈ (−Tmax, t0],

ϕk ∈ C
(
(−Tmax, t0],R+

)
∀k = 1, 2, 3, 4,

ϕk(t0) > 0 ∀k = 1, 2, 3, 4, and max
t06T16h1

t06T26h2, T3>t0

(T1 + T2, T3) = Tmax,
(11)
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where C((−Tmax, t0],R+) is the space of continuous functions with the supremum norm

‖ϕ‖∞ = sup
t6t0

∣∣ϕ(t)
∣∣.

Applying similar approximation technique in Wanduku [8] (see pp. 3800–3806,
Appendix A, replace (G) with Assumption 1), the vector-host dynamics in (3)–(5) and
(7)–(11) are combined to give the malaria model in [7], which omits the dynamics of the
vector population under assumptions (A)–(D)1. That is, we obtain dimensionless variables
for the humans

S(t) =
Ŝ(t)

( B̂µ̂ )
, I(t) =

Î(t)

( B̂µ̂ )
, E(t) =

Ê(t)

( B̂µ̂ )
,

R(t) =
R̂(t)

( B̂µ̂ )
, and N(t) =

N̂(t)

( B̂µ̂ )
,

(12)

where 0 < N̂(t) 6 B̂/µ̂ for all t > t0, whenever N̂(t0) 6 B̂/µ̂, and from (12) we see
that

0 < S(t) + E(t) + I(t) +R(t) = N(t) 6 1 ∀t > t0.

On a “slow” time scale (defined in [8]) η = (B̂/µ̂)Λt, we obtain the approximated
dimensionless human dynamics

dS(η) =
[
B − βS(η)Ĝ

(
I(η − T1η)

)
e−µvT1η − µS(η)

+ αI(η − T3η)e−µT3η
]

dη, (13)

dE(η) =
[
βS(η)Ĝ

(
I(η − T1η)

)
e−µvT1η − µE(η)

− βS(η − T2η)Ĝ(I(η − T1η − T2η))e−µvT1η−µT2η
]

dη, (14)

dI(η) =
[
βS(η − T2η)Ĝ

(
I(η − T1η − T2η)

)
e−µvT1η−µT2η − µI(η)

− (µ+ d+ α)I(η)
]

dη, (15)

dR(η) =
[
αI(η)− µR(η)− αI(η − T3η)e−µT3η

]
dη, (16)

where

B =
B̂

( B̂µ̂ )2Λ
, β =

β̂V0
µ̂v

, µ =
µ̂

( B̂µ̂ )Λ
, α =

α̂

( B̂µ̂ )Λ
,

µv =
µ̂v

( B̂µ̂ )Λ
, d =

d̂

( B̂µ̂ )Λ
, Tjη =

(
B̂

µ̂

)
ΛTj ∀j = 1, 2, 3.

(17)

System (13)–(16) describes the dynamics of malaria on a slower time scale η (see [8]).
Furthermore, the analysis of the model (13)–(16) is considered only on the η timescale.

1This nontrivial process is omitted to conserve space (see [8]).
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To reduce heavy notation, substitute t for η, and the delays Tj substitute Tjη for all j =
1, 2, 3. Moreover, since the delays are distributed with densities fTj for all j = 1, 2, 3, it
follows from (A)–(D), (13)–(16), and (11) that the average SEIRS dynamics is given as
follows:

dS(t) =

[
B − βS(t)

h1∫
t0

fT1(s)e
−µvsG

(
I(t− s)

)
ds− µS(t)

+ α

∞∫
t0

fT3(r)I(t− r)e−µrdr

]
dt, (18)

dE(t) =

[
βS(t)

h1∫
t0

fT1(s)e
−µvsG

(
I(t− s)

)
ds− µE(t)

− β

h2∫
t0

fT2(u)S(t−u)
h1∫
t0

fT1(s)e
−µvs−µuG

(
I(t−s−u)

)
dsdu

]
dt, (19)

dI(t) =

[
β

h2∫
t0

fT2(u)S(t− u)

h1∫
t0

fT1(s)e
−µvs−µuG

(
I(t− s− u)

)
dsdu

− (µ+ d+ α)I(t)

]
dt, (20)

dR(t) =

[
αI(t)− µR(t)− α

∞∫
t0

fT3(r)I(t− r)e−µs dr

]
dt, (21)

where the initial conditions are as follows. Let h = h1 + h2 and define(
S(t), E(t), I(t), R(t)

)
=
(
ϕ1(t), ϕ2(t), ϕ3(t), ϕ4(t)

)
, t ∈ (−∞, t0],

ϕk ∈ UCg ⊂ C
(
(−∞, t0],R+

)
, ϕk(t0) > 0 ∀k = 1, 2, 3, 4,

(22)

where UCg is some fading memory sub-space of the Banach space C((−∞, t0],R+)
endowed with the norm

‖ϕ‖g = sup
t6t0

|ϕ(t)|
g(t)

, (23)

and g is some continuous function with the following properties:

(P1) g((−∞, t0]) ⊆ [1,∞)is nonincreasing, and g(t0) = 1;
(P2) limu→t−0

g(t+ u)/g(t) = 1 uniformly on [t0,∞); limt→−∞ g(t) =∞.

