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Abstract

The possibility to apply nonlinear dynamics methods for the EEG time series
analysis is investigated. Problems related with the estimation of the chaos

parameters from the physiological data are discussed.

INTRODUCTION

During the last two decades, development of the chaos theory has introduced

new approaches for understanding the nature of oscillatory phenomena. Numerical

methods of the chaos theory dealing with complicated temporal behaviour in

nonlinear equations appear to be ideally suited for many experimental systems

exhibiting erratic data. Biological systems exhibiting very complicated behaviour

are among them. Large number of investigations implementingnonlinear dynamics

methods for the analysis of human and animal electroencephalograms (EEG)

analysis have been presented [1, 2, 3]. However, an increasing enthusiasm for

the application of the nonlinear dynamics methods to real EEG data also meets

some scepticism. This is related with the reliability and interpretation of the

obtained results. Algorithms for the estimation of chaos parameters contain some

unavoidable arbitrariness. The basic concepts "attractor" and "fractal dimen-

sion" were introduced assuming stationarity of the dynamic system, therefore,

application of these concepts in situation of biological systems can be incorrect.

Nevertheless, Babloyantz and Destexe [1] pointed out that stationarity of the EEG

could be detected for sleeping patients or patients in rest. They have calculated

and classi�ed dimensionality of the EEG signal in di�erent stages of sleep and

have also tried to estimate dimension for the awaked patient EEG. However, it

was noted that error bars in these calculations were very large and were related
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with the nonstationarity of the recorded biological signal and insu�cient number

of experimental points.

Therefore, although reliability of the estimated parameters is very important in

theoretical research, we propose a phenomenological approach which can be useful

in physiological practice. In this phenomenological approach, chaos parameters

are to be calculated from the EEG data using standard algorithms. The results,

however, are treated only as numbers for the quantitative description of the system

in di�erent situations. This approach requires subtle repetition of the experimental

situations. The obtained values cannot be considered as dimensions, entropies, or

other chaos parameters of the attractor due to the nonstationarity of the biological

signal. However, it is possible that they can be successfully used to describe and

to classify di�erent states of the brain activity [1]. In this study we have applied

this approach for the EEG analysis based on nonlinear dynamics methods. To

�nd out sensitivity of di�erent algorithms with speci�c modi�cations experimental

data were recorded under the same conditions but under the inuence of di�erent

external factors.

ALGORITHMS

Speci�cs of the biological systems requires modi�cations of standard nonlinear

dynamics algorithms. The main problems of the nonlinear analysis when applying

it to biological signals can be summarized as follows: a) high level of random noise

in the biological data. The applied nonlinear dynamics methods should be robust

to the noise inuence; b) short experimental data sets due to the low frequencies

of the biological signals. Short realizations cause large error bars in the estimation

of the chaos parameters; c) nonstationarity of the biological systems. For example,

the brain activity is inuenced by a great variety of external factors having di�erent

characteristic times; d) spatially extended character of the system. It is well

known that di�erent parts of the brain core are responsible for the di�erent brain

functions. Interrelations of di�erent parts of the brain can also give very useful

information about the brain activity under di�erent external conditions, moreover

in detecting the dominant regions.

Dynamical nature of analysed time series is an additional problem when ap-

plying nonlinear dynamics algorithms to experimental data. Few years ago were

showed [8] that for the noisy and short time series, standard chaotic dynamics

algorithms can give spurious results, i.e. they can indicate the presence of the

nonlinear dynamics in completely random systems. Recently, the surrogate data
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techniques have been developed to distinguish the chaotic systems from the linearly

correlated noise [8]. We have used the method of so called "surrogate" data sets

generation [9] to check the dynamic nature of the used in calculations EEG records.

The obtained di�erence between the dependence of �(M ) for the original data set

and the surrogate signals ensemble gives strong evidence of the nonlinear structure

in the EEG data.

