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Abstract

The analysis of a chaos theory, in general, and a neural network chaos

paradigm with a concrete interpretation by a simple neural network, in

particular, allowed us to set up a new aspect in an arti�cial neuronal

approach of methodology: an analogy between natural chaos experimen-

tally observed in neural systems of the brain and arti�cial neural network

chaos phenomena has been considered. The signi�cance of asymmetry

and nonlinearity, which were increased on introducing a restricted N -

shaped synaptical relation in a two-mod dynamic model, is emphasized.

There are illustrated the di�erent computational examples of the neural

network properties which are expressed by the equillibrium point, stable

cycle or chaotic behaviour in strong nonlinear neural systems.

Key words: Neural network, dynamics, chaos theory, chaotic computer,

equillibrium state, symmetry, asymmetry.

INTRODUCTION

A neural network chaotic phenomenon is strong connected with better under-

standing of signal and pattern recognition under noise conditions, the information

transform and transmission. The amount of information transmission in chaotic

dynamic systems was calculated by Matsumoto and Tsuda [15], [16]. There were

proved that a chaotic neural network has an ability of an e�ective transmission of

any information gone from outside. Parisi [19] investigated a problem of discrim-

ination of correct retrieval states and spurious ones in chaotic asymmetric neural

networks: the correct states are the time independent ones; the spurious states

are the time dependent chaotic ones. Though this hypothesis is not proved yet.

Lewenstein and Nowak [13] established that a correct retrieval states appear when

they are excited by a small signal, then it is cooled more. When the exitation

is frequent, that is the network is heated, the chaotic states appear. Fukai and
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Shiino [4] discovered a chaos route via Hoph bifurcations in the neural network

model with time delay. The asymmetric neural networks in terms of a mean �eld

theory found chaos through an appearance of homoclinic orbits [25]. The nonlinear

dynamics and chaos theory is presented in [1]. Most of the techniques that have

been developed so far can be only applied in relatively simple systems. The most of

authors recognise that arti�cial neural networks are a powerful pattern recognition

implementation.

Chaos plays an important role in the human brain cognitive functions related

to the memory processes. Di�erent versions of self-organizational hypothetical

computer are known, such as a synergetic computer by Haken [8], resonance

neurocomputers by Grossberg [7], Kryukov [12], the holonic computer by Shimizu

[23)], chaotic computers: the chaotic cognitive map by Massyoshi and Nagayoshi

[14], the chaotic memory by Nicolis [18], chaotic information processing and chaotic

neural networks by Tsuda [25], Riedel et al.[21]. All of them try to use dynamics

theory less or more in nonlinear and far from equillibrium states of physical

systems as an certain mechanism of explaining brain information processing of

higher animals.

According to Tsuda [25], chaos as a irregular motion of deterministic dynamics

may have �ve functional cases in the human brain memory processes. We pay

attention to the second, related to the intermediate-term memory, and the fourth

and the �fth ones, devoted to the search process and for storage of a new memory,

respectively.

The idea of chaos expressed as a parsimonious biological processor is, to our

mind, very fruitful. The biological organism surrounded by variable exterior

conditions has to achieve two opposite situations: to grow the information pro-

cessing ability when the processor randomly updates phase space in contrast to

the accuracy of modelling, and to diminish the processing ability if the processor

updates only cycles or separate points in phase space returning the accuracy of

modelling. It is supposed that the parsimonious biological processor based on

chaos can match these two situations.

In dynamic systems, chaos is characterised by many factors. One of them is

a strange attractor. The second one is based on a pseudo-orbit tracing property

which under appropriate conditions can become an approximation of some true

orbit with su�cient accuracy. The strange attractor which is of non-uniform

character stems from dynamic intermittent systems. The crucial property of

intermittent chaotic behaviour is interchange between two frequency mods: high
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and low ones. Below we present the model which has a slow equation (low

frequency) and a fast equation (high frequency).

SYMMETRIC AND ASYMMETRIC CONDITIONS

We discuss the conditions of nonlinear neural network stability under circum-

stance of symmetric and asymmetric weight matrices. The main neural network

(NN) equations representing a change of NN states in dynamics are Cohen and

Grossberg [3] equations for short-time memory (STM) (with some generalisation

of the Hebb law to underline the stability problem):

- Cohen-Grossberg di�erential equations

dxi

dt
= a(xi)[b(xi)�

NX
j=1

wijgj(xj)]; i = 1; 2; :::;N (1)

- Delta equations with the generalised Hebb law [34]

dwij

dt
= [�Dwwij + �gi(xi)gj(xj)]F (gi(xi)gj(xj)); i; j = 1; 2; :::;N (2)

- Global Lyapunov function

L(x) = 1=2

NX
j;i=1

wjigj(xj)gi(xi)�

NX
i=1

xiZ
0

bi(i)g
0

i(i)di; (3)

where a(xi) is positive apart from the initial condition (in (3) it is constant and

equals to one), b(xi) is with the opposite sign as xi, wji are the weights of onelayer

NN, Dw is the decay constant, � is the learning parameter, gj(xj) is the inhibitory

feedback function which is a monotone nondescreasing one, N is the number of

neurons in Hop�eld NN [10].