An example of such a function is g(t) = e−at, a > 0 (cf. [2]). Note that for any g
satisfying (P1)–(P2), the Banach space C((−∞, t0],R+) is continuously embedded in
UCg , which allows structural properties for C((−∞, t0],R+) with the uniform norm to
hold in UCg with ‖·‖g norm. Moreover, for ϕ ∈ UCg , there exists g if and only if
‖ϕ‖g < ∞ and |ϕ(t)|/g(t) is uniformly continuous on (−∞, t0]. Also, the function G
in (18)–(21) satisfies the conditions of Assumption 1.
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Observe the equations for E and R decouple from (18)–(21). Therefore, the results in
this paper are exhibited for the decoupled system (18) and (20) for S and I .

Denote

Y (t) =
(
S(t), E(t), I(t), R(t)

)T
, X(t) =

(
S(t), E(t), I(t)

)T
,

N(t) = S(t) + E(t) + I(t) +R(t).
(24)

Whilst permanence or extinction has been investigated in some delay type systems
(cf. [4,10,12]), the permanence and extinction in the sense of [12] in systems with multiple
random delays is underdeveloped in the literature. Furthermore, as far as we know, no
other paper has addressed extinction and persistence of malaria in a mosquito–human
population dynamics involving delay differential equations in the line of thinking of [4,
12]. We recall the following definition from [11, 12].

Definition 1.
(i) A population x(t) is called strongly permanent if lim inft→+∞ x(t) > 0;

(ii) x(t) is said to go extinct if limt→+∞ x(t) = 0;
(iii) x(t) is said to be weakly permanent in the mean if lim supt→+∞

∫ t
0
x(s) ds/t > 0;

(iv) x(t) is said to be strongly permanent in the mean if lim inft→+∞
∫ t
0
x(s) ds/t > 0;

(v) x(t) is said to be stable in the mean if limt→∞
∫ t
t0
x(s) ds/t = c > 0.

3 Model validation results

The consistency results for system (18)–(21) are given. Observe from (17) that expression
B/µ simplifies to 1, i.e., B/µ ≡ 1.

Theorem 1. For the given initial conditions (22)–(23), system (18)–(21) has a unique
positive solution Y (t) ∈ R4

+. Moreover,

lim sup
t→∞

N(t) 6 S∗0 =
B

µ
≡ 1. (25)

Furthermore, there is a positive self invariant space for the system denoted

D(∞) = B̄
(−∞,∞)

R4
+,

(
0,
B

µ
≡ 1

)
,

where D(∞) is the closed unit ball in R4
+ centered at the origin with radius B/µ ≡ 1

containing all positive solutions defined over (−∞,∞).

Proof. The proof of this result is standard and easy to follow applying the notations (24)
to system (18)–(21).

Theorem 2. The feasible region for the unique positive solutions Y (t), t > t0, of
system (18)–(21) in the phase plane that lie in the self-invariant unit ball

D(∞) = B̄
(−∞,∞)

R4
+,

(
0,
B

µ
≡ 1

)
= B̄

(−∞,∞)

R4
+,

(0, 1)
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or the system, also lie in a much smaller space Dexpl(∞) ⊂ D(∞), where

Dexpl(∞) =

{
Y (t) ∈ R4

+:
B

µ+ d
6 N(t) = S(t) + E(t) + I(t) +R(t) 6

B

µ

∀t ∈ (−∞,∞)

}
. (26)

Moreover, the space Dexpl(∞) is also self-invariant with respect to system (18)–(21).

Proof. Suppose Y (t) ∈ D(∞), then it follows from (18)–(21) and (24) that the total
population N(t) = S(t) + E(t) + I(t) +R(t) satisfies the following inequality:[

B − (µ+ d)N(t)
]

dt 6 dN(t) 6
[
B − (µ)N(t)

]
dt. (27)

It is easy to see from (27) that

B

µ+ d
6 lim inf

t→∞
N(t) 6 lim sup

t→∞
N(t) 6

B

µ
,

and (26) follows immediately.

Remark 1. Theorem 2 signifies that every solution for (18)–(21) that starts in the unit ball
D(∞) in the phase plane, oscillates continuously inside D(∞). Moreover, if the solution
oscillates and enters the space

Dexpl(∞) = B̄
(−∞,∞)

R4
+,

(
0,
B

µ
≡ 1

)
∩ (B̄

(−∞,∞)

R4
+,

(
0,

B

µ+ d

)c
,

the solution stays in Dexpl(∞) for all time.
Biologically, observe thatB/µ andB/(µ+d) represent the total births that occur over

the average lifespans 1/µ and 1/(µ + d) of a human being in a malaria-free population
and in a malaria- epidemic population, respectively. Thus, Theorem 2 signifies that when
the population grows intoN(t) ∈ [B/(µ+d), B/µ], it stays within that range for all time.

Also, it is easy to see that system (18)–(21) has a DFE E0 = (S∗0 , 0, 0) = (B/µ ≡
1, 0, 0) = (1, 0, 0). The basic reproduction number (BRN) for the disease when the delays
in the system T1, T2, and T3 are constant, is given by

R̂∗0 =
β

µ+ d+ α
. (28)

Furthermore, when R̂∗0 < 1, then E0 = X∗0 = (S∗0 , 0, 0) = (1, 0, 0) is asymptotically
stable, and the disease can be eradicated from the population. Also, when the delays in
the system Ti, i = 1, 2, 3, are distributed, the BRN is proportional to

R0 ∝
β

(µ+ d+ α)
+

α

(µ+ d+ α)
.