In our study we have used two chaos parameters, namely, the correlation

exponent, which is an analogue of the correlation dimension [4] and the chaotic

interrelation parameter [5]. The correlation dimension is the most popular char-

acteristic of experimental chaotic systems. The chaotic interrelation parameter

allows one to estimate nonlinear correlations between di�erent regions of the

spatially extended systems.

The �rst step in calculating both parameters is reconstruction of the high

dimensional state space from the scalar data recorded in the experiment. Delay

vectors are the most widely used method for reconstructing the high dimensional

state space [6]. From the experiment we have EEG data as a discrete time series

(x1; x2; ::; xi; :::; xN) for each probe on the scalp. Here xi � x(t+i� ), t is the initial

time, and � is the sampling time. The M-dimensional phase space is reconstructed

from a single observable x(t) by means of the M-dimensional vectors:

x
M
i � x(t); x(t+ � ); :::::; x[t+ (M � 1)� ]: (1)

The same procedure can be applied for each probe of the EEG data x(t); y(t):::.

The delay � is a free parameter in this method. The Takens theorem suggests

that theoretically the choice of this parameter is not important. In practice,

however, it is crucial to choose a good value of � due to the noise and the short

time series. It is shown that the most e�ective sampling frequency for biological

signals is in the range of 100� 500Hz [1, 2].

The correlation dimension is calculated by the Grassberger-Procaccia algorithm

[4] from the scaling properties of the correlation integral:

C
M (") = N

�1=2
X
i6=j

�("� k x
M
i � x

M
j k) � "

�(M) (2)

Here k xMi � x
M
j k de�nes the distance between points in the M-dimensional

space and � is the Heaviside function. Correlation dimension is to be estimated as

a saturating value of the exponent for large enough M . In our experiments, as is

typical of biological systems, the nonsaturating behaviour of �(M ) was observed.
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We suppose that this behaviour is related with the unavoidable presence of the

random noise in EEG data.

The algorithm for determining the correlation dimension from the noisy data

was suggested in [7]. The main idea is to �nd the linear part of the plot �(M )

vs M in the range of large values of M . This line is extended until it intersects

the line �(M ) = M . The needed correlation dimension of the underlying attractor

is determined by the intersection point. This method is valid, however, if the

slope of the function �(M ) is small enough. This was not always the case in our

calculations, and we can not treat the obtained values as a correlation dimension.

This is the reason why we call the parameter used in our study the correlation

exponent.

For the quantitative characterisation of nonlinear correlations in signals gen-

erated from di�erent brain regions, we have chosen a parameter introduced in [5].

According to this method nonlinear interrelation between two signals x and y is

estimated from the dependence of conditional dispersion �
M
xy on ":

�
M
xy(") =

 P
i6=j k x

M
i � x

M
j k2 �("� k xMi � x

M
j k)P

i6=j �("� k xMi � xMj k)

!1=2

(3)

Thus signals x and y are interrelated, if the conditional dispersion dependence

on " reduces with the decrease of ", and are not interrelated when �
M
xy does not

depend on ". Conditional dispersion �
M
xy can be calculated only in the interval

("min; "max). The value of "max is determined by the attractor size, while the value

"min depends on the number of points in the time series. Even for the interrelated

signals, �Mxy does not depend on " for large ". This dependence begins at some

"0. Therefore, Kxy = "0="max can be chosen as a parameter of the interrelation.

Another important feature of the parameter Kxy is that, due to de�nition of the

conditional dispersion, this parameter is not symmetric to the interchange of the

signals x and y.

DATA AND RESULTS

The encephalographic signals were recorded from the standard contact con-

�guration of the electrodes attached by conductive paste to the scalp. The EEG

signal was in the microvolt range and was ampli�ed by several orders of magnitude

before recording. The artefacts often originate from slight movements of the

electrodes and from the contraction of muscles below the electrodes. The standard

probe position is an international 10-20 system. Most of the experiments with
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EEG signals were performed using this system. In our study, EEG signals were

registered from fourteen channels of the unipolar 10-20 Jasper registration scheme

shown in Fig. 1. The ear electrode was used as an indi�erent joint contact. The

frequency range of the recorded EEG was 0:4�30Hz, while the sampling frequency

was 100Hz. Registration time of the single EEG record was up to 25 minutes.

