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Abstract. In the paper, we investigate a weak maximum principle for Lagrange problem described
by a fractional ordinary elliptic system with Dirichlet boundary conditions. The Dubovitskii–
Milyutin approach is used to find the necessary conditions. The fractional Laplacian is understood
in the sense of Stone–von Neumann operator calculus.
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1 Introduction

In the paper, we consider ordinary elliptic nonlinear control system of fractional order

(−∆)βx(t) = f
(
t, x(t), u(t)

)
, t ∈ (0, π) a.e., (1)

with a cost functional

F0(x, u) =

π∫
0

f0

(
t, x(t), u(t)

)
dt (2)

where β > 1/4, f0 : (0, π)×Rm×Rr → R, f : (0, π)×Rm×Rr → Rm, (−∆)β is the
β-power of the Dirichlet–Laplace operator −∆ : H1

0 ∩ H2 → L2 (cf. Section 2.3) and
H1

0 = H1
0 ((0, π),Rm), H2 = H2((0, π),Rm) are Sobolev spaces. L2 = L2((0, π),Rm)

is the space of square integrable functions. On the controls u, we assume that they belong
to the space L∞ = L∞((0, π),Rr) of essentially bounded functions and satisfy a con-
straint u(t) ∈M ⊂ Rr.

In the last years, one can observe the growing interest in the subject of fractional
Laplacians. It follows from the numerous applications of them, for example, in mathemat-
ical finance (infinitesimal generators of Lévy processes), elastostatics (Signorini obstacle
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problem), hydrodynamics (fractional Navier–Stokes equation and model of the flow in
porous media); see [2–4] and references therein. System (1) can be viewed as a gen-
eralization of the Poisson equation. To our best knowledge, it was investigated for the
first time in paper [2], where optimal control for problem (1)–(2) was examined in the
context of the existence of solutions. More precisely, in the case of β ∈ (0, 1), m = 1,
with the interval (0, π) replaced by a bounded Lipschitzian domain Ω ⊂ Rn (n > 3)
and with exterior homogenous Dirichlet boundary conditions, the results concerning the
continuous dependence of the sets of solutions on controls (with respect to the strong
and weak convergences of controls) as well as theorem on the existence of a solution to
problem (1)-(2) have been obtained. The variational “min” structure of (2) is used in [2].
Similar results are presented in papers [4] and [3] for the control systems possessing
the “minimax” and “mountain pass” structures, respectively. For some results concerning
the existence, uniqueness, stability and sensitivity of a solution to problem (1), we refer
to [2–4, 14].

Our aim is to derive the necessary conditions for problem (1)–(2). To the best of
our knowledge, this issue was not investigated up to now. In our paper, we derive such
conditions using the Dubovitskii–Milyutin approach. Specially, we are interested in frac-
tional case, but we do not exclude from our study the classical case of β = 1. In optimal
control theory, three main approaches for necessary conditions are known: two general
(abstract) approaches and one of a direct character. The first general approach is based
on the smooth-convex extremum principle by Ioffe and Tikchomirov (cf. [16]), and the
second one – on the Dubovitskii–Milyutin theorem (cf. [11]). The third approach is based
on the method of variation of controls. Such a “variational” approach in the fractional case
seems an open problem. Its difficulty lies in global character of (−∆)βx – in the case
of the systems containing the classical derivative, the local (pointwise) character of this
derivative is essentially used in such an approach. We use Dubovitskii–Milyutin method
because it allows us to avoid convexity-type assumption on f and f0 (an assumption
of such a type is necessary in the case of the smooth-convex extremum principle). The
only assumptions on f , f0 and their gradients (excluding assumptions of Proposition 7
on the surjectivity of differential F ′(x∗, u∗)) ensure differentiability of the mappings
used in Dubovitskii–Milyutin approach and are quite standard from the point of view
of differential calculus in function spaces.

Our result is analogous to the corresponding Pontryagin maximum principle for clas-
sical ordinary systems – necessary conditions take the form of an adjoint system and
a minimum condition. Since in this condition the gradients (f)u and (f0)u appear instead
of f and f0, therefore we name our principle the weak maximum principle. It is worth of
point out that if f , f0 are smooth and convex in u, then minimum condition with (f)u,
(f0)u and minumum condition with f , f0 are equivalent.

The idea of Dubovitskii–Milyutin method has been presented in papers [9] and [10]
but without proofs of the main results. A systematic exposition of this approach and proofs
are contained in the book [11]. Some generalizations of the method have been derived by
the second author in [26] and by Ledzewicz in [19–22]. In monograph [18] of 2015,
applications of the Dubovitskii–Milyutin method and of its generalization in set-valued
optimization are presented (cf. also [17]).
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Existence of optimal solutions and stability results concerning the case of β = 1
can be found in [5, 6, 23]. Necessary first-order optimality conditions for β = 1 can be
deduced in some cases from the results obtained in [12] and [13]. More precisely, in [12],
the scalar control system

d

dt
a
(
t, x(t), x′(t)

)
= b
(
t, x(t), x′(t), u(t)

)
, t ∈ (0, π) a.e.,

x(0) = x(π) = 0

with the cost functional

J(x, u) =

π∫
0

f0

(
t, x(t), x′(t), u(t)

)
dt (3)

is investigated under additional equality and inequality constraints. Using the direct
method (McShane variations of controls), the authors derived maximum principle of
Pontryagin type (it is important that a does not depend on u). In [13], the control system
(not necessary scalar)

d

dt
Dx′F

(
t, x(t), x′(t), u(t)

)
= DxF

(
t, x(t), x′(t), u(t)

)
, t ∈ (0, π) a.e.,

x(0) = x(π) = 0

with cost functional (3) is studied via Ioffe–Tikchomirov approach. The Pontryagin-type
maximum principle has been obtained under a convexity assumption on (DxF,Dx′F, f0).

