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Abstract. A control method for desynchronizing an array of mean-field coupled FitzHugh–
Nagumo-type oscillators is described. The technique is based on applying an adjustable DC voltage
source to the coupling node. Both, numerical solution of corresponding nonlinear differential
equations and hardware experiments with a nonlinear electrical circuit have been performed.
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1 Introduction

Synchronization is widely observed in natural and artificial coupled systems, ranging from
pendulum clocks to electronic, laser systems and various biological populations [6]. In
most cases, e.g., radio communication, laser power systems, synchrony is a desirable
state. However, sometimes it has an unfavourable impact. Synchronization of neurons
in human brain is an example. It is believed that strong synchrony of spiking neurons
can cause the symptoms of the Parkinson’s disease and essential tremor [13]. Therefore,
methods for controlling, more specifically for suppressing synchrony of coupled oscilla-
tors, particularly with possible application to neuronal arrays, are required.

A number of feedback methods for destroying synchrony in arrays of oscillators by
means of feedback methods have been suggested, see, for example, [7, 9, 11, 13–15, 18,
19]. They employ either a time-delay unit [13] or a passive oscillator [19] inserted in
the feedback loop. Other feedback methods use repulsive coupling [15, 18], a setup with
separate registration and stimulation units [9], mean field nullifying [14,15], and act-and-
wait [11] algorithms.
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The conventional, clinically approved therapy to avoid symptoms of the Parkinson’s
disease is the so-called deep brain stimulation (DBS). During the DBS treatment, external
periodic pulses are applied to certain brain areas [3]. The repetition rate of the pulses
is usually set at about 150 Hz. In general, it should be much higher than the natural
frequency of the spiking neural cells, for example, 10 Hz. The mechanism of the DBS
is not fully understood. There are several papers considering the Hodgkin–Huxley and
the FitzHugh–Nagumo (FHN) models and demonstrating that high frequency forcing
stabilizes the unstable equilibrium of the neuronal oscillators and thus inhibit spiking
cells [2, 8, 10]. Though the low frequency spikes disappear the high frequency artefact
oscillations manifest. The stabilization is achieved only on the average taken over the
external drive period. Moreover, due to the rectification effect in the nonlinear asymmetric
oscillators, the equilibrium points are significantly shifted from their natural positions [2].
This can be the reason of the side effects often observed using the DBS.

A straightforward way to suppress the spikes is to fully stabilize the unstable steady
states of the oscillators, for example, by the low-pass filter technique [1]. However, in this
method, the control parameter k plays the role of both the coupling parameter and the
feedback gain. To achieve stabilization, the feedback should be strong enough, i.e., above
some threshold value, k > kth. For example, in the FHN-type system investigated in [1],
kth ≈ 3. In many simple control problems dealing with artificial dynamical systems, the
gain k can be easily tuned to set the sufficient value. In other words, k is an adjustable
parameter of the controller. However, in natural systems, like neuronal arrays, k is an
intrinsic parameter of the dynamical system under control. It is not easy to vary, and in
general, its value is unknown.

In this paper, we describe a simple feedback method for desynchronizing an array of
the FHN oscillators not sensitive to the value of the parameter k.

2 Arrays of coupled oscillators

The corresponding circuit diagrams are presented in Fig. 1. CN is a coupling node. If the
CN is not accessible directly from the outside, but via some passive resistance, a negative
compensating resistor (implemented by means of a negative impedance converter) should
be used, similarly as described in [14, 15].
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Figure 1. Arrays of mean-field coupled FHN oscillators: (a) uncontrolled, (b) the mean-field nullifying
technique, (c) the DC voltage source technique.
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3 Mathematical model

An individual FHN oscillator is given by [16]

ẋ = ax− f(x)− y − c,
ẏ = x− by.

(1)

Variable x represents the membrane potential, variable y describes the recovery process,
ax − f(x) is the activation function, b is the damping parameter, f(x) is a nonlinear
function presented by a three-segment piecewise linear function

f(x) =


d(x+ 1), x < −1,

0, −1 6 x 6 1,

g(x− 1), x > 1.