And disease is eradicated from the system, whenever R0 6 1.
The following result can be made about the nonzero steady state of the dimensionless

system (18)–(21) when Assumption 1 is satisfied.
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Theorem 3. Let the conditions of Assumption 1 be satisfied. SupposeR0 > 1 (or R̂∗0 > 1)
and the expected survival probability rate of the plasmodium satisfies

E
(
e−µvT1−µT2

)
>

R0

(R0 − α
µ+d+α )G′(0)

.

Then there exists a nonzero endemic equilibriumE1 = (S∗1 , E
∗
1 , I
∗
1 ) for the dimensionless

system (18)–(21), where

E
(
e−µvT1−µT2

)
=

h2∫
t0

h1∫
t0

e−µvs−µufT2(u)fT1(s) dsdu.

Proof. The dimensionless endemic equilibrium E1 =(S∗1 , I
∗
1 ) of the decoupled (18)–(21)

is a solution to the following system:

B − βE
(
e−µvT1

)
SG(I)− µS + αE

(
e−µT3

)
I = 0, (29)

βE
(
e−µvT1−µT2

)
SG(I)− (µ+ d+ α)I = 0. (30)

Solving for S from (30) and substituting the result into (29) give the following equation:

H(I) = 0, (31)
where

H(I) = B − 1

E(e−µvT1+µT2)
I

[
(µ+ d+ α)µ

βG(I)
+ (µ+ d)E

(
e−µvT1

)
+ αE

(
e−µvT1

)(
1− E

(
e−µT2

)
E
(
e−µT3

))]
. (32)

Note that 0 < E(e−µTi) 6 1, i = 1, 2, 3, and limI→∞G(I) = C < ∞, hence for
sufficiently large positive value of I , H(I) < 0. Furthermore, the derivative of H(I) is
given by

H ′(I) = − (µ+ d+ α)µ

βE(e−µvT1−µT2)

(G(I)− IG′(I))

G2(I)
− 1

E(e−µvT1−µT2)

×
(
(µ+ d)E

(
e−µvT1

)
+ αE

(
e−µvT1

)(
1− E

(
e−µT2

)
E
(
e−µT3

)))
.

Assume without loss of generality that G′(I) > 0. It follows from the other properties
of G in Assumption 1, that is, G(0) = 0, G′′(I) < 0, that (G(I)− IG′(I)) > 0, and this
further implies that H ′(I) < 0 for all I > 0. That is, H(I) is a decreasing function over
all I > 0. Therefore, a positive root of equation (31) requires that H(0) > 0. Observe
from (32) and the dimensionless expressions in (17)

H(0) = B

(
1− (µ+ d+ α)

βG′(0)E(e−µvT1−µT2)

)
= B

(
1− 1

(R0 − α
µ+d+α )G′(0)E(e−µvT1−µT2)

)
> B

(
1− 1

R0

)
.

For R0 > 1, it is easy to see that H(0) > 0.
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The extinction of disease will be investigated in the neighborhood of the zero steady
state E0, and the permanence of disease will be investigated in the neighborhood of E1.

4 Extinction of disease

In this section, the extinction of malaria from system (18)–(21) is investigated.

Lemma 1. Let the assumptions of Theorem 2 hold, and define the following Lyapunov
functional in Dexpl(∞):

Ṽ (t) = V (t) + β

[ h2∫
t0

h1∫
t0

fT2
(u)fT1

(s)e−(µvs+µu)
t∫

t−u

S(θ)
G(I(θ − s))

I(t)
dθ dsdu

+

h2∫
t0

h1∫
t0

fT2
(u)fT1

(s)e−(µvs+µu)
t∫

t−s

S(t)
G(I(θ))

I(t)
dθ dsdu

]
, (33)

where V (t) = log I(t). It follows that

lim sup
t→∞

1

t
log
(
I(t)

)
6 β

B

µ
E
(
e−(µvT1+µT2)

)
− (µ+ d+ α). (34)

Proof. The differential operator V̇ applied to the Lyapunov functional Ṽ (t) with respect
to system (18) leads to the following:

˙̃V (t) = β

h2∫
t0

fT2
(u)

h1∫
t0

fT1
(s)e−(µvs+µu)S(t)

G(I(t))

I(t)
dsdu− (µ+ d+ α). (35)

Since S(t), I(t) ∈ Dexpl(∞) and G satisfies the conditions of Assumption 1, it follows
easily from (35) that

˙̃V (t) 6 β
B

µ
E
(
e−(µvT1+µT2)

)
− (µ+ d+ α). (36)

Now, integrating both sides of (36) over the interval [t0, t], it follows from (36) and (33)
that

log I(t) 6 Ṽ (t)

6 Ṽ (t0) +

[
β
B

µ
E
(
e−(µvT1+µT2)

)
− (µ+ d+ α)

]
(t− t0). (37)

Diving both sides of (37) by t and taking the limit supremum as t → ∞, it is easy to see
that (37) reduces to

lim sup
t→∞

1

t
log I(t) 6

[
β
B

µ
E
(
e−(µvT1+µT2)

)
− (µ+ d+ α)

]
. (38)

And the result (34) follows immediately from (38).
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The extinction conditions for the infectious population over time are expressed in
terms: (i) the BRN R∗0 in (28), and (ii) the expected survival probability rate (ESPR) of
the parasites E(e−(µvT1+µT2)), also defined in [7, Thm. 5.1].