Paper consists of two main parts. In the first part, we give some basics from the
area of Dubovitskii–Milyutin method and Stone–von Neumann operator calculus with an
application to one-dimensional Dirichlet–Laplace operator. In the second part, we derive
necessary optimality conditions in form of a minimum condition and an adjoint system.

2 Preliminaries

In this section, we give some basics concerning Dubovitskii–Milyutin method, Stone–von
Neumann operator calculus and one-dimensional Dirichlet–Laplace operator of fractional
order.

2.1 Dubovitskii–Milyutin method

For the results of this section, we refer to [11]. Let X be a linear topological space with
the dual space (the space of linear continuous functionals on X) denoted by X ′. If K is
a cone in X with vertex at the point 0 (by a cone we mean a set K such that tK = K for
any t > 0), then the conjugate cone K∗ we define by

K∗ = {f ∈ X ′; f(x) > 0 for any x ∈ K}.

Of course, the conjugate cone is the convex cone with vertex at 0.

Nonlinear Anal. Model. Control, 25(2):321–340
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Let F : X → R be a functional. We say that a vector h ∈ X is a direction of decrease
of functional F at a point x0 if there exist a neighborhood U of h, ε0 > 0 and α < 0 such
that

F (x0 + εh) 6 F (x0) + εα

for ε ∈ (0, ε0), h ∈ U .
We say that a vector h ∈ X is a feasible direction for the setQ ⊂ X at a point x0 ∈ Q

(Q denotes the closure of the set Q) if there exist a neighborhood U of h and ε0 > 0 such
that

x0 + εh ∈ Q

for ε ∈ (0, ε0), h ∈ U .
We say that a vector h ∈ X is a tangent direction to a set Q at a point x0 ∈ Q if there

exist ε0 > 0 and mapping r : (0, ε0)→ X such that

x0 + εh+ r(ε) ∈ Q

for ε ∈ (0, ε0) and r(ε)/ε → 0, ε → 0+ (i.e., for any neighborhood U of 0, there exists
ε1 > 0 such that r(ε)/ε ∈ U for ε ∈ (0, ε1); when X is a Banach space, we write in such
a case r(ε) = o(ε)).

One proves that the set of directions of decrease of functional F at a point x0 and the
set of feasible directions for the set Q at a point x0 are open cones; the set of tangent
directions to a set Q at a point x0 is a cone.

Now, assume X is locally convex and consider the problem

F (x)→ min, x ∈ Q :=

n+1⋂
i=1

Qi, (4)

where F : X → R, Qi ⊂ X , i = 1, . . . , n + 1. We say that x0 ∈ Q is a local minimum
point of F if there exists a neighborhood V of x0 such that

F (x0) = min
x∈Q∩V

F (x).

The main role in rest part of the paper is played by the following theorem (cf. [11,
Thm. 6.1 and Remark 3 following the theorem]).

Theorem 1. Let x0 be a local minimum point for problem (4), and the cone K0 of
directions of decrease of functional F at x0 is nonempty and convex, cones Ki, i =
1, . . . , n, of feasible directions for the sets Qi at x0 are nonempty and convex, and the
cone Kn+1 of tangent directions for the set Qn+1 at x0 is nonempty and convex. Then
there exist functionals fi ∈ K∗i , i = 0, 1, . . . , n+ 1, not all identically zero, such that

f0 + f1 + · · ·+ fn + fn+1 = 0,

and if
⋂n+1
i=1 Ki 6= ∅, then f0 6= 0.
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Now, we shall give characterizations of the defined cones in some typical situations.
These results can be found in [11, Thms. 7.5, 8.2, 9.1, resp.].

Proposition 1. If X is a Banach space, F : X → R – a functional differentiable at x0

in Frechet sense, then the cone Kd of directions of decrease of functional F at x0 has the
form

Kd =
{
h ∈ X; F ′(x0)h < 0

}
.

Proposition 2. If Q is a convex set in linear topological space E, then the cone Kf of
feasible directions for the set Q at a point x0 ∈ Q is convex and has the form

Kf =
{
ρ
(
IntQ− x0

)
; ρ > 0

}
.

Theorem 2. If X , Y are Banach spaces, P : X → Y – operator of class C1, P (x0) = 0
and=P ′(x0) = Y , then the coneKt of tangent directions for the set {x ∈ X; P (x) = 0}
at x0 is a subspace of the form

Kt =
{
h ∈ X; P ′(x0)h = 0

}
.

We also have (cf. [11, Thms. 10.2, 10.5, resp.])

Proposition 3. Let E be a linear topological space, f ∈ E′ and

K =
{
x ∈ E; f(x) > 0

}
.

Then

K∗ =

{
E′ if f = 0,

{λf ; λ > 0} if f 6= 0.

