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Abstract
Mathematical modelling of nonlinear transmission of Cr4+:YAG crystals
excited by Nd:YAG laser pulses of different duration are reported. Numerical
simulation of transmission using a five-level scheme which included finite
excitation lifetimes in Cr4+:YAG, focusing and diffraction of transversely
nonhomogeneous pump radiation allowed to specify more precisely the limits
of applicability of the four-level model. Critical analysis of typical
simplifications commonly used for solving an inverse problem of
determination of absorption cross sections is undertaken. It is shown that some
of these assumptions that seem plausible enough might lead to considerable
deviations of the determined absorption cross sections from their “true”
values. A technique for determination of confidence intervals in case of the
nonlinear regression is emphasized.
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1  Introduction

Solution of an inverse problem consists of determination of the parameters
of the utilized mathematical model from the available experimental data [1,2].
The inverse problems are very widely used in physics. They need to be solved
in order to obtain various kinds of information, e.g., solution of an inverse
problem of bleaching of the dyes is used for measurement of duration of the
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picosecond pulses [3], the results of gain saturation are used for determination
of the lifetimes of active laser media [4] and optimization of the input pulse
parameters in order to obtain the desired temporal shape of the amplified pulse
[5], etc. However, as the methods proposed by the mathematicians for
processing the experimental data and solving the inverse problems [6,7] seem
to be too complex for most of the physicists, the methods usually employed by
them for processing the experimental data contain many shortcomings resulting
in significant errors of determination of the parameters being searched for.
Besides, the issue of the confidence intervals of the determined values of the
parameters usually remains unresolved. Clarification of this issue is currently
receiving much attention. For instance, to conform the international guide to the
expression of uncertainty, the uncertainty of a measurement in a wide sense
means a doubtfulness concerning the confidence of the measurement result [8].

In this paper, we shall analyze the situation in processing the experimental
data using as an example the problem of determination of the ground and
excited absorption cross sections of the Cr4+:YAG crystal from the
experimental data of transmission in the absorption saturation regime (see [9-
15] and references therein), and demonstrate that the seemingly plausible
enough “simplifications” often lead to considerable deviations of the obtained
cross sections from the “true” ones, i.e., in fact to an erroneous solutions of the
inverse problem. A technique for determination of confidence intervals in case
of the nonlinear regression will be emphasized. We shall also note that the
situation with determination of the parameters of nonlinear media from the
experimental saturation curves is quite typical and can be often found in other
physical problems, like determination of cross sections of the stimulated
emission of the laser media [16,17], saturation fluorimetry [18], etc.

2  Modelling of Cr4+:YAG Transmission Using a Five-Level Scheme

In recent years there has been a considerable interest in using Cr4+:YAG for
passive Q-switching of the Nd-doped lasers. For the purpose of mathematical
modelling of generation dynamics of this type of lasers, it is necessary to know
the values of absorption cross sections and lifetimes of the excited levels with
sufficient precision [19-21]. Lasers with a short cavity and especially the
microchip lasers permit to obtain pulses of nano- and subnanosecond duration.
At the same time, investigations of bleaching and measurements of the
Cr4+:YAG cross sections have usually been carried out using the lasers with
long ( 20≥τ L  ns) pulses [10,14,15]. Therefore, for modeling of bleaching in
these cases, it is assumed that the decay times of the upper excited levels are
very fast and a simplified four-level scheme is used even in cases when the
trains of picosecond pulses are used for exciting [12].
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A recent paper [11] proposed to use the five-level scheme for description of
energy levels of Cr4+:YAG that is widely used for modeling of saturable
absorption and reverse saturable absorption of complex molecular compounds
[22]. However, the experimental investigation of nonlinear absorption of
Cr4+:YAG has been carried out using the Nd:YAG lasers with greatly differing
pulsewidths of 40~1Lτ  ps and 25~2Lτ  ns [11]. Therefore, as acknowledged
by the authors themselves, the simulation was not very sensitive to the small
change in the relaxation time 3τ  of the excited state gT1

3  and the intersystem

crossing time 24τ . It is hard to estimate the extent of reliability of above
mentioned models without additional theoretical investigations. Therefore, the
experimental investigations and corresponding simulations of transmission of
Cr4+:YAG in the range of subnano- and nanosecond pulses are of great
importance.

We shall also note that all the previous papers modelled the transmission of
Cr4+:YAG in the plane-wave approximation. On the other hand, the
experimental investigations usually involve rather tight beam focusing for
obtaining high energy densities. For instance, for the experimental setup
described in Ref. [11], the beam diameter at the sample is only 352 0 =w  µm.
Therefore, the length of the beam waist 3.32/2

00 ≈= wkLD  mm is comparable
to the sample thickness 94.1=l  mm (here, λπ= /20 nk  is the wavenumber,

82.1=n  is the refraction index and 1064=λ  nm is the wavelength of the
Nd:YAG laser). Additional small diaphragms sometimes utilized in order to
obtain rectangular intensity distribution lead to significant diffraction
distortions of the field structure. All these factors contribute to significant
difficulties in processing the experimental data and they are one of the reasons
why the published data about the ground and excited state absorption cross
sections differ largely. The absorption cross sections might generally depend on
the technology of the sample production, but deviations of the values of
absorption cross sections brought about by the technological differences are
usually not so critical [12-14]. Therefore, in our opinion, the reasons of large
deviations of the published data of the Cr4+:YAG absorption cross sections are
differences in processing the experimental data.