Theorem 4. Suppose Lemma 1 is satisfied, and let the BRN R∗0 be defined as in (28). In
addition, let one of the following conditions hold:

(i) R∗0 > 1 and E(e−(µvT1+µT2)) < 1/R∗0, or
(ii) R∗0 < 1.

Then
lim sup
t→∞

1

t
log
(
I(t)

)
< −λ, (39)

where λ > 0 is some positive constant. In other words, I(t) converges to zero exponen-
tially.

Proof. Suppose Theorem 4(i) holds, then from (34),

lim sup
t→∞

1

t
log
(
I(t)

)
< β

B

µ

(
E
(
e−(µvT1+µT2)

)
− 1

R∗0

)
≡ −λ,

where the positive constant λ > 0 is taken to be as follows:

λ ≡ (µ+ d+ α)− βB
µ
E
(
e−(µvT1+µT2)

)
≡ βB

µ

(
1

R∗0
− E

(
e−(µvT1+µT2)

))
> 0. (40)

Also, suppose Theorem 4(ii) holds, then from (34),

lim sup
t→∞

1

t
log
(
I(t)

)
6 β

B

µ
E
(
e−(µvT1+µT2)

)
− (µ+ d+ α)

< β
B

µ
− (µ+ d+ α)

= −(1−R∗0)(µ+ d+ α)

≡ −λ,

where the positive constant λ > 0 is taken to be as follows:

λ ≡ (1−R∗0)(µ+ d+ α) > 0. (41)

Remark 2. Theorems 4 and 2 signify that all trajectories of (S(t), I(t)) of (18) and (20)
that start inD(∞) and grow intoDexpl(∞) ⊂ D(∞) remain inDexpl(∞). Moreover, on
the phase plane of (S(t), I(t)), the trajectory of I(t), t > t0, ultimately turn to zero
exponentially, whenever either the ESPR E(e−(µvT1+µT2)) < 1/R∗0 for R∗0 > 1 or
whenever the BRN R∗0 < 1. Furthermore, the Lyapunov exponent from (39) is estimated
by the term λ defined in (40) and (41).
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5 Persistence of susceptibility and stability of zero equilibrium

Theorem 4 characterizes the behavior of I(t) coordinate of the solution (S(t), I(t)) of (18)
and (20) in the phase plane. The question remains about how S(t) behave asymptotically
in the phase plane.

Using Definition 1(iii)–(v), the average behavior of S(t) over sufficiently long time
is given below. Also, stability conditions for the DFE E0 = (S∗0 , 0) = (1, 0) are given,
whenever Theorem 4 holds.

Theorem 5. Let conditions (i)–(ii) of Theorem 4 be satisfied. In Dexpl(∞), the trajecto-
ries of S(t) of the decoupled system (18) and (20) satisfy

lim
t→∞

1

t

t∫
t0

S(ξ) dξ =
B

µ
≡ 1. (42)

That is, the susceptible state is strongly persistent in the mean over long time (see Defi-
nition 1(iii)–(iv)). Moreover, it is stable in the mean, and the average value of S(t) over
time is S(t) = S∗0 = B/µ, obtained when the system is in steady state.

Proof. Suppose either of conditions (i)–(ii) in Theorem 4 hold, then it follows clearly
from Theorem 4 that for every ε > 0, there is a positive constant K1(ε) ≡ K1 > 0 such
that

I(t) < ε, whenever t > K1. (43)

It follows from (43) that

I(t− s) < ε, whenever t > K1 + h1, (44)

for all s ∈ [t0, h1].
In Dexpl(∞), define

V1(t) = S(t) + α

∞∫
t0

fT3(r)eµr
t∫

t−r

I(θ) dθ dr. (45)

The differential operator V̇1 applied to the Lyapunov functional V1(t) in (45) leads to the
following:

V̇1(t) = g(S, I)− µS(t), (46)
where

g(S, I) = B − βS(t)

h1∫
t0

fT1
(s)e−µvsG

(
I(t− s)

)
ds

+ αE
(
e−µT3

)
I(t). (47)
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Estimating the right-hand-side of (46) in Dexpl(∞) and integrating over [t0, t], it follows
from (43)–(44) that

V1(t) 6 V1(t0) +B(t− t0) +

K1∫
t0

αI(ξ) dξ +

t∫
K1

αI(ξ) dξ − µ
t∫

t0

S(ξ) dξ,

6 V1(t0) +B(t− t0) + α
B

µ
(K1 − t0) + α(t−K1)ε− µ

t∫
t0

S(ξ) dξ. (48)

Thus, dividing both sides of (48) by t and taking the limit supremum as t→∞, it follows
that

lim sup
t→∞

1

t

t∫
t0

S(ξ) dξ 6
B

µ
+
α

µ
ε. (49)

On the other hand, estimating g(S, I) in (47) from below and using the conditions of
Assumption 1 and (44), it is easy to see that in Dexpl(∞),

g(S, I) > B − βS(t)

h1∫
t0

fT1(s)e−µvs
(
I(t− s)

