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Abstract. In this paper, inspired by the idea of Meir–Keeler contractive mappings, we introduce
Meir–Keeler expansive mappings, say MKE, in order to obtain Krasnosel’skii-type fixed point
theorems in Banach spaces. The idea of the paper is to combine the notion of Meir–Keeler mapping
and expansive Krasnosel’skii fixed point theorem. We replace the expansion condition by the
weakened MKE condition in some variants of Krasnosel’skii fixed point theorems that appear in
the literature, e.g., in [T. Xiang, R. Yuan, A class of expansive-type Krasnosel’skii fixed point
theorems, Nonlinear Anal., Theory Methods Appl., 71(7–8):3229–3239, 2009].
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1 Introduction

As we know from the theory of fixed points, two classical and the most applicable results
are Schauder’s theorem and Banach contraction principle. In 1958, Krasnosel’skii com-
bined them in order to consider the following fixed point problem (cf. [9] or [13, p. 31]):

Ay +By = y, y ∈M, (1)

whereM is a subset of a Banach space X .
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Theorem 1. LetM be a nonempty, closed and convex subset of a Banach space (X, ‖·‖).
Suppose that A and B mapM into X so that

(i) Ax+By ∈M for all x, y ∈M:
(ii) A is continuous and A(M) is contained in a compact subset of X:

(iii) B is a contraction with constant α < 1.

Then there is y ∈M with Ay +By = y.

Several real world problems and theoretical phenomena may be modelled in the set-
ting of (1). Krasnosel’skii fixed point theorem, which reads as above, is an extensively
utilizable tool for solving such equations. In particular, it is known that this theorem
has a vast scope of applications to nonlinear integral equations of mixed type, as well
as to differential and functional differential equations. It is worth mentioning that many
problems in mathematical physics and population dynamics, which can be formulated in
the form (1), may encounter the problem that the involved operator B does not satisfy the
hypothesis of contraction. In this paper, we will try to overcome this problem by using a
new condition for the mapping B.

There are diverse extensions of Krasnosel’skii fixed point theorem in the literature,
and the operator B is often required to be contractive or expansive, or of any typical form
involving control functions (see, e.g., [1,3–8,14,17,19] and the references therein). There
are also a few results related with Meir–Keeler-type conditions used in Krasnosel’skii
fixed point theorem (see, e.g., [11]).

The goal of this paper is to introduce the Meir–Keeler expansion and apply it as a novel
constraint, which weakens the known expansion condition, in order to derive new results
of Krasnosel’skii type.

Let us gather some auxiliary concepts, which will be utilized further on.

Definition 1. Let (X, d) be a metric space andM ⊆ X . The mapping B :M → X is
said to be expansive if there exists a constant α > 1 such that

d(Bx,By) > αd(x, y), x, y ∈M, (2)

and it is called contractive if we utilize the inequality with opposite direction with a con-
stant α < 1. Further, we call B strictly contractive (resp. strictly expansive) if the
corresponding inequality is strict and without α, that is, for any x 6= y in X ,

d(Bx,By) < d(x, y) (strictly contractive),
d(x, y) < d(Bx,By) (strictly expansive).

In 1969, Meir and Keeler [10] established a fixed point theorem for self-mappings on
a metric space (X, d) satisfying the following condition:

For every ε > 0, there exists a δ > 0 such that

ε 6 d(x, y) < ε+ δ =⇒ d(Bx,By) < ε (3)

for all x, y ∈ X . The mapping B satisfying (3) is called Meir–Keeler contractive (MKC
for short). There are several results regarding the Meir–Keeler type contraction and its
generalization (see, e.g., [12] and the references therein).
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Theorem 2 [Meir–Keeler]. (See [10].) Let (X, d) be a complete metric space. If B :
X → X is a Meir–Keeler contraction, thenB has a unique fixed point x∗ ∈ X; moreover,
for any x ∈ X , the sequence {Bnx} converges to x∗.

In the rest of this work, inspired by the idea of Meir–Keeler contraction and combining
it with expansive mappings, we aim to introduce a new concept and obtain some variants
of Krasnosel’skii fixed point theorem.

2 Krasnosel’skii-type fixed point theorems via MKE mappings

We start with the following definition.