Proposition 4. Let Q be a nonempty convex closed set in linear topological space E and
x0 ∈ Q. If IntQ 6= ∅, then

K∗f =
{
g ∈ E′; g(x) > g(x0) for x ∈ Q

}
where Kf is the cone of feasible directions for Q at x0.

2.2 Basics of Stone–von Neumann operator calculus

Basics of Stone–von Neumann operator calculus presented in this section comes from
[1, 24, 25]1 (cf. also [15] for a more comprehensive coverage of the topic). We give them
here for the convenience of the reader.

Let H be a real Hilbert space with a scalar product 〈·, ·〉 : H ×H → R, and Π(H) –
the set of all projections of H on closed linear subspaces of H . By the spectral measure
in R we mean a set function E : B → Π(H), where B is the σ-algebra of Borel subsets

1In [1,24,25] the results are presented in the case of complex Hilbert space but their proofs can be moved to
the case of real Hilbert space.
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of R, that satisfies the following conditions:

• for any x ∈ H, the function
B 3 P 7−→ E(P )x ∈ H (5)

is a vector measure;
• E(R) = I;
• E(P ∩Q) = E(P ) ◦ E(Q) for P,Q ∈ B.

By a support of a spectral measure E we mean the complement of the sum of all open
subsets of R with zero spectral measure.

If b : R→ R is a bounded Borel measurable function, definedE-a.e., then the integral∫∞
−∞b(λ)E(dλ) is defined by( ∞∫

−∞

b(λ)E(dλ)

)
x =

∞∫
−∞

b(λ)E(dλ)x

for any x ∈ H , where the integral
∫∞
−∞b(λ)E(dλ)x (with respect to the vector mea-

sure (5)) is defined in a standard way, with the aid of the sequence of simple functions
converging E(dλ)x – a.e. to b (see [1]).

If b : R → R is an unbounded Borel measurable function, defined E-a.e., then, for
any x ∈ H such that

∞∫
−∞

∣∣b(λ)
∣∣2∥∥E(dλ)x

∥∥2
<∞ (6)

(the above integral is taken with respect to the nonnegative measureB 3P 7→ ‖E(P )x‖2∈
R+

0 ), there exists the limit

lim

∞∫
−∞

bn(λ)E(dλ)x

of integrals, where

bn : R 3 λ 7−→

{
b(λ) as |b(λ)| 6 n,

0 as |b(λ)| > n

for n ∈ N. Let us denote the set of all points x with property (6) by D. One proves that
D is a dense linear subspace of H , and by

∫∞
−∞b(λ)E(dλ) one denotes the operator

∞∫
−∞

b(λ)E(dλ) : D ⊂ H → H

given by ( ∞∫
−∞

b(λ)E(dλ)

)
x = lim

∞∫
−∞

bn(λ)E(dλ)x.

http://www.journals.vu.lt/nonlinear-analysis
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Of course, D = H and

lim

∞∫
−∞

bn(λ)E(dλ)x =

∞∫
−∞

b(λ)E(dλ)x

when b : R → R is a bounded Borel measurable function, defined E-a.e. One can prove
that ∥∥∥∥∥

∞∫
−∞

b(λ)E(dλ)x

∥∥∥∥∥
2

=

∞∫
−∞

∣∣b(λ)
∣∣2 ∥∥E(dλ)x

∥∥2

for x ∈ D. The main property of the integral is its self-adjointness, i.e.,( ∞∫
−∞

b(λ)E(dλ)

)∗
=

∞∫
−∞

b(λ)E(dλ).

If σ ∈ B, then by the integral ∫
σ

b(λ)E(dλ)

we mean the integral
∞∫
−∞

χσ(λ)b(λ)E(dλ),

where χσ is the characteristic function of the set σ.
Next theorem plays the fundamental role in the spectral theory of self-adjoint opera-

tors (below, σ(A) is the spectrum of an operator A).

Theorem 3 [Integral representation of self-adjoint operator]. IfA : D(A) ⊂ H → H
is self-adjoint and the resolvent set ρ(A) is nonempty, then there exists a unique spectral
measure E with the closed support Λ = σ(A) such that

A =

∞∫
−∞

λE(dλ) =

∫
σ(A)

λE(dλ).

The basic notion in the Stone–von Neumann operator calculus is a function of a self-
adjoint operator. Namely, if A : D(A) ⊂ H → H is self-adjoint and E is the spectral
measure determined according to the above theorem, then, for any Borel measurable
function b : R→ R, one defines the operator

b(A) =

∞∫
−∞

b(λ)E(dλ) =

∫
σ(A)

b(λ)E(dλ).

Nonlinear Anal. Model. Control, 25(2):321–340

https://doi.org/10.15388/namc.2020.25.16520


328 D. Idczak, S. Walczak

It is known that the spectrum σ(b(A)) of b(A) is given by

σ
(
b(A)

)
= b
(
σ(A)

)
,

provided that b is continuous (it is sufficient to assume continuity of b on σ(A)).

Remark 1. To make sense to the integral
∫∞
−∞ b(λ)E(dλ) in the case of Borel measur-

able function b : B → R, where B is a Borel set containing the support of the measure E,
it is sufficient to extend b on R to a whichever Borel measurable function (putting, for
example, b(λ) = 0 for λ /∈ B).