)
ds

> B − βB
µ
E
(
e−µvT1

)
ε > B − βB

µ
ε (50)

for all t > K1 + h1. Moreover, for t ∈ [t0,K1 + h1],

g(S, I) > B − β
(
B

µ

)2

. (51)

Therefore, applying (50)–(51) into (46), then integrating both sides of (46) over [t0, t],
and diving the result by t, it is easy to see from (46) that

1

t
V1(t) >

1

t
V1(t0) +B

(
1− t0

t

)
− 1

t
β

(
B

µ

)2

(K1 + h1 − t0)

− βB
µ
ε

[
1− K1 + h1

t

]
− 1

t
µ

t∫
t0

S(ξ) dξ. (52)

Observe that in Dexpl(∞), limt→∞ V1(t)/t = 0, and limt→∞ V1(t0)/t = 0. Therefore,
rearranging (52) and taking the limit infinimum of both sides as t → ∞, it is easy to see
that

lim inf
t→∞

1

t

t∫
t0

S(ξ) dξ >
B

µ
− 1

µ
β
B

µ
ε. (53)
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It follows from (49) and (53) that

B

µ
− 1

µ
β
B

µ
ε 6 lim inf

t→∞

1

t

t∫
t0

S(ξ) dξ 6 lim sup
t→∞

1

t

t∫
t0

S(ξ) dξ

6
B

µ
+
α

µ
ε. (54)

Hence, for ε arbitrarily small, the result in (42) follows immediately from (54).

Remark 3. Theorem 5 signifies that the DFE E0 is strongly persistent and stable in the
mean by Definition 1(iii)–(v). That is, over sufficiently long time, on average the human
population will be in the DFE E0. Thus, the conditions in Theorem 4 are sufficient for
malaria to be eradicated from the population when the population is in a steady state.

Theorem 6. Suppose any of the conditions in the hypothesis of Theorem 4 are satisfied.
Also, suppose the conditions of Theorem 5 hold. It follows that in Dexpl(∞), the DFE
E0 = (S∗0 , 0) = (B/µ, 0) = (1, 0) is stable in the sense of Lyapunov.

Proof. It is left to show that every trajectory that starts near E0 remains near E0 asymp-
totically. Indeed, if Theorem 4(i)–(ii) holds, then all trajectories of I(t) converge asymp-
totically and exponentially to I∗0 = 0. It remains to show that if the trajectories of S(t)
from Theorem 5 (42), converge asymptotically in the mean to S∗0 = B/µ, then they must
remain asymptotically near S∗0 = B/µ.

Indeed, if on the contrary, there exist a trajectory for S(t) starting near S∗0 = B/µ ≡ 1
that does not stay near S∗0 = B/µ asymptotically, that is, there exists some ε0 > 0 and
δ(t0, ε0) > 0 such that ‖S(t0) − S∗0‖ < δ, but ‖S(t) − S∗0‖ > ε0 for all t > t0, then
clearly from (42), either

S∗0 = lim
t→∞

1

t

t∫
t0

S(ξ) dξ > S∗0 + ε0 or S∗0 = lim
t→∞

1

t

t∫
t0

S(ξ) dξ 6 S∗0 − ε0. (55)

Thus, ε0 must be zero, otherwise (55) is a contradiction. Hence, E0 = (S∗0 , 0) is stable in
the sense of Lyapunov.

Remark 4. Theorems 5, 4, and 2 signify that not only is the DFE E0 = (S∗0 , 0) = (1, 0)
of (18) and (20) stable and persistent in the mean, but it is also stable in the sense of
Lyapunov. Thus, the conditions in Theorem 4 are strong disease eradication conditions.

6 Permanence of infectivity near nonzero equilibrium

As remarked in Theorem 3, when R∗0 > 1, system (18) and (20) has a nonzero equi-
librium E1 = (S∗1 , I

∗
1 ). In this section, conditions for I(t) to be strongly persistent

(Definition 1(i)) in the neighborhood of E1 are given.
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Lemma 2. Suppose the conditions of Theorems 2 and 3 are satisfied, and let the nonlinear
incidence function G satisfy the assumptions of Assumption 1.

Then every positive solution (S(t), I(t)) ∈ D(∞) of the decoupled system (18) and
(20) with initial conditions (22) and (23) satisfies the following conditions:

lim inf
t→∞

S(t) > v1 ≡
B

µ+ βG(S0)

lim inf
t→∞

I(t) > v2 ≡ qI∗1 e−(µ+d+α)(ρ+1)h,
(56)

where h = h1 + h2, and ρ > 0 is a suitable positive constant, S∗1 < min{S0, S
M} and

0 < q < q̄ < 1, given that

q̄ =
BβE(e−µT1)G(I∗1 )− µαE(e−µT3)I∗1

(B + αE(e−µT3)I∗1 )βI∗1
,

SM =
B

k

(
1− e−kρh

)
, k = µ+ βG(qI∗1 ).

(57)

Proof. Recall (25) asserts that forN(t) = S(t)+E(t)+I(t)+R(t), lim supt→∞N(t) 6
S∗0 = B/µ. This implies that lim supt→∞ S(t) 6 S∗0 ≡ 1. This further implies that for
any arbitrarily small ε > 0, there exists a sufficiently large Λ > 0 such that

I(t) 6 S∗0 + ε, whenever t > Λ.