The function F (?) in (2), i.e. the generalised Hebb law, is derived to improve

the learning, and it is a threshold function such that F (?) = 0 if x � �� and

F (?)
0

> 0 if x > ��, where �� is the threshold.

Cohen and Grossberg [3] proved the existance of a global pattern formation

property and its absolute stability. But the absolute stability is possible only when

matrixW with elements wji is positive. And then, the competetive neural network

converges with probability one [9]. In the case the sign of wji elements is arbitrary

and matrix W is symmetric, the Lyapunov function (2) exists, and the absolute

stability was proved by Lyapunov direct method [3]. We show below the results

of simulation con�rming these symmetric theses.
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In neurophysiological reality, the synapses are known to be more frequently

asymmetric. On the average a neuron is connected with all other neurons by the

relation approxometely 10�6. Di�erent theoretical aspects of asymmetric neural

neworks have been investigated by many arti�cial intelligence scientists. Parisi [19]

emphasizes that the asymmetric NN behaviuor is much more complicated even at

zero temperature (without inside noise). He also noticed that, in the cases where

the oscilations are caused, the length of cycles can be very great and the route to

the chaotic behaviuor is possible.

Asymmetric couplings wjk 6= wjk in neural networks have been studied using

the generalised Hebb law or excluding (diluting) some connections in a direct or

probabilistic way. Asymmetric and/or diluted versions based on a probability

were examined in [2], [5], [6], [20], [24]. Almost all the authors have arrived at the

conclusion that the spin-glass is destroyed due to essential extent of asymmetry.

Although in [11] at speci�c presentation of asymmetric couplings, spin- glass phase

in ferromagnetic �eld theory was found. And once again in [20] it is supposed that

symmetric neural networks can not provide dynamic association, i.e., they lack the

ability to retrieve series of patterns at a single recalling input pattern. In order to

achieve this, asymmetric couplings in neural networks are needed.

SIMULATION OF CHAOTIC PHENOMENA IN NEURAL NETWORKS

We have performed the simulation of two type mathematical models with a

chaotic neural network paradigm. The �rst is based on two frequency mods [26]

but it was essentially modi�ed introducing the generalised Hebb law and more

realistic N -shaped synaptic couplings. The second is based upon a dynamic map

in a discrete time variable like a simple logistic equation [1].

The �rst model is organised in the following way. The Cohen-Grossberg equa-

tions (2), after simplifying and introducing of a nonlinear N -shaped postsynaptic

potential function, become fast (high frequency) equations discretised in time

xi(t + 1) = (1�Dx)xi(t) +Egi(xi(t)); (4)

where

gi(xi(t)) =

NX
j=1

wij�j(xj(t)) + Ii(t); (4a)

Dx is the decay parameter of potentials, E is the excitatory rate, Ii(t) is the

external input of the ith neuron, �j(xj(t)) is the N -shaped synaptic function

further simpli�ed as �(x) because of its independence of time and neuron number.
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Since an increase in depolarised current and a descrease in the polarised one

are saturated in natural dendrite, we introduced arti�cial restrictions. So we have

such a piece-wise polynomial approximation

Y = �(x) = [x3 � c1x
2 + c1x(1� c22)][c1(1� c22)]

�1 (5)

under two types of conditions:

a)

Y =

8<
:
�(x) if � a < Y < a

�a if Y � �a

a if Y � a;

(5a)

b)

Y =

�
�(x) if j Y j � S(x)

S(x) if j Y j > S(x);
(5b)

where c1 is a coe�cent (3.0), c2 is a constant (0.65), a is positive value (we took

1.0), S(x) is a bipolar sigmoidal function (we took tanh). Such generalised ap-

proximation as a restricted N -shaped current-voltage dendritc membrane relation

is presented in Fig. 1.

Fig. 1. Restricted N -shaped current-voltage dendritc membrane relation.