2.3 Fractional one-dimensional Dirichlet–Laplace operator

For the results of this section, we refer to [14]. By the one-dimensional Dirichlet–Laplace
operator on the interval (0, π) we mean the operator

−∆ : H1
0 ∩H2 ⊂ L2 → L2

given by
−∆x(t) = −x′′(t).

It is known that −∆ is self-adjoint,

σ(−∆) = σp(−∆) =
{
j2; j ∈ N

}
(σp(−∆) is the pointwise spectrum of (−∆)) and the eigenspace N(j2) corresponding
to the eigenvalue λj = j2 is the set {c sin jt; c ∈ Rm}. The system of functions

cj,i =

(
0, . . . , 0,

√
2

π
sin jt︸ ︷︷ ︸
ith

, 0, . . . , 0

)
, j = 1, 2, . . . , i = 1, . . . ,m,

is the Hilbertian basis (complete orthonormal system) in L2.
By fractional Dirichlet–Laplace operator of order β > 0 we mean the operator

(−∆)β : D
(
(−∆)β

)
⊂ L2 → L2

where

D
(
(−∆)β

)
=

{
x(t) ∈ L2;

∫
σ(−∆)

∣∣λβ∣∣2t∥∥E(dλ)x
∥∥2

=

∞∑
j=1

((
j2
)β )2|aj∣∣2 <∞,

where x(t) =

( ∫
σ(−∆)

1E(dλ)x

)
(t) =

∞∑
j=1

aj

√
2

π
sin jt

}
.
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HereE is the spectral measure given by Theorem 3 for the operator (−∆), aj
√

2/π sin jt
is the projection of x on the m-dimensional eigenspace N(j2) of the operator (−∆), and

(−∆)βx(t) =

( ∫
σ(−∆)

λβ E(dλ)x

)
(t) =

∞∑
j=1

(
j2
)β
aj

√
2

π
sin jt

for x(t) =
∑∞
j=1aj

√
2/π sin jt ∈ D((−∆)β) (from the Carleson theorem it follows that

the equality x(t) =
∑∞
j=1aj

√
2/π sin jt meant in L2 implies the pointwise one a.e. on

(0, π) (cf. [7, Thm. 5.17])).
One can show that

σ
(
(−∆)β

)
= σp

(
(−∆)β

)
=
{(
j2
)β

; j ∈ N
}
,

and the corresponding eigenspaces for (−∆) and (−∆)β are the same.
The function (−∆)βxwill be called the Dirichlet–Laplacian of order β of x. We have

the following lemmas.

Lemma 1. D((−∆)β) is complete with the scalar products

〈x, y〉β = 〈x, y〉L2 +
〈
(−∆)βx, (−∆)βy

〉
L2

and
〈x, y〉∼β =

〈
(−∆)βx, (−∆)βy

〉
L2 ,

and norm generated by these products are equivalent.

Lemma 2. If β > 1/4, then
D
(
(−∆)β

)
⊂ L∞,

and this embedding is continuous, more precisely,

‖x‖L∞ 6

√
2

π
ζ(4β)‖x‖∼β (7)

for x ∈ D((−∆)β), where ζ(4β) is the value of the Riemann zeta function ζ(γ) =∑∞
j=1(1/jγ) at γ = 4β.

3 Maximum principle

Let us consider the following problem:

F0(x, u)→ min, F (x, u) = 0, u ∈ U, (8)

where

F0 : D
(
(−∆)β

)
× L∞ 3 (x, u) 7−→

π∫
0

f0

(
t, x(t), u(t)

)
dt ∈ R,

F : D
(
(−∆)β

)
× L∞ 3 (x, u) 7−→ (−∆)βx(t)− f

(
t, x(t), u(t)

)
∈ L2

with β > 1/4, f0, f : (0, π)×Rm ×Rr → Rm, U = L∞((0, π),M), where M ⊂ Rr is
closed convex set such that IntM 6= ∅.

Nonlinear Anal. Model. Control, 25(2):321–340
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3.1 Assumptions

In paper [14], the following proposition has been derived.

Proposition 5. If β > 1/4, function f is measurable in t ∈ (0, π), continuously differen-
tiable in (x, u) ∈ Rm × Rr and∣∣f(t, x, u)

∣∣, ∣∣fx(t, x, u)
∣∣, ∣∣fu(t, x, u)

∣∣ 6 a(t)γ
(
|x|
)

+ b(t)δ
(
|u|
)

(9)

for (t, x, u) ∈ (0, π) × Rm × Rr, where a, b ∈ L2 and γ, δ : R+
0 → R+

0 are continuous
functions, then F is of class C1, and the differential F ′(x, u) : D((−∆)β) × L∞ → L2

of F at (x, u) is given by

F ′(x, u)(h, v) = (−∆)βh(t)− fx
(
t, x(t), u(t)

)
h(t)− fu

(
t, x(t), u(t)

)
v(t)

for (h, v) ∈ D((−∆)β)× L∞.

In a similar way, we obtain a differentiability property of F0.