In the calculations, pieces of the realization of N = 212 points were used. Two

realizations for each person with and without the applied external factor (the so-

called deceptive experiment), other experimental conditions being the same, were

recorded.

Fig. 1. Location of the scalp probes during experiment.

For the brain activation, two standard external factors were used: light to

the open eyes and hands action. In addition we have studied uncommon factor -

inuence of the millimeter waves irradiation of nonthermal intensity. In the last

case, the electromagnetic �eld with the wave length of 7:1mm and the output

power of 5mV=cm was applied on the hand using an optical �ber.

Fig. 2. Mapping of the di�erences of the correlation exponent � calculated from

experiments with and without an external factor: a) light to the eyes, b) hands action,

c) microwaves irradiation.
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The main idea of the phenomenological approach for physiological tests is to

compare the calculated results for the brain in rest of the healthy patient and

the same results but under the inuence of some external factor or pathological

state. If one detects some di�erences, this can be an evidence of the inuence

of the external factor. It is also expected that di�erent external factors inuence

di�erent brain regions. For better visualization, mappings were constructed using

di�erences between the values of the correlation exponent � calculated from the

realization under an external factor and without it. The example of such a mapping

is shown in Fig. 2. As can be seen from Fig. 2, mappings are di�erent for di�erent

stimulus. The dark areas represent regions of the brain in which � is higher under

the inuence of the external factor. A standard presumption is that a higher

correlation exponent value manifests an increasing degree of the brain activation

[1,2], and vice versa. As can be seen from Fig. 2, most of the areas of the brain

under the inuence of external factors exhibit a higher activation level than that

for the brain in rest. Moreover, the obtained mappings are noticeably di�erent for

di�erent external factors. The mappings obtained in our experiments for standard

external factors shows the highest brain activation level in the same brain areas

as that obtained from biological experiments using typical physiological tests.

Fig. 3. The time dependence of the nonlinear interrelation parameter Kxy for a) EEG

recorded for the patient under microwave irradiation, b) the patient in rest. The

interrelation is calculated between the di�erent brain regions: 1 - right frontal and right
occipital regions, 2 - left and right frontal regions, 3 - left and right occipital regions, 4 -

right frontal and left occipital regions.

Therefore, we suppose that the correlation exponent is more or less an adequate

quantity describing the brain activation level. More interesting mappings were
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obtained for the uncommon factor, the millimetre electro magnetic waves of the

nonthermal intensity. Obtained activation of the brain and nonsymetrical con�g-

uration of brain activation mapping can be related with the brain reaction to the

millimeter wave irradiation.

Similar information about changes in brain activity was found in the mea-

surements of the time dependencies of the interrelation parameter Kxy between

di�erent brain areas under millimetre waves irradiation (Fig.3a) and the patient

in rest (Fig. 3b). Slight decrease of Kxy under irradiation for right - left occipital,

and occipital - frontal regions of the brain can be an additional prove of the brain

reaction to irradiation of the waves of the millimetre range.

CONCLUSIONS

The proposed phenomenological approach of the application of nonlinear dy-

namics methods is demonstrated to be promising for the development of new phys-

iological testing techniques. Despite large problems related with the experimental

data recording under real clinical conditions, the modi�ed nonlinear dynamics

methods are su�ciently sensitive for application them in physiological diagnostics.

Our experiments with the di�erent external factors have shown that it is possible

to separate di�erent brain activity stages using nonlinear dynamics methods. Of

course, there is still a long way for checking new methods on real data to the

physiologically reliable result, but we hope that this study will give some impetus

for the analysis of the physiological system dynamics.
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