Without loss of generality, let Λ1 > 0 be sufficiently large such that

t > Λ > max
(s,r)∈[t0,h1]×[t0,∞)

(Λ1 + s, Λ1 + r).

It follows from Assumption 1, (2), and (18) that

dS(t)

dt
> B − βS(t)

h1∫
t0

fT1
(s)e−µsG(S∗0 + ε) ds− µS(t)

> B −
[
µ+ βG(S∗0 + ε)

]
S(t). (58)

From (58) it follows that

S(t) >
B

k1
− B

k1
e−k1(t−t0) + S(t0)e−k1(t−t0), (59)

where k1 = µ+ βG(S∗0 + ε).
It is easy to see from (59)

lim inf
t→∞

S(t) >
B

µ+ βG(S0 + ε)
.

Since ε > 0 is arbitrarily small, then the first part of (56) follows immediately.
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In the following, it is shown that lim inft→∞ I(t) > v2. In order to establish this
result, it is first proved that it is impossible that I(t) 6 qI∗1 for sufficiently large t > t0,
where q ∈ (0, 1) is defined in the hypothesis. Suppose on the contrary there exists some
sufficiently large Λ0 > t0 > 0 such that I(t) 6 qI∗1 for all t > Λ0. It follows from (18)
that

S∗1 =
B + αE(e−µT3)I∗1

µ+ βE(e−µT1)G(I∗1 )
=

B

µ+
BβE(e−µT1 )G(I∗1 )−µαE(e−µT3 )I∗1

B+αE(e−µT3 )I∗1

. (60)

But it can be easily seen from (18) and (20) that

BβE
(
e−µT1

)
G(I∗1 )− µαE(e−µT3)I∗1

=
µ(µ+ d+ α)[S∗0 −

αE(e−µT3 )E(e−µT2 )
(µ+d+α) S∗1 ]

E(e−µT2)S∗1
I∗1 >

µ(µ+ d+ α)(S∗0 − S∗1 )

E(e−µT2)S∗1
> 0

since S∗0 = B/µ > S∗1 . Therefore, from (60) it follows that

S∗1 <
B

µ+ βI∗1 q
6

B

µ+ βG(qI∗1 )
, (61)

where 0 < q < q̄, and q̄ is defined in (57).
For all vector values (s, r) ∈ [t0, h1]× [t0,∞), define

Λ0,max = max
(s,r)∈[t0,h1]×[t0,∞)

(Λ0 + s, Λ0 + r).

It follows from Assumption 1 and (18) that for all t > Λ0,max,

S(t) >
B

k
− B

k
e−k(t−Λ0,max) + S(Λ0,max)e−k(t−Λ0,max), (62)

where k is defined in (57). For t > Λ0,max + ρh, where h = h1 + h2, and ρ > 0 is
sufficiently large, it follows from (62) that

S(t) >
B

k

[
1− e−k(t−Λ0,max)

]
>
B

k

[
1− e−kρh

]
= SM. (63)

Hence, from (61) and (63) it follows that for some suitable choice of ρ > 0 sufficiently
large, then

SM > S∗1 ∀t > Λ0,max + ρh. (64)

For t > Λ0,max + ρh, define

V (t) = I(t) + βS∗1

h2∫
t0

h1∫
t0

fT2(u)fT1(s)e−µ(s+u)
t∫

t−s

G
(
I(v − u)

)
dv dsdu

+ βS∗1

h2∫
t0

h1∫
t0

fT2(u)fT1(s)e−µ(s+u)
t∫

t−u

G
(
I(v)

)
dv dsdu. (65)
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It is easy to see from system (18)–(20) and (65) that differentiating V (t) with respect to
system (18) and (20) leads to the following:

V̇ (t) = β

h2∫
t0

h1∫
t0

fT2(u)fT1(s)e−µ(s+u)G(I(t− s− u))
[
S(t− u)− S∗1

]
dsdu

+

[
βS∗1E

(
e−µ(T1+T2)

)G(I(t))

I(t)
− (µ+ d+ α)

]
I(t). (66)

For all t > Λ0,max +ρh+h > Λ0,max +ρh+h2, it follows from (1), (64), and (18)–(20)
that

V̇ (t) > β

h2∫
t0

h1∫
t0

fT2
(u)fT1

(s)e−µ(s+u)G
(
I(t− s− u)

)[
SM − S∗1

]
dsdu

+

[
βS∗1E

(
e−µ(T1+T2)

)G(I∗1 )

I∗1
− (µ+ d+ α)

]
I(t)

= β

h2∫
t0

h1∫
t0

fT2(u)fT1(s)e−µ(s+u)G
(
I(t− s− u)

)[
SM − S∗1

]
dsdu. (67)

Observe that the union of the subintervals
⋃

(s,u)∈[t0,h1]×[t0,h2]
[t0 − (s + u), t0] =

[t0 − h, t0], where h = h1 + h2. Denote the following:

imin = min
θ∈[t0−h, t0]

(s,u)∈[t0,h1]×[t0,h2]

I(Λ0,max + ρh+ h+ s+ u+ θ). (68)

Note that (68) is equivalent to imin = minθ∈[t0−h, t0] I(Λ0,max + ρh+ h+ h+ θ).
It is shown in the following that I(t) > imin for all t > Λ0,max + ρh+h > Λ0,max +