(2)

For d� g [16], the f(x) is an essentially asymmetric function in contrast to the common
FHN cubic parabola x3 introduced by FitzHugh [5]. The steady state is

x0 = − bc

1− ab
, y0 = − c

1− ab
. (3)

Expressions (3) are valid for ab < 1 and relatively small product |c|b (|c|b 6 1−ab), that
is, for −1 6 x0 6 1 when according to formula (2), f(x0) = 0. Equations (1) linearised
around the steady state read:

ẋ = ax− y, ẏ = x− by. (4)

Equations (4) can be presented in the following form:

ẍ− (a− b)ẋ+ (1− ab)x = 0.

The corresponding characteristic equation is

λ2 − (a− b)λ+ 1− ab = 0.

Its solutions are

λ1,2 =
a− b

2
±
√

(a− b)2
4

− 1 + ab =
a− b

2
±
√

(a+ b)2 − 4. (5)

If a > b, then the real parts of λ are positive, and the steady state (3) is unstable.
An array of N isolated oscillators is given by

ẋi = axi − f(xi)− yi − ci,
ẏi = xi − byi, i = 1, 2, . . . , N.

Here the bias parameters ci are intentionally set different for each individual oscillator,
thus making them nonidentical units. The parameters a and b, as well as the nonlinear
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function f(·), are the same for all oscillators. Similarly to the single oscillator given by
Eqs. (1), that is, assuming ab < 1 and |ci|b 6 1− ab, the steady states are

x0i = − bci
1− ab

, y0i = − ci
1− ab

, i = 1, 2, . . . , N.

Performing the same stability analysis as for the single oscillator, we find that all steady
states (x0i, y0i) in the array are unstable if a > b (the real parts of all eigenvalues λi of
the corresponding characteristic equations are positive). If, in addition to a > b, the sum
a + b > 2 (as in the numerical simulations presented in Section 4), then all eigenvalues
are real (do not have imaginary parts). Thus, the steady states are unstable nodes.

An array of mean-field coupled oscillators (Fig. 1(a)) is given by

ẋi = axi − f(xi)− yi − ci + k(xm − xi),
ẏi = xi − byi, i = 1, 2, . . . , N.

(6)

Here k is the coupling parameter; for simplicity, it is assumed to be the same for all
oscillators. xm is the mean of all variables xi:

xm(t) =
1

N

N∑
i=1

xi(t).

The mean variable xm(t) in Eqs. (6), provided k 6= 0, is the reason of synchronization of
the oscillators.

An array controlled using the mean-field nullifying technique (Fig. 1(b)) is described
by

ẋi = axi − f(xi)− yi − ci + k(0− xi),
ẏi = xi − byi, i = 1, 2, . . . , N.

Here, in comparison with Eqs. (6), the mean field xm is intentionally set zero, that is, the
reason causing synchronization is straightforwardly removed.

An array controlled using an external DC voltage (Fig. 1(c)) is given by

ẋi = axi − f(xi)− yi − ci + k(v − xi),
ẏi = xi − byi, i = 1, 2, . . . , N.

(7)

Here v is a constant (adjustable) parameter representing the external DC voltage source.
Evidently, the mean-field nullifying method, described in [14, 15], is a special case of
the external DC voltage technique with v = 0. Since v = const, i.e., v does not vary
with time and does not depend on variables xi, the coupling is effectively removed, and
synchronization is destroyed.

Analysis of the 2N -dimensional coupled system (6) is very complicated. It can be
simplified using the mean-field approach. The mean-field variables are obtained by direct
averaging the all terms in Eqs. (6):

ẋm = axm − fm(xi)− ym − cm,
ẏm = xm − bym.

(8)
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Here

xm =
1

N

N∑
i=1

xi, ym =
1

N

N∑
i=1

yi,

cm =
1

N

N∑
i=1

ci, fm(xi) =
1

N

N∑
i=1

f(xi).

Note that Eqs. (8) lack the coupling term k(·). It is nullified for all k since k(xm−xi)m =
k(xm−xm) = 0. Equations (8) cannot be used to describe the dynamics of the mean field
because the function fm(xi) 6= f(xm). However, it can be employed to derive the mean
steady state. If, for all i, |ci|b 6 1 − ab, then −1 6 x0i 6 1. According to definition
of the nonlinear function f(x), f(−1 6 x0i 6 1) = 0 and, consequently, fm(x0i) = 0.
Eventually, the steady state of the mean field is obtained:

x0m = − bcm
1− ab

, y0m = − cm
1− ab

. (9)

Stability analysis shows that the mean steady state (9) is unstable for a > b, similarly to
the case the single oscillators.