The synaptic function �(x) reects the mutual activity between presynaptic

and postsynaptic potentials as a result of complex synapse-dendrite activation.
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This activation, in most cases, is de�ned by a restricted N -shaped current-voltage

dendritic membrane relation [5] that possesses two stable (Fig. 1, h0 and h2 points)

and one unstable (Fig. 1, h1 point) points.

In addition, we would like to note that the production wij�j(xj(t)) in (4a)

was used for two goals: one is as more realistic to neurophysiological situation

described above by (5, 5a or 5b) at wij = 1, and the other for incorporation of

thresholds to improve the neural network learning [17].

Delta equations (2) considered as slow (low frequency) ones were presented in

such a way

wij(k + 1) =
�
(1�Dw)wij(k) + �xi(k)xj(k)

�
F (xi(k); xj(k)); (6)

where k is a recursion step.
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Fig. 2. Neural network with three neuronal elements.

The �rst modelling experiment has been made on simple cases of a NN architec-

ture: three and �ve elements of neuronal schema with di�erent nonlinear functions

of synaptic connections and a function of neuron activity. The weights among

neurons maped by N -shaped current- voltage relation (5) with restrictions (5a) or

(5b) were changed to achieve equillibrium or non-equillibrium states in a de�ned

neuronal structure. The model and its developing realisation based on two-mod

discrete nonlinear equations (4), (6) were carried out under the origin conditions

Ii(1;�1; 1); i = 1; 2; 3 and Ii(1;�1;�1; 1;�1); i = 1; 2; :::;5 for three and �ve

neurons with deterministic presentation of Ii as well as synaptic weights. The

neuronal schema with three neurons is presented in Fig.2. Here the weights are

shown in a simpli�ed form.
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Fig. 3. Bifurcation and chaos diagram for NN with a unipolar sigmoid activity

function.There are �x = 0:1 and �� = 0:015.

Fig. 4. Bifurcation and chaos diagram for NN with a restricted N -shaped relation.There

are �x = 0:01 and �� = 0:0199.

The organisation of iterative calculations has been carried out similarly as in

[26]. That is, at the beginning fast equations (10) were simulated in dynamics
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until the transient process was stabilised then the recursive equations (12) were

modelled. Iterative cycles continue the absolute summarised weight (j W j)

value becomes almost stable. After that a �xed amount (195-250) of iterations

is calculated to �nd the absolute sum of weights versus the learning rate � as a

bifurcation parameter in presenting a model.

The evolution of dynamic chaotic processes is well illustrated in Fig. 3-6. As

we see it is very surprising and complicated. Even in most simpli�ed case, wherein

the weights are presented as only multipliers and the function of neuronal activity

is taken as a sigmoidal shape ranging between thresholds. Fig.3 shows that at

the beginning up to � = 2:7 the evolution process converges to absolute stable

points. At � = 2:7 the bifurcation of solution is caused. For higher values of � a

cycled regime and period-doubling processes were reached. Since � = 4:4 a chaotic

phenomenon is cleared at the beginning in a narrow area, then after very complex

cycling window a wider area and at more than � = 8:0 the absolute chaotic regime

emerges.

Fig. 5. Bifurcation and chaos diagram for NN with two nonlinear functions: unipolar

sigmoidal of a neuron and N -shaped for synapting coupling. There are �x = 0:0001

and �� = 0:03.

Another development of neuronal dynamic processes is presented in Fig. 4.

Here due to the N -shaped relation with limitations in the origin a chaotic process

appears, then the periodic regime and descreasing period-doubling processes occur.
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The diagram in Fig. 4 shows that the range from � = 5:5 to � = 6:5 is the area of

the two equillibrium points. And only after � = 6:5 the period-doubling regime

appears and absolute chaotic behaviour is arisen.

The results of modelling in more complicated situations are demonstrated in

the diagrams in Fig. 5 and 6. Two nonlinear functions are given: one as unipolar

sigmoidal (Fig. 5) or bipolar one (Fig. 6) and the second as weight multiplied by

N -shaped function. The modelling was caried out with the same parameters as

in above. It should be noted: �rst, the intermittent stable, period- doubling,

unstable, and chaotic processes change place from the range with lower values of

the bifurcation parameter (� = 2:0 � 10:0) to the range with higher ones (� =

12:0�34:0); second, the processes become richer and more complex. The diagram

(Fig.6) shows that the processes do not possess explicitly distinct period- doubling

behaviour but they possess very many windows with stable point areas at �=20.0,

23.0, 25.5, 27.5 and wide stable areas in the range from 30.0 to 32.5. Only at

higher values of � = 32:53 the chaotic regime is continued uninterrupted.