Proposition 6. If β > 1/4, function f0 is measurable in t ∈ (0, π), continuously
differentiable in (x, u) ∈ Rm × Rr and∣∣f0(t, x, u)

∣∣, ∣∣(f0)x(t, x, u)
∣∣, ∣∣(f0)u(t, x, u)

∣∣ 6 d(t)c
(
|x|, |u|

)
(10)

for (t, x, u) ∈ (0, π)× Rm × Rr, where d ∈ L1 = L1((0, π),R+
0 ), c : R+

0 × R+
0 → R+

0

is a continuous function, then F0 is differentiable on D((−∆)β)× L∞, and

F ′0(x, u)(h, v) =

π∫
0

(
(f0)x

(
t, x(t), u(t)

)
h(t) + (f0)u

(
t, x(t), u(t)

)
v(t)

)
dt

for (h, v) ∈ D((−∆)β)× L∞.

Proof. Indeed, it is sufficient to observe that the mapping

(F0)′
(
x(·), u(·)

)
: D((−∆)β)× L∞ 3 (h, v)

7−→
π∫

0

(f0)x
(
t, x(t), u(t)

)
h(t) + (f0)u

(
t, x(t), u(t)

)
v(t) dt ∈ R

is the Gâteaux differential of F0 at any fixed point (x(·), u(·)) ∈ D((−∆)β) × L∞ and
the mapping

D
(
(−∆)β

)
× L∞ 3

(
x(·), u(·)

)
7−→ (F0)′

(
x(·), u(·)

)
∈ L

(
D
(
(−∆)β

)
× L∞,R

)
is continuous. Linearity of (F0)′(x(·), u(·)) is obvious. Its continuity follows from the
estimation (cf. (7))

∣∣h(t)
∣∣ 6√ 2

π
ζ(4β)‖h‖∼β , t ∈ (0, π) a.e.,

http://www.journals.vu.lt/nonlinear-analysis

http://www.journals.vu.lt/nonlinear-analysis


Lagrange problem for fractional ordinary elliptic system 331

for h(·) ∈ D((−∆)β). So, to prove that (F0)′(x(·), u(·)) is the Gâteaux differential of
F0, it is sufficient to check that (F0)′(x(·), u(·))(h(·), v(·)) is the derivative at the point
λ = 0 of the real function of one (real) variable

ψ : (−1, 1) 3 λ 7−→ F0

(
x(·) + λh(·), u(·) + λv(·)

)
=

π∫
0

g(λ, t) dt ∈ R,

where

g : (−1, 1)× [0, 1] 3 (λ, t) 7−→ f0

(
t, x(t) + λh(t), u(t) + λv(·)

)
∈ R.

In turn, the differentiability of ψ at λ = 0 means the differentiability of an integral with
respect to the parameter and follows from the classical theorem on such a differentiability.
Now, let (xn, un)→ (x0, un) as n→∞ in D((−∆)β)× L∞. Then∣∣((F0)′(xn, un)− (F0)′(x0, u0)

)
(h, v)

∣∣
6

π∫
0

∣∣(f0)x
(
t, xn(t), un(t)

)
− (f0)x

(
t, x0(t), u0(t)

)∣∣∣∣h(t)
∣∣dt

+

π∫
0

∣∣(f0)u
(
t, xn(t), un(t)

)
− (f0)u

(
t, x0(t), u0(t)

)∣∣∣∣v(t)
∣∣dt

6

√
2

π
ζ(4β)

π∫
0

∣∣(f0)x
(
t, xn(t), u(t)

)
− (f0)x

(
t, x0(t), u0(t)

)∣∣dt‖h‖∼β
+

π∫
0

∣∣(f0)u
(
t, xn(t), un(t)

)
− (f0)u

(
t, x0(t), u0(t)

)∣∣dt‖v‖L∞
for (h, v) ∈ D((−∆)β)× L∞. Thus,∥∥(F0)′(xn, un)− (F0)′(x0, u0)

∥∥
L(AC×L∞,R)

6

√
2

π
ζ(4β)

π∫
0

∣∣(f0)x
(
t, xn(t), un(t)

)
− (f0)x

(
t, x0(t), u0(t)

)∣∣ dt
+

π∫
0

∣∣(f0)u(t, xn(t), un(t)
)
− (f0)u

(
t, x0(t), u0(t)

)∣∣dt.
From the fact that the convergence in D((−∆)β) implies the almost uniform one and
from the growth conditions (10) it follows that right-hand side of the above inequality
tends to 0 as n→∞.

We have the following proposition.
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Proposition 7. Let the assumptions of Proposition 5 be satisfied, and a pair (x, u) ∈
D((−∆)β)× L∞ be fixed. If one of the following conditions is satisfied

(a) β > 1/2 and ‖Λ‖L1
m×m

< π/(2ζ(2β));
(b) β > 1/2 and Λ(t) 6 0, i.e., matrix Λ(t) is nonpositive, for t ∈ (0, π) a.e.;
(c) β > 1/4 and Λ ∈ L∞m×m and ‖Λ‖∞ < 1,

where Λ(t) := fx(t, x(t), u(t)), L∞m×m = L∞((0, π),Rm×m)2, then the differential
F ′(x, u) : D((−∆)β)× L∞ → L2 is “onto”.

Proof. To show that, for any function g ∈ L2, there exists a pair (h, v) ∈ D((−∆)β) ×
L∞ such that

(−∆)βh(t)− fx
(
t, x(t), u(t)

)
h(t)− fu

(
t, x(t), u(t)

)
v(t) = g(t),

it is sufficient to consider the pairs (h, 0) ∈ D((−∆)β) × L∞ and use Proposition 5.2
from [14] and the remark following that proposition.