The steady states of the controlled system can be easily derived from Eqs. (7) because
it is an effectively decoupled system

x0i = − b(ci − kv)

1− (a− k)b
, y0i = − ci − kv

1− (a− k)b
, i = 1, 2, . . . , N. (10)

Equations (7) linearised around the steady states (10) read:

ẋi = (a− k)xi − yi,
ẏi = xi − byi, i = 1, 2, . . . , N.

The corresponding characteristic equations are

λ2i − (a− b− k)λi + 1− (a− k)b = 0, i = 1, 2, . . . , N.

The eigenvalues λi do not depend on i and are similar to the case of the single oscilla-
tor (5), except the coupling parameter k:

λ1,2 =
a− b− k

2
±
√

(a− b− k)2

4
− 1 + (a− k)b.

The real parts of λ are positive, and the steady sates are still unstable for k < kth, whereas
the real parts become negative, and the steady states become stabilized for k > kth, where
kth = a− b.
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4 Numerical results

Typical waveforms for synchronized and desynchronized FHN oscillators are presented
in Fig. 2. Synchronized oscillators (Fig. 2(a)) all oscillate at the same frequency with
a constant phase shift. The amplitude of mean variable xm is high, whereas desynchro-
nized oscillators (Fig. 2(b)) exhibit different frequencies and low amplitude of the mean
variable xm. Waveforms in Fig. 2 are shown for relatively small coupling parameter
(k = 0.4 < kth), which ensures that, for all oscillators given by Eqs. (6) and Eq. (7),
the steady states are unstable.

Results for other values of k are summarized in Fig. 3. We characterize the oscillations
by the root mean square (RMS) of the xm − 〈xm〉:

RMS =

√〈(
xm − 〈xm〉

)2〉
=
√〈

x2m
〉
− 〈xm〉2.

Here and elsewhere the angle brackets 〈·〉 represent averaging over time. At k = 0,
the RMS calculated from Eq. (6) and from Eq. (7) coincide, as expected. The RMS
becomes high at k > 0.4 in the case synchronized oscillators. It slowly diminishes for
desynchronized oscillators. Eventually, RMS drops to zero at k > kth = 3.24. At
this point quite different mechanism, namely stabilization of the steady state, starts to
play the role. Oscillations are fully damped, yielding RMS = 0. The average 〈xm〉
in Fig. 3 saturates to −0.43, which coincides with the value of x0m calculated either
directly from formula (9) or from formula (10) using the appropriate parameter values:
a = 3.4, b = 0.16, cm = 1.24, k = kth = 3.24, v = −0.43. Formally, the adjustable

(a) (b)

Figure 2. Waveforms x1(t), x25(t), and xm(t): (a) synchronized oscillators from Eq. (6), (b) desynchronized
oscillators from Eq. (7). N = 25, a = 3.4, b = 0.16 ci = 44/(24 + i), d = 60, g = 3.4, k = 0.4,
v = −0.15.
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Destroying synchrony in an array 63

Figure 3. RMS and 〈xm〉 vs. the parameter k. Other parameters are the same as in Fig. 2, except v adjusted
for each k. Vertical dashed line indicates k = kth = 3.24.

Figure 4. Full control signals in the case of desynchronized oscillators (small k). N = 25, a = 3.4, b = 0.16
ci = 44/(24 + i), d = 60, g = 3.4, k = 0.4. Top: mean field nullifying technique (v = 0), Sctrl = kNxm.
Bottom: DC voltage source technique (v 6= 0), Sctrl = kN(xm − v), v = −0.15.

parameter v in Eq. (7) can be freely selected. Desynchronization is always achieved (even
for v = 0 [15]). The constant parameter v (independent on variables xi) replaces the
variable xm in Eqs. (6), i.e., it removes the reason of synchronization. However, improper
v causes strong DC current into the system under control. This can be a harmful artefact
in the case of biological systems. The total control signal is given by

Sctrl = −
N∑
i=1

k(v − xi) = kN(xm − v).