Fig. 6. Bifurcation and chaos diagram for NN with two

nonlinear functions:bipolar sigmoidal of a neuron and N -shaped, for synapting

coupling. There are �x = 0:0001 and �� = 0:03.

The evolution of dynamic processes, given the bipolar sigmoidal activity func-

tion as a hyperbolic tangent and the N -shaped form in neuronal couplings, become

less distinct and more chaotic in the general sense. That is shown in the diagram
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of Fig. 6. Note that for �ve- element neural network architecture, similar complex

processes of solutions take place only they are a little simpler. It is most likely

that the more massive neural (and not only neural) system, the more crucial

mutual compensation mechanism in competetive systems occurs, the less disorder

behaviour survives. Certainly this hypothesis must to be proved.

Note that for �ve-element neural network architecture, similar complex pro-

cesses of solutions take place only they are a little simpler. It is most likely

that the more massive neural (and not only neural) system, the more crucial

mutual compensation mechanism in competetive systems occurs, the less disorder

behaviour survives. Certainly this hypothesis must to be proved.

INFLUENCE OF SYMMETRY AND ASYMMETRY IN NEURAL NETWORK

CHAOS

The second direction of examination of the neural network chaotic paradigm is

connected with a simpli�ed mathematical description of NN refusing of two types

of equations (4) and (6), the absolute sum of weights as a criterion and complex

nonlinear synapse-dendrite couplings among neurons.

Fig. 7. Dynamics of the state functions x(t) for a symmetric NN versus bifurcation

parameters w13 and time, t: (a) stable excited, for w13 = �0:1; (b) stable inhibited, for

w13 = �0:3;�0:5;�0:7.

In order to prove once again that symmetric couplings in a NN cannot degen-

erate into cyclic or more chaotic behaviour, we took the NN presented in Fig. 2
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and simulated in a �xed point dynamics [22].

Diferrent types of neuronal activity functions are given such as simple unipolar

sigmoidal, bipolar as a hyperbolic tangent, forsed sigmoidal, even restricted func-

tions x1(t), x2(t) and x3(t) with di�erent bifurcation parameters, weights between

the �rst and the third neurons w13 when the matrixW with zero diagonal elements

was always stable limited to the stable point position. The dynamics of the stable

function x1(t) in the rate of the bifurcation parameter w13 from -0.1 to -0.7 is

shown in Fig. 7. The initial condition x1(0) = 0:3 was given. The trajectories were

devided into two classes: stable exited, for w13 = �0:1, otherwise, stable inhibited.

Fig. 8. Dynamics of the state functions x(t) versus t for bifurcation parameters: (a)

equillibrium point, for w13 = �0:4; (b) stable cycle, for w13 = �0:6; (c) chaotic

behaviour, for w13 = �0:8.

In the asymmetric case of NN, where elements of matrix W wij 6= wji , the

evolution of the dynamic state with competetive inuence is shown in Fig. 8. When

the weight w21 is positive, the excitatory activation of neuron X1 is appeared,

and when w31 is negative, the inhibitory activation is taken place. Here all the

trajectories are growing by the exponential law at the beginning of time (up to 5

units of time) then the temporary stable states (plateau at 5{20 units of time) are

observed, later the di�erent trajectories appear. The stable point is reached at

w13 = �0:4 which is the adjusted parameter, the stable cycling { at w13 = �0:64

and the chaotic behaviour occurs at w13 = �0:7.

Around stable point areas nonmonotonic iteration maps are given in the Fig. 9.
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The �rst stable point area is in the range from 0.07 to 0.2 of x(t) for w13 = �0:4

and w13 = �0:6, where x(t+ 1) = x(t), i.e., the curves intersect the �rst bisecant.

The second area is near x(t) = 0:85, where the stable point (Fig. 9. Squares with

points) and the stable cycle (Fig. 9. Crosses) as intermittent behaviour occur.

The third area is near x(t) = 0:47, where the intersection curve slope with the

�rst bisecant is larger than one, which means the existence of unstable (chaotic)

dynamics.

Fig. 9. Nonmonotone iteration maps, for w13 = �0:4;�0:6;�0:8 and the �rst bisecant.

Thus, an attempt of a better understanding of chaos in general and neural

network chaos properties such as symmetry, asymmetry, stronger nonlinearity in

particular is emphasized. The simulation of chaotic phenomena in neural networks

at di�erent functions of neuronal activity and synaptic couplings in dynamics with

a reection into phase space showed how polygonal this problem is in a reality.

Search of analogy between natural neural network chaos phenomena and some

aspect of similar one in applied systems was fruitfull but not so what one was

desired. It remains as a stimulus for future investigations.
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