3.2 Conjugate cones

Let (x∗, u∗) ∈ D((−∆)β) × L∞ be fixed. From Propositions 1 and 6 it follows that the
cone Kd of directions of decrease of functional F0 at the point (x∗, u∗) has the form

Kd =

{
(h, v) ∈ AC × L∞;

π∫
0

(f0)x
(
t, x∗(t), u∗(t)

)
h(t) + (f0)u

(
t, x∗(t), u∗(t)

)
v(t) dt < 0

}
.

This set is convex and nonempty, provided that (F0)′(x∗, u∗) 6= 0 (vanishing of the
differential is equivalent to the equalityKd = ∅). In such a case, in view of Proposition 3,
the conjugate cone is the following:

K∗d =
{
λ0

(
−(F0)′

(
x∗(·), u∗(·)

))
; λ0 > 0

}
.

Using Theorem 2, we assert that if one of the conditions of Proposition 7 is fulfilled
for Λ(t) = fx(t, x∗(t), u∗(t)), then the cone Kt of tangent directions for the set{

(x, u) ∈ D
(
(−∆)β

)
× L∞; F (x, u) = (−∆)βx(t)− f

(
t, x(t), u(t)

)
= 0
}

at the point (x∗, u∗) has the form

Kt = kerF ′(x∗, u∗).

2The norm in the space L∞m×m of Rm×m-valued functions is defined in the same way as in the space L∞

of Rm-valued functions.
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It clear that Kt 6= ∅. Of course, Kt is a subspace (consequently, convex cone). So,

K∗t =
(
kerF ′(x∗, u∗)

)⊥
,

where (kerF ′(x∗, u∗))
⊥ is the set of linear continuous functionals on D((−∆)β)× L∞

vanishing on the subspace kerF ′(x∗, u∗); the set (kerF ′(x∗, u∗))
⊥ is called the anulator

of kerF ′(x∗, u∗). From the lemma on the anulator3 it follows that(
kerF ′(x∗, u∗)

)⊥
= =

((
F ′(x∗, u∗)

)∗)
.

Definition of the adjoint operator (F ′(x∗, u∗))
∗ to the operator F ′(x∗, u∗) :

D((−∆)β)× L∞ → L2 gives

K∗t = =
((
F ′(x∗, u∗)

)∗)
=

{
g ∈

(
D
(
(−∆)β

)
× L∞

)′
; there exists λ ∈ L2 such that

g(h, v)=

π∫
0

λ(t)
(
(−∆)βh(t)−fx

(
t, x(t), u(t)

)
h(t)−fu

(
t, x(t), u(t)

)
v(t)

)
dt

for any (h, v) ∈ D
(
(−∆)β

)
× L∞

}
.

Finally, writing the constraint u ∈ U in the form

(x, u) ∈ Q :=
{

(x, u) ∈ D
(
(−∆)β

)
× L∞; u ∈ U

}
= D

(
(−∆)β

)
× U

and using the fact that IntQ 6= ∅ (because IntU 6= ∅), we assert (cf. Proposition 2) that
the coneKf of feasible directions for the setQ at the point (x∗, u∗) ∈ Q is the following:

Kf =
{
ρ
(
Int
(
D
(
(−∆)β

)
× U

)
− (x∗, u∗)

)
; ρ > 0

}
=
{
ρ
((
D
(
(−∆)β

)
× IntU

)
− (x∗, u∗)

)
; ρ > 0

}
.

Consequently, it is nonempty and convex. From Proposition 4 (closedness of M implies
closedness of Q) it follows that conjugate cone K∗f has the form

K∗f =
{
g1 = (µ, ξ) ∈

(
D
(
(−∆)β

)
× L∞

)′
;

µ(x) + ξ(u) = g1(x, u) > g1(x∗, u∗) = µ(x∗) + ξ(u∗) for (x, u) ∈ Q
}

=
{

(0, ξ) ∈
(
D
(
(−∆)β

)
× L∞

)′
; ξ(u) > ξ(u∗) for u ∈ U

}
.

3If X , Y are Banach spaces and Λ : X → Y is linear bounded operator such that =Λ = Y , then
(kerΛ)⊥ = =Λ∗, where Λ∗ : Y ′ → X′ is adjoint operator to Λ (see [16]).
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3.3 Thesis

So, if (x∗, u∗) ∈ D((−∆)β)×L∞ is a local minimum point, then there exist functionals
g0 ∈ K∗d , g1 ∈ K∗f , g2 ∈ K∗t , not all identically zero, such that

g0 + g1 + g2 = 0.