The Sctrl should not have DC component, i.e., its time average should be zero, 〈Sctrl〉=0.
This equality serves as a criterion for the proper value of v.

Two control methods, namely the mean filed nullifying technique and the DC voltage
source technique are compared in Figs. 4 and 5.

For weak coupling (k < kth), when the oscillators are desynchronized, but are still
active, the control signals have similar amplitude and shape (Fig. 4), for both the mean
field nullifying technique and the DC voltage source technique. However, the latter has
an advantage in the sense that the time average of the control signal has no undesirable
DC component, 〈Sctrl〉 = 0.
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Figure 5. Full control signals in the case of stabilized steady states (large k). N = 25, a = 3.4, b = 0.16
ci = 44/(24 + i), d = 60, g = 3.4, k = 3.4. Lower line at −36.6 level is the mean field nullifying
technique (v = 0), Sctrl = kNxm. Upper line at 0 level is the DC voltage source technique (v 6= 0),
Sctrl = kN(xm − v), v = −0.43.

Figure 6. Phase portraits [xm vs. x1). Column (A): synchronized oscillators, k = 0.4; Column (B):
desynchronized oscillators, k = 0.4, v = −0.15; Column (C): stabilized oscillators, k = 3.4, v = −0.43.
Row (1): without perturbation, A = 0; Row (2): low (3%) perturbation, A = 0.1; Row (3): moderate (15%)
perturbation, A = 0.5. N = 25, a = 3.4, b = 0.16 ci = 44/(24 + i), d = 60, g = 3.4, ω = 2.

Similarly, in the case of strong coupling (k > kth), when all oscillators are totally
damped (Fig. 5), the merit of the proposed method is evident. Though both methods
exhibit constant (nonoscillating) control signals, the DC voltage source technique distin-
guishes itself by zero level (Fig. 5, upper line).

The above results are presented for an idealized case, when the environmental interfer-
ence is ignored. Therefore, we performed an additional case study of the proposed method
with an external perturbation. A periodical perturbation has been added to Eq. (7): ẋi =
· · · + A sin(ωt). It mimics the situation when real neurons, spiking at the rate of 10 Hz
(α-rythm), can be influenced by the environmental interference at 50 Hz (5 times higher
than the α-rythm) from the surrounding electrical devices and installation. Respectively,
the parameter ω is set to ensure that the interference frequency is higher than the rate of
the spikes in Fig. 2 by a factor of 5. The results are presented in Fig. 6 in the form of
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the phase portraits, which are visually more sensitive to perturbations, than simple time
sequences in Fig. 2. The phase portraits demonstrate that the control method is robust
against moderate level of external interference (the amplitude A = 0.5 corresponds to
about 15% of the spike amplitude). Some influence is observed for the stabilized steady
states: the dot in Fig. 6(1)(C) has evolved to a fine short diagonal in Fig. 6(3)(C), typical
to the nonautonomous states synchronized to the external force.

5 Electronic experiments

Single FHN oscillator is sketched in Fig. 7. OA is a general-purpose operational amplifier,
e.g., NE5534-type device, D1 and D2 are the BAV99-type diodes, L = 10 mH, C =
3.3 nF, R1 = R2 = 1 kΩ, R3 = 510 Ω, R4 = 30 Ω, R5 = 510 Ω (note R5 � R4), R6 =
275 Ω (an external resistor R′6 = 220 Ω in series with the coil resistance R′′6 = 55 Ω),
R

(i)
7 = (24 + i) kΩ, i = 1, 2, . . . , N , R∗ = 5.1 kΩ, V0 = −15 V. In the experiments

we employed a hardware array with N = 30, described in details (without any external
control) elsewhere [17]. The experimental results are shown in Fig. 8.

The dimensionless variables and parameters in the equations (Section 3 are related to
the circuit variables and element values in the following way:

xi =
VCi

V ∗
, yi =

ρILi

V ∗
, t→ t√

LC
, xm =

1

NV ∗

N∑
i=1

VCi, ρ =

√
L

C
,

a =
ρ

R3
, b =

R6

ρ
, ci =

ρV0
R7iV ∗

, d =
ρ

R4
, g =

ρ

R5
, k =

ρ

R∗
, v =

V

V ∗
.