ρh+ u for all u ∈ [t0, h2].
Suppose on the contrary there exists τ1 > 0 such that I(t) > imin for all t ∈ [Λ0,max+

ρh+h, Λ0,max + ρh+h+h+ τ1] ⊃ [Λ0,max + ρh+h, Λ0,max + ρh+h+ s+u+ τ1],
for all (s, u) ∈ [t0, h1]× [t0, h2],

I(Λ0,max + ρh+ h+ h+ τ1) = imin, and İ(Λ0,max + ρh+ h+ h+ τ1) 6 0. (69)

For the value of t = Λ0,max+ρh+h+h+τ1, it follows that S(t−u) > SM > S∗1 , and
t−s−u ∈ [Λ0,max +ρh+h, Λ0,max +ρh+h+h+τ1] for all (s, u) ∈ [t0, h1]× [t0, h2],
and it can be further seen from (18)–(20), (64), and (1) that

İ(t) > βE
(
e−µ(T1+T2)

)
G(imin)SM − (µ+ d+ α)imin

=

[
βE
(
e−µ(T1+T2)

)G(imin)

imin
SM − (µ+ d+ α)

]
imin

>

[
βE
(
e−µ(T1+T2)

)G(I∗1 )

I∗1
S∗1 − (µ+ d+ α)

]
imin = 0. (70)
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But (70) contradicts (69). Therefore, I(t) > imin for all t > Λ0,max +ρh+h > Λ0,max +
ρh+ u+ s, for all (s, u) ∈ [t0, h1]× [t0, h2].

It follows further from (66)–(68) and the Assumption 1 that for all t > Λ0,max +ρh+
h+ h > Λ0,max + ρh+ h+ s+ u and for all (s, u) ∈ [t0, h1]× [t0, h2],

V̇ (t) > β

h2∫
t0

h1∫
t0

fT2
(u)fT1

(s)e−µ(s+u)G
(
I(t− s− u)

)[
SM − S∗1

]
dsdu

> βE
(
e−µ(T1+T2)

)
G(imin)

(
SM − S∗1

)
> 0. (71)

From (71) it implies that lim supt→∞ V (t) = +∞.
On the contrary, it can be seen from (25) that lim supt→∞N(t) 6 S∗0 = B/µ, which

implies that lim supt→∞ I(t) 6 S∗0 = B/µ. This further implies that for every ε > 0
infinitesimally small, there exists τ2 > 0 sufficiently large such that I(t) 6 S∗0 + ε for all
t > τ2. It follows from Assumption 1 that for all v ∈ [t− s, t], (s, u) ∈ [t0, h1]× [t0, h2],

G
(
I(t− s− u)

)
6 G

(
I(v − u)

)
6 G

(
I(t− u)

)
6 G

(
I(t)

)
6 G(S∗0 + ε). (72)

From (72) it follows that

lim sup
t→∞

G
(
I(t− s− u)

)
6 lim sup

t→∞
G
(
I(t)

)
6 G(S∗0 ). (73)

It is easy to see from (65) and (73) that

lim sup
t→∞

V (t) 6 S∗0 + βS∗1G(S∗0 )E
(
(T1 + T2)e−µ(T1+T2)

)
<∞.

Therefore, it is impossible that I(t) 6 qI∗1 for sufficiently large t > t0, where q ∈ (0, 1).
Hence, the following are possible:

Case 1. I(t) > qI∗1 for all t sufficiently large; and
Case 2. I(t) oscillates about qI∗1 for sufficiently large t.

Obviously, we need show only Case 2. Suppose t1 and t2 are sufficiently large values
such that

I(t1) = I(t2) = qI∗1 , and I(t) < qI∗1 ∀(t1, t2).

If for all (s, u) ∈ [t0, h1]× [t0, h2], t2 − t1 6 ρh+ h, where h = h1 + h2, observe that
[t1, t1 +ρh+ s+u] ⊆ [t1, t1 +ρh+h], and it is easy to see from (18) by integration that

I(t) > I(t1)e−(µ+d+α)(t−t1) > qI∗1 e−(µ+d+α)(ρ+1)h ≡ v2.

If for all (s, u) ∈ [t0, h1]× [t0, h2], t2 − t1 > ρh+ h > ρh+ s+ u, then it can be seen
easily that I(t) > v2 for all t ∈ [t1, t1 + ρh+ s+ u] ⊆ [t1, t1 + ρh+ h].

Now, for each t ∈ (ρh + h, t2) ⊇ (ρh + s + u, t2) ∀(s, u) ∈ [t0, h1] × [t0, h2],
one can also claim that I(t) > v2. Indeed, as similarly shown above, suppose on the
contrary for all (s, u) ∈ [t0, h1]× [t0, h2], there exists T ∗ > 0 such that I(t) > v2 for all
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t ∈ [t1, t1 + ρh+ h+ T ∗] ⊇ [t1, t1 + ρh+ s+ u+ T ∗],

I(t1 + ρh+ h+ T ∗) = v2, but İ(t1 + ρh+ h+ T ∗) 6 0. (74)

It follows from (18)–(20) and (1) that for the value of t = t1 + ρh+ h+ T ∗,

I(t) > βE
(
e−µ(T1+T2)

)
G(v2)SM − (µ+ d+ α)v2

>

[
βE
(
e−µ(T1+T2)

)G(v2)

v2
S∗1 − (µ+ d+ α)

]
v2

>

[
βE
(
e−µ(T1+T2)

)G(I∗1 )

I∗1
S∗1 − (µ+ d+ α)

]
v2 = 0. (75)

Observe that (75) contradicts (74). Therefore, I(t) > v2 for t ∈ [t1, t2]. And since
[t1, t2] is arbitrary, it implies that I(t) > v2 for all sufficiently large t. Therefore, (56) is
satisfied.