Definition 2. Let (X, d) be a metric space and B be a self-mapping on X . Then B is
called Meir–Keeler expansive (MKE for short) if for every ε > 0, there exists a δ > 0
such that, for all x, y ∈ X ,

ε 6 d(Bx,By) < ε+ δ =⇒ d(x, y) < ε. (4)

Obviously, if B is an injective MKE mapping (resp. an injective MKC mapping) then
it is strictly expansive (resp. strictly contractive) following the implication (4) (resp. (3)).
Moreover, any MKC mapping is continuous, while MKE mapping might not be.

It is also worth mentioning that the MKE mappings are not necessarily injective.
Indeed, consider a constant function, Bx = c for all x ∈ X , which is obviously not
injective. However, since the inequality ε 6 d(Bx,By) < ε + δ is never satisfied for
positive ε, implication (4) is always true, and hence, these mappings are MKE.

Remark 1. If B is an MKE mapping, then Bn is of the same type for any n > 1. Indeed,
suppose that, on the contrary, B2 is not MKE, that is, for some ε0 > 0 and all δ > 0, there
are xδ, yδ ∈ X satisfying the following:

ε0 6 d
(
B2xδ, B

2yδ
)
< ε0 + δ but d(xδ, yδ) > ε0.

The first assertion above implies that d(Bxδ, Byδ) < ε0, which, together with the second
assertion above, yields thatB is not MKE and that is a contradiction. Inductively, one can
follow the same process for any n > 1 to conclude the desired claim.

Remark 2. If B is expansive with constant α > 1, then B is an MKE mapping. Other-
wise, there exists ε0 > 0 such that for all δ > 0, we have

ε0 6 d(Bxδ, Byδ) < ε0 + δ and d(xδ, yδ) > ε0

for some xδ, yδ ∈ X . By taking δ → 0 one can see that

0 < ε0 = lim inf
δ→0

d(Bxδ, Byδ) 6 lim inf
δ→0

d(xδ, yδ)

6
1

α
lim inf
δ→0

d(Bxδ, Byδ),

which is a contradiction. Similar statement holds for MKC mapping; that is, if B is
contractive with constant α < 1, then B is an MKC mapping.
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We note that the converses of the statements mentioned above are not necessarily true.
From now on, we always suppose that (X, d) and (E, ‖·‖) stand for a complete metric

space and a Banach space, respectively. Now, let us present our first result.

Theorem 3. Assume thatM ⊆ X is a closed set, and let B :M → X be an injective
MKE mapping withB(M) ⊇M. Then the mappingB possesses a unique fixed point x∗;
moreover, for any x ∈M, the sequence {Bnx} converges to x∗.

Proof. First of all, since B is one-to-one and MKE, thus B−1 : B(M) → M is well
defined and MKC. Indeed, let ε, δ be such that MKE condition for the operator B is
fulfilled, and let u, v ∈ B(M) be such that ε 6 d(u, v) < ε + δ. If x, y ∈ M are
(uniquely determined) elements of M such that u = Bx, v = By, then, since B is
MKE, we get that d(B−1u,B−1v) = d(x, y) < ε. In particular, the restriction B−1|M :
M → M is an MKC mapping. Since M is closed and hence complete, applying the
Meir–Keeler’s theorem, we see that there exists a unique point x ∈ B(M) such that
B−1x = x; equivalently, there is a unique x∗ ∈ M with Bx∗ = x∗, and the conclusion
follows.

Remark 3. We note that Theorem 3 improves a result of Xiang [16], which requires the
mapping B to be expansive (as a stronger condition).

Corollary 1. Suppose that the mapping B : X → X is MKE and bijective. Then there
exists a unique point x∗ ∈ X such that Bx∗ = x∗. Furthermore, for any x ∈ X , the
sequence {Bnx} converges to x∗.

Corollary 2. (See [15].) Assume that the mapping B : X → X is expansive and onto.
Then there exists a unique point x∗ ∈ X such that Bx∗ = x∗.

Now, combining the Meir–Keeler fixed point theorem and Corollary 1, we derive the
following result.

Theorem 4. Assume that B is a self-mapping on X . If one of the following assumptions
is fulfilled:

(i) the mapping B is MKC; or
(ii) the mapping B is MKE and bijective,

then there exists a unique point x∗ ∈ X such that Bx∗ = x∗. Furthermore, for any
x ∈ X , the sequence {Bnx} converges to x∗.

Example 1. Suppose that λ ∈ R, and B is the onto self-map on R with usual metric given
by Bx = x3 + ϕ(x) + λ, where ϕ is differentiable with ϕ′(x) > 1.