Here V ∗ is the breakpoint voltage of the forward I–V characteristic of the diodes (V ∗ ≈
0.6 V), V is an external adjustable DC voltage (Fig. 1(c)).

The photos in Fig. 8 have been taken from the screen of a multichannel oscilloscope.
The waveforms for only two individual oscillators, namely i = 1 and i = 30 of the
array and the mean variable VCm(t) are presented. The waveforms for other oscillators
(i = 2, 3, . . . , 29) have been also inspected. All experimental waveforms are similar to
the simulated ones in Fig. 2. Low amplitude of VCm(t) in Fig. 8(b) indicates that the
oscillators are desynchronized.

The blurred waveform of VC30(t) in Fig. 8(b) might be somewhat puzzling and there-
fore needs an explanation. The point is that the oscilloscope operated not in a single-shot,

R1

R2

R3

R4

D1 D2 R6

L

C R7

V0

OA

R5

( )i

R*
CN

Figure 7. Circuit diagram of a single FHN oscillator. CN is the coupling node in Fig. 1. The bias resistors R(i)
7

are set different for each oscillator, whereas the coupling resistors R∗ are the same in all oscillators.
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0.1 ms

2 V

(a)

0.1 ms

2 V

(b)

Figure 8. Waveforms: (a) synchronized oscillators, (b) desynchronized oscillators. In (a) and (b), top traces are
VC1(t), middle traces are VC30(t), and bottom traces are VCm(t). V = −90 mV (v = −0.15).

but in a multi-sweep mode. Synchronization of the multichannel oscilloscope was set to
the first channel (the sweep generator was driven by VC1(t)). Consequently, when the
oscillators are desynchronized all signals VCi(t), except the VC1(t), look blurred. This is
another useful experimental indication of desynchronization.

Concerning the interference, considered in the numerical simulation, we note that both
the intrinsic noise in the passive and the active electronic devices and the environmental
interference are included automatically in the electronic experiments.

6 Concluding remarks

The proposed technique for desynchronizing arrays of the FitzHugh–Nagumo oscillators
using the DC voltage source has an advantage over the earlier described mean-field nulli-
fying technique [14, 15]. The benefit, in particular for biological systems, is that the new
technique allows to avoid undesirable DC current component in the control signal. For-
mally, the proposed technique reminds the transcranial direct-current stimulation (tDCS,
also abbreviated as tcDCS), used to treat depression [4]. Both of them employ the DC
sources. However, there is an essential difference between these techniques. In the tDCS,
a DC current is injected via the scalp to the brain. In our case, the DC voltage is applied
to the system. Moreover, the DC voltage value is adjusted so that the current is zero.

Depending on the coupling strength of the oscillators, there are two different physical
mechanisms yielding low amplitude of the mean-field variable xm(t). The first one,
observed at weak coupling (k < kth), is the desynchronization in the narrow sense. When
the mean field variable xm in the coupling terms is replaced with an external parameter v,
all the individual units start to oscillate at different frequencies and phases, like in an array
of isolated oscillators, thus providing low RMS. The second mechanism, manifesting
at stronger coupling (k > kth), leads to stabilization of the originally unstable steady
states (x0i, y0i) resulting in full damping of the units, thus yielding RMS = 0. In this
case, the concept of synchonization/desynchronization lacks its narrow sense (though very
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formally we can consider nonoscillating units as “synchronized” to zero frequency with
only some differences of their stabilized steady states). So, for any k, the RMS of the
mean-field variable is either low or even zero, whereas the average of the total control
signal vanishes, 〈Sctrl〉 = 0.

Concerning the influence of external interference, we performed simulation with an
additive periodical perturbations imitating the influence of the environmental interference
at 50 Hz from electrical equipment and installation. No substantial influence has been
observed, at least to moderate level (15%) of perturbation.

Regarding possible practical application of the DC voltage technique to real neural
systems, maybe the same electrode setup, used in the DBS treatment, can be exploited.
However, in this concern, deeper research is required, since the mechanism of electrical
stimulation delivery to the neurons is more complicated than in simple electrical circuits
[8, 12].
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