In other words, there exist λ0 6 0, ξ ∈ (L∞)′, λ ∈ L2, not all zero, such that

λ0

π∫
0

(f0)x
(
t, x∗(t), u∗(t)

)
h(t) + (f0)u

(
t, x∗(t), u∗(t)

)
v(t) dt+ ξ(v)

+

π∫
0

λ(t)
(
(−∆)βh(t)− fx

(
t, x∗(t), u∗(t)

)
h(t)

− fu
(
t, x∗(t), u∗(t)

)
v(t)

)
dt = 0 (11)

for (h, v) ∈ D((−∆)β)× L∞ and

ξ(u) > ξ(u∗) (12)

for u ∈ U .
Taking in (11) points (h, v) = (h, 0) ∈ D((−∆)β)× L∞, we obtain

λ0

π∫
0

(f0)x
(
t, x∗(t), u∗(t)

)
h(t)

+

π∫
0

λ(t)
(
(−∆)βh(t)− fx(t, x∗(t), u∗(t))h(t)

)
dt = 0 (13)

for h∈D((−∆)β). On the other hand, taking in (11) points (h, v)=(0, v)∈D((−∆)β)×
L∞, we obtain

λ0

π∫
0

(f0)u
(
t, x∗(t), u∗(t)

)
v(t) dt

+ ξ(v)−
π∫

0

λ(t)fu
(
t, x∗(t), u∗(t)

)
v(t) dt = 0 (14)

for v ∈ L∞. Conditions (12) and (14) imply the following inequality for any u ∈ U :

−λ0

π∫
0

(f0)u
(
t, x∗(t), u∗(t)

)
u(t) dt+

π∫
0

λ(t)fu
(
t, x∗(t), u∗(t)

)
u(t) dt

> −λ0

π∫
0

(f0)u
(
t, x∗(t), u∗(t)

)
u∗(t) dt+

π∫
0

λ(t)fu
(
t, x∗(t), u∗(t)

)
u∗(t) dt
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Let us recall the following lemma proved in [13]: if M ⊂ Rm, ϕ = ϕ(t, u) : [0, 1]×
M → R is measurable in t, continuous in u and

−∞ <

1∫
0

ϕ
(
t, û(t)

)
dt 6

1∫
0

ϕ
(
t, u(t)

)
dt <∞

for a fixed function û(·) ∈ L2([0, 1],M) and all functions u(·) ∈ L2([0, 1],M), then

ϕ
(
t, û(t)

)
6 ϕ(t, u)

for t ∈ [0, 1] a.e. and all u ∈ M . Proof of this lemma can be moved without changes to
the case of L∞([0, 1],M).

So, from L∞-version of the above lemma it follows that, for t ∈ [0, 1] a.e.,(
−λ0(f0)u

(
t, x∗(t), u∗(t)

)
+ λ(t)fu

(
t, x∗(t), u∗(t)

))
u

>
(
−λ0(f0)u

(
t, x∗(t), u∗(t)

)
+ λ(t)fu

(
t, x∗(t), u∗(t)

))
u∗(t)

for any u ∈M .
Now, let us denote

V (t) = λ0(f0)x
(
t, x∗(t), u∗(t)

)
− λ(t)fx

(
t, x∗(t), u∗(t)

)
, t ∈ [0, 1] a.e.

Equality (13) takes the form

π∫
0

V (t)h(t) +

π∫
0

λ(t)(−∆)βh(t) dt = 0

for h ∈ D((−∆)β). Using the fact that (−∆)β is self-adjoint from the above condition,
we obtain that λ ∈ D((−∆)β) and

(−∆)βλ =
[
fx
(
t, x∗(t), u∗(t))

]>
λ(t)− λ0

(
f0)x

(
t, x∗(t), u∗(t)

)
, t ∈ [0, 1] a.e.

At the end, let us observe that one can assume that λ0 = −1. Indeed, let us consider
a control um(·) ≡ m, where m ∈ IntM , and let hum−u∗ ∈ D((−∆)β) be the solution
of the system

(−∆)βh(t)− fx
(
t, x∗(t), u∗(t)

)
h(t)− fu

(
t, x∗(t), u∗(t)

)(
um(t)− u∗(t)

)
= 0

(existence of such a solution follows from [14, Prop. 5.2]). Then (x∗ + hum−u∗ , um) ∈
D((−∆)β)× IntU = Int(D((−∆)β)× U), and, for ρ = 1, we have

Kf 3 ρ
(
(x∗ + hum−u∗ , um)− (x∗, u∗)

)
= (x∗ + hum−u∗ − x∗, um − u∗)(hum−u∗ , um − u∗).

Since (hum−u∗ , um − u∗) ∈ kerF ′(x∗, u∗) = Kt, therefore the intersection Kt ∩Kf is
nonempty, and one can assume that λ0 = −1.
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3.4 Final result

To formulate the main result of the paper, it will be convenient to introduce the classical
Hamiltonian function:

H : [0, π]× Rm × Rm × Rr → R:

H(t, x, λ, u) = λ>f(t, x, u) + f0(t, x, u).

Thus, we have proved

Theorem 4 [Weak maximum principle]. Let M ⊂ Rr be a closed convex set with
nonempty interior. If (x∗, u∗) ∈ D((−∆)β) × L∞ is a local minimum point for prob-
lem (8), conditions (9), (10) are satisfied, one of the conditions of Proposition 7 is fulfilled
for Λ(t) = fx(t, x∗(t), u∗(t)) and (f0)x(·, x∗(·), u∗(·)), (f0)u(·, x∗(·), u∗(·)) are not all
identically zero, then there exists a function λ ∈ D((−∆)β) such that

(−∆)βλ(t) = Hx

(
t, x∗(t), λ(t), u∗(t)

)
, t ∈ [0, π] a.e.,

and

Hu

(
t, x∗(t), λ(t), u∗(t)

)(
u− u∗(t)

)
> 0, t ∈ [0, π] a.e.,

for any u ∈M .