We first note that ϕ is defined in a way to support the surjectivity ofB. Obviously,B is
not necessarily expansive (since there is no way to find an α > 1 satisfying inequality (2)),
but for x > y, we get

|Bx−By| = x3 − y3 + ϕ(x)− ϕ(y) > ϕ(x)− ϕ(y)
> x− y = |x− y|. (5)
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In other words, B is strictly expansive and one-to-one. We claim that B is MKE, too.
Suppose the contrary. Then for some ε0 > 0 and for all δ > 0, we have

ε0 6 d(Bxδ, Byδ) < ε0 + δ and d(xδ, yδ) > ε0

for some distinct elements xδ, yδ ∈ R. By taking δ → 0 one can see that

0 < ε0 = lim
δ→0

∣∣x3δ − y3δ + ϕ(xδ)− ϕ(yδ)
∣∣ 6 lim inf

δ→0
|xδ − yδ|,

which, together with (5), implies that

0 < ε0 = lim
δ→0

∣∣x3δ − y3δ + ϕ(xδ)− ϕ(yδ)
∣∣ = lim

δ→0
|xδ − yδ|.

That is, limδ→0 |xδ − yδ| exists. Now, mean value theorem states that

0 < ε0 = lim
δ→0
|xδ − yδ| = lim

δ→0
|xδ − yδ|

∣∣∣∣∣
2∑
i=0

xiδy
2−i
δ + ϕ′(zδ)

∣∣∣∣∣
for some appropriate zδ ∈ R, which shows a contradiction. We remark that for any odd n
and xδ 6= yδ ∈ R,

0 <
xnδ − ynδ
xδ − yδ

=

n−1∑
i=0

xiδy
n−i−1
δ .

Therefore, B is MKE, and by Corollary 1 there exists a unique point x∗ ∈ R such that
x∗ = (x∗)3 + ϕ(x∗) + λ.

Now, recall

Theorem 5 [Schauder fixed point theorem]. (See [13].) Let K be a nonempty, closed
and convex subset of a Banach space E. Let A be a continuous self-mapping on K such
thatA(K) is contained in a compact subset ofE. ThenA has at least one fixed point inK.

Using the Schauder’s fixed point theorem with the help of MKE mappings, we present
a variant of Krasnosel’skii-type fixed point theorem as follows. We will use the following
denotation, which has similarly appeared and applied in several papers in the literature
(see, e.g., [2, 6, 18]):

F = F(K;A,B) = {x ∈ K: x = Bx+Ay for some y ∈ K},

where A, B will be specified later.

Theorem 6. Suppose that K ⊆ E is a nonempty closed convex subset, and let A and B
map K into E so that

(i) A is continuous and A(K) is included in a compact subset of E;
(ii) B is an injective MKE mapping having a closed graph in F , and if {xn} is a se-

quence in F with (I−B)xn → y, then {xn} contains a convergent subsequence;
(iii) a ∈ A(K) implies that B(K) + a ⊇ K.

Then there exists a point x∗ ∈ K with Ax∗ +Bx∗ = x∗.

Nonlinear Anal. Model. Control, 25(2):257–265
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Proof. Concentrating on (ii) and (iii), for any a ∈ A(K), one can observe that the
mapping B + a : K → E enjoys the assumptions of Theorem 3. Thus, the equation
Bx+ a = x possesses a unique solution x = η(a) ∈ K, i.e., for any a ∈ A(K), we have

Bη(a) + a = η(a).

Now, we show that η : A(K)→ K satisfying

Bη(a) + a = η(a) ∀a ∈ A(K)

is a continuous mapping. Indeed, let {xn} be a sequence in A(K) with xn → x in
A(K). Since B is strictly expansive, then it is injective and I − B is invertible. Now,
setting yn := (I − B)−1xn and y := (I − B)−1x, we get that (I − B)yn = xn and
(I −B)y = x, which means yn, y ∈ K ∩ F and

(I −B)yn → (I −B)y.

One derives from this convergence and (ii) that ynk
→ y0 for some y0 ∈ K, where {ynk

}
is a subsequence of {yn}. We then deduce that

Bynk
→ y0 − (I −B)y. (6)

SinceB is closed in F , it follows from (6) that y0−(I−B)y = By0, and so y = y0 since
I − B is injective. Now a standard argument shows that yn → y. The continuity of η is
therefore proved. In another way, sinceA is continuous onK, it yields that η◦A : K → K
is also continuous and η(A(K)) is included in a compact subset of E. By the Schauder’s
fixed point theorem, there is an x∗ ∈ K so that η(A(x∗)) = x∗. From the equation
Bx+ a = x we conclude that

B
(
η
(
A(x∗)

))
+A(x∗) = η

(
A(x∗)

)
,

that is, Bx∗ +Ax∗ = x∗, and the desired consequence follows.