Theorem 7. If the conditions of Lemma 2 are satisfied, then system (18)–(20) is strongly
permanent for any total delay time h = h1 + h2 according to Definition 1(i).

Remark 5.
(i) From Lemma 2, (56) observe that when β = 0, then v1 = B/µ. That is, when

disease transmission stops, then asymptotically, the smallest S that remain are
new births over the average lifespan 1/µ of the population, i.e., the DFE S∗0 =
B/µ ≡ 1. Also, as β → ∞, then the total susceptibles that remains v1 → 0+.
That is, as disease transmission rises, even the new births are either infected, or
die from natural or disease related causes over time.

(ii) From (56) observe that e−(µ+d+α)(ρ+1)h is the survival probability from natural
death (µ), disease mortality (d), and from infectiousness (α), over the total life
cycle of the parasite h. Thus, the smallest I that remains asymptotically v2 ≡
qI∗1 e−(µ+d+α)(ρ+1)h is a fraction q ∈ (0, 1) of the endemic equilibrium I∗1 that
survives from death and disease over life cycle h.

7 Example: Application to P. vivax malaria

In this section, the extinction results are exhibited for the P. vivax malaria example in
Wanduku [8]. This is accomplished by examining the trajectories of the decoupled sys-
tem (18) and (20) relative to the zero and endemic equilibria. To conserve space, we recall
the dimensionless parameters in [8, p. 3793, Table 1] given in Table 1, and the reader is
referred to [8] for detailed description of the P. vivax malaria scenario.

The dimensional estimates for the parameters of the malaria model given in [8, p. 3792,
(a)–(e)] are applied to (17) to find the dimensionless parameters for model (18)–(21) given
in Table 1.

The Euler approximation scheme is used to generate trajectories for S(t), I(t) over
time [0, 1000] days in Fig. 1. We useG(I) = a1I/(1+I), a1 = 0.05 in [8]. Furthermore,
the initial fractions of susceptible, exposed, infectious, and removed individuals in the
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initial population size N̂(t0) = 65000 are used:

S(t) =
10

23
≈ 28261

65000
, E(t) =

5

23
≈ 14131

65000
,

I(t) =
6

23
≈ 16957

65000
, R(t) =

2

23
≈ 5653

65000

for all t ∈ [−T, 0], T = max(T1 + T2, T3) = 2.129167. Recall Section 3, when R∗0 > 1,
the endemic equilibrium E1 = (S∗1 , E

∗
1 , I
∗
1 , R

∗
1) satisfies the following system:

B − βSe−µvT1G(I)− µS + αIe−µT3 = 0,

βSe−µvT1G(I)− µE − βSe−(µvT1+µT2)G(I) = 0,

βSe−(µvT1+µT2)G(I)− (µ+ d+ α)I = 0,

αI − µR− αIe−µT3 = 0.

For the dimensionless parameter estimates in Table 1, the DFE is E0 = (S∗0 , 0, 0) =
(1, 0, 0) and E1 = (S∗1 , E

∗
1 , I
∗
1 ) = (0.002323845, 0.00068247, 0.04540019).

Example 1 [Example for extinction of disease]. For parameter estimates in Table 1, where
β = 0.02146383, from (28) the BRN R̂∗0 = 0.2498732 < 1. Therefore, E0 is stable, and
E1 = (S∗1 , E

∗
1 , I
∗
1 ) fails to exist.

Table 1. A list of dimensionless values for the system parameters
for Example 1.

Disease transmission rate β 0.02146383

Constant Birth rate B 8.476678e−06
Recovery rate α 0.08571429
Disease death rate d 0.0001761252
Natural death rate µ, µv 8.476678e−06, 42.85714
Incubation delay in vector T1 0.105
Incubation delay in host T2 0.175
Immunity delay time T3 2.129167

(a) (b)

Figure 1. (a) and (b) show the trajectories of S and I , respectively, over time t ∈ [0, 1000]. The BRN in (28)
is R∗0 = 0.2498732 < 1, and extinction rate of the disease in (41) is λ = 0.06443506 > 0.
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Figure 1 verifies the results of Theorems 4 and 5. Indeed, sinceR∗0 = 0.2498732 < 1,
Theorems 4(i) and 5 are satisfied, and from (41) the extinction rate λ = 0.06443506 > 0.
That is, lim supt→∞ log(I(t))/t 6 −λ = −0.06443506. Figure 1(b) confirms that over
time, since λ = 0.06443506 > 0, then limt→∞ I(t) = 0. Furthermore, the BRN R∗0 =
0.2498732 < 1, and Fig. 1(a) shows that limt→∞ S(t) = 1.

8 Conclusion

The vector-human population dynamic models are derived. The models have a general
nonlinear incidence rate. The extinction and persistence of the vector-borne disease in the
SEIRS epidemic models are studied. Numerical simulation results are given to confirm
the results.
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