Remark 2. In fact, in the above theorem, the assumption that (f0)x(·, x∗(·), u∗(·)),
(f0)u(·, x∗(·), u∗(·)) are not all identically zero can be dropped, but if it is not the case,
then the unique solution of conjugate system is λ = 0, and, consequently, the minimum
condition takes the form

0u > 0u∗(t), t ∈ [0, π],

for u ∈M . So, it gives no information on u∗.

Example 1. It is easy to see that the optimal control problem

(−∆)βx(t) = −
(
x(t)

)3
+ u(t), t ∈ (0, π) a.e., (15)

π∫
0

(
x(t)

)2 − (u(t)
)2

dt→ min

satisfies the assumptions of the above maximum principle with β > 1/2, M = [−1, 1],

f(t, x, u) = −x3 + u, f0(t, x, u) = x2 − u2

and
γ(z) = z3 + 3z2, δ(w) = w + 1, a(t) ≡ b(t) ≡ 1,

c(z, w) = z2 + 2z + w2 + 2w, d(t) ≡ 1.
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Clearly, Λ(t) = −3(x∗(t))
2 satisfies condition (b) of Proposition 7 for any x∗(·). So, if

(x∗(·), u∗(·)) is a local minimum point for the problem under considerations, then there
exists λ(·) ∈ D((−∆)β) such that

(−∆)βλ(t) = −3
(
x∗(t)

)2
λ(t) + 2x∗(t), t ∈ (0, π) a.e., (16)

and (
−2u∗(t) + λ(t)

)
u >

(
−2u∗(t) + λ(t)

)
u∗(t), t ∈ (0, π) a.e., (17)

for any u ∈ [−1, 1].
Analysing the above conditions, we see that the pair (x∗(·), u∗(·)) ≡ (0, 0) is sus-

pected, i.e., it fulfiles (15), (16), (17) with λ(t) ≡ 0. Moreover, each pair of the form
(x∗(·), u∗(·)) ≡ (x∗(·), 0) such that x∗(·) is not zero function cannot be locally optimal
because in such a case (17) implies that λ(t) = 0 for t ∈ (0, π) a.e., and we have
contradiction with (16) and the fact that x∗(·) is different from zero function. Of course,
any pair (0, u∗) with u∗ 6= 0 cannot be locally optimal because it does not satisfy the
control system (15).

Example 2. Let us consider the optimal control problem

(−∆)1/2x(t) = u(t), t ∈ (0, π) a.e., (18)
π∫

0

sin t x(t) dt→ min (19)

with m = 1, r = 1, M = [−1, 1]. It is easy to see that all assumptions of our weak
maximum principle are satisfied. Thus, if (x∗(·), u∗(·)) is a local minimum point for the
above problem, then

λ(t)u > λ(t)u∗(t), u ∈M, (20)

for t ∈ (0, π) a.e., where λ(·) ∈ D((−∆)1/2) is a unique solution of conjugate system

(−∆)1/2λ(t) = sin t, t ∈ (0, π) a.e.

Let λ(t) be of the form λ(t) =
∑∞
j=1 bj

√
2/π sin jt. One can write the above conjugate

system as follows:

∞∑
j=1

(
j2)1/2bj

√
2

π
sin jt =

∞∑
j=1

ej

√
2

π
sin jt,

where ej =
∫ π

0
sin t

√
2/π sin jt for j ∈ N. In consequence,

bj =
ej
j

=

{√
π
2 ; j = 1,

0; j > 1,
and λ(t) = sin t, t ∈ [0, π].
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Thus, from (20) it follows that

u∗(t) = −1, t ∈ (0, π) a.e.,

is a unique suspected control and

(−∆)1/2x∗(t) = −1, t ∈ (0, π) a.e.,

i.e.,
∞∑
j=1

(
j2
)1/2

cj

√
2

π
sin jt =

∞∑
j=1

dj

√
2

π
sin jt, t ∈ (0, π) a.e.,

where

x∗(t) =

∞∑
j=1

cj

√
2

π
sin jt and −1 =

∞∑
j=1

dj

√
2

π
sin jt, t ∈ (0, π) a.e.

It is known (see [8]) that

dj =

{
−
√

8
π

1
j ; j is odd,

0; j is even.

So,

cj =
dj
j

=

{
−
√

8
π

1
j2 ; j is odd,

0; j is even,

and

x∗(t) =

∞∑
j=1

cj

√
2

π
sin jt

= − 4

π

(
sin t+

sin 3t

32
+

sin 5t

52
+ · · ·

)
, t ∈ (0, π) a.e.

Thus,
π∫

0

sin t x∗(t) dt = − 4

π

π∫
0

sin t

(
sin t+

sin 3t

32
+

sin 5t

52
+ · · ·

)
dt

= − 4

π

π∫
0

sin t sin tdt = −2.

Summarizing, if a pair (x∗, u∗) is a local minimum point for problem (18)–(19) with
M = [−1, 1], then, for t ∈ (0, π) a.e.,

u∗(t) = −1,

x∗(t) = − 4

π

(
sin t+

sin 3t

32
+

sin 5t

52
+ · · ·

)
,

and the minimal value of the cost functional (19) is equal to −2.
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