Remark 4. Considering Theorem 6, we notice that any expansive mapping satisfies
condition (ii). More precisely, as we know from Remark 2, any expansive mapping is
MKE; moreover, for any expansive mapping B with constant α > 1, we have∥∥(I −B)x− (I −B)y

∥∥ > (α− 1)‖x− y‖,

which shows that (I −B)−1 is continuous and the second part of (ii) is fulfilled. Besides,
in the case that B is expansive, B would also have the closed graph in F . Indeed, letting
xn → x in F and Bxn → y we see that ‖Ayn − (x − y)‖ → 0 for some {yn} in K,
which, together with the fact that (I −B)−1 is continuous, implies that

xn = (I −B)−1Ayn → (I −B)−1(x− y).

This is equivalent to x = (I − B)−1(x − y) and so x = By. Hence, we have as an
immediate consequence the following main result of Xiang and Yuan.
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Corollary 3. (See [17].) Suppose K ⊆ E is a nonempty closed convex subset. Let A, B
map K into E so that

(i) A is continuous and A(K) is included in a compact subset of E;
(ii) B is an expansive mapping;

(iii) a ∈ A(K) implies B(K) + a ⊇ K.

Then there exists a point x∗ ∈ K with Ax∗ +Bx∗ = x∗.

Corollary 4. Suppose K ⊆ E is a nonempty closed convex subset. Let A and B map K
into E so that

(i) A is continuous and A(K) is included in a compact subset of E;
(ii) B is MKE and bijective with a closed graph in F , and if {xn} is a sequence in F

with (I −B)xn → y, then {xn} contains a convergent subsequence.

Then there exists a point x∗ ∈ K with Ax∗ +Bx∗ = x∗.

Theorem 7. Suppose that K ⊆ E is a nonempty closed convex subset. Let A and B map
K into E so that

(i) A is continuous and A(K) is included in a compact subset of E;
(ii) B is an injective MKE mapping and if {xn} is a sequence in F(K;A,B−1) with

(I −B−1)xn → y, then {xn} contains a convergent subsequence;
(iii) a ∈ A(K) implies that K + a ⊆ K ⊆ B(K).

Then there exists a point x∗ ∈ K with B ◦ (I −A)x∗ = x∗.

Proof. The proof is similar to the one given for Theorem 6. Following the lines of the
proof of Theorem 3, one can see that B−1 : B(K) → K ⊆ B(K) is MKC and
so is B−1|K . Moreover, for any fixed a ∈ A(K), B−1 + a : B(K) → K has the
same property. Thus, based on Meir–Keeler theorem, there exists a unique x∗ =: η(a)
satisfying B−1x∗ + a = x∗; equivalently, B−1η(a) + a = η(a) for any a ∈ A(K).

Now, we show that η : A(K)→ K satisfying

B−1η(a) + a = η(a) ∀a ∈ A(K)

is continuous. Indeed, let {xn} be a sequence with xn → x in A(K). Since B−1 is
strictly contractive, then I − B−1 is invertible. Now, setting yn := (I − B−1)−1xn and
y := (I −B−1)−1x implies that (I −B−1)yn = xn and (I −B−1)y = x, which means
yn, y ∈ K ∩ F(K;A,B−1) and(

I −B−1
)
yn →

(
I −B−1

)
y. (7)

One derives from (7) and (ii) that ynk
→ y0 for some y0 ∈ K, where {ynk

} is a
subsequence of {yn}. From the continuity of I −B−1 we then deduce that(

I −B−1
)
ynk
→
(
I −B−1

)
y0. (8)

Since I − B−1 is injective, (7) and (8) imply that y = y0. Now a standard argument
shows that yn → y. Therefore, η : A(K)→ K is continuous.
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On the other hand, since A is continuous on K, it yields that η ◦ A : K → K
is also continuous and η(A(K)) is included in a compact subset of E. By Schauder’s
fixed point theorem, there is an x∗ ∈ K so that η(A(x∗)) = x∗. From the equation
B−1η(a) + a = η(a) we conclude that

B−1
(
η
(
A(x∗)

))
+A(x∗) = η

(
A(x∗)

)
,

that is,
B−1x∗ +Ax∗ = x∗,

and the desired result immediately follows.
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