Numerical simulation of transmission of the five-level saturable absorber
(SA) when using tightly focused laser beams must be done using the equation
for the slowly-varying complex amplitude of the laser pulse, including the term
describing focusing and diffraction of the beam [13]. The following set of
equations expressed in the dimensionless variables describes the pulse
propagation in the SA:
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Here, the longitudinal and transverse coordinates are normalized to the sample
length l  and the radius 0r , the time is normalized to the sample transit time

vlt /0 =  ( v  is the speed of the light in the sample). The field amplitude e  and
the population densities ih  are normalized to 0E  (corresponding to

00 / thvI σ= ) and 1)( −σ= lN  respectively, 19108.8 −×=σ  cm2 is the effective
spectroscopic emission cross section of the Nd:YAG. Besides, the following
notations are introduced: rrrr ∂∂+∂∂= // 22∆ , 2

002/ rklD = , l0α=α  is the
dimensionless nonresonant absorption coefficient. For brevity, the same
notations are preserved for the normalized absorption cross sections from the
ground σσ=σ /00  and excited σσ=σ /2,12,1 ee  levels, as well as those for the
dimensional and dimensionless relaxation times, beam radii, pulse energies, etc.

It is well known that the transmission of Cr4+:YAG depends on the mutual
orientation of the polarization of radiation and the crystallographic axes [9-15].
However, this dependence is often neglected. Equations (1)–(7) correspond to
the specific case of the laser pulse propagation along the crystallographic axis
[001] with linear polarization aligned along the crystallographic axis [100] or
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[010]. Therefore, in order to correctly compare the theoretical results with the
experiments, the SA sample must be aligned accordingly. Note also that
equations (1) – (7) do not include the possibility of absorption by the Cr4+

centers aligned across the radiation polarization. This so-called cross-saturation
in the absorber is rather small [23]. The values of the corresponding absorption
cross sections do not exceed 5% of the values of absorption with the parallel
alignment and fall within the errors of measurement of the latter [14].

Equations (1) – (7) were solved using the Crank-Nicholson finite-difference
method with splitting by the physical factors [24] with the following initial and
boundary conditions:

0)0,,(,)0,,(,0)0,,( 5201 ====== − tzrnntzrntzre , (8)

)]()/(exp[)(),0,( 00 riwrtfetzre S ϕ−−== . (9)

The calculations have been carried out for the factorized pulses (9) with the
Gaussian or super-Gaussian ( ,...6,4,2=S ) transverse intensity distribution
taking into account the focusing or the beam aberration by means of the
function )(rϕ . The short pulses with steeper leading edges obtained by using
the SBS-compression [13] were described by the function

2245.1],)/(exp[]/)2[()( 222/1 =µµτ−µτ= LL ttetf . (10)

The calculations were performed with different beam profiles and various pulse
shapes using the experimental values of the sample thickness 2.4=l  mm and
the Gaussian beam radius 24.00 =w  mm. More intense absorption on the
leading edge of the pulse [11] results in general steepening and shortening of
the leading edge of the pulse after traversing the SA. Shortening of the output
pulse at the half maximum of the instantaneous power is not monotonous as the
incident pulse energy grows. The minimum duration measured by the intensity
on the beam axis and by the total instantaneous power of the beam is obtained
at different values of the incident pulse energies.

3  Solving the Inverse Problem Using the Four-Level Model
Experimental measurements of the transmission have been carried out

utilizing the Nd:YAG laser system with an SBS-compressor [13]. By varying
the focusing conditions, the duration of the output pulse was tuned in the range
from 0.15 to 2.5 ns. The results of transmission measurements are shown in
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Fig. 1. In case of the polarization direction coinciding with that of the
crystallographic axis (the tilt angle 0=θ ), the maximum transmission was
observed (the upper set of the experimental points). In case when the SA was
rotated by the angle !45=θ , the minimum transmission (the lower set) was
observed. No dependence of the transmission on the pulse duration was
observed. In both series of measurements, the values of transmission denoted
by different symbols for pulse duration of 5.2=τ L ns and 150=τ L  ps are
undistinguishable. As it can be seen in Fig. 1, the difference in the transmission
curves for different orientations of the SA seems to be insignificant at a first
glance. However, the calculations of the generation dynamics [20,21] show that
in some cases inclusion of the transmission anisotropy might result in changes
in the duration of the generated pulses by an order of magnitude when the SA is
rotated with respect to the crystallographic axis [001] coinciding with the
optical axis of the generator.

The theoretical energy transmission of the SA is determined by
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Fig. 1. Energy transmission of the Cr4+:YAG crystal for nanosecond (×)
and subnanosecond (+) durations of pump pulses for parallel ( 0=θ ,
upper set of points) and tilted ( !45=θ , lower set of points)
crystallographic axes with respect to linear polarization of the incident
radiation. The solid line denotes the theoretical transmission curve for
optimum cross sections.
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= dttzrezru 2),,(),(  is the energy density of the pulse normalized to

σνh . Solution of the direct problem, i.e., calculation of the transmission
depending on the incident energy at the given parameters of the media and the
pulse, is quite straightforward. Certain assumptions concerning the excitation
relaxation times are necessary for calculation of the transmission. In the papers
that are known to us (see [9-15] and references therein), the fast relaxation from
the excited levels is mostly assumed, or, based on certain assumptions that are
not completely substantiated, it is stated that either 024 =τ  and 1.03 =τ  ns
[12], 55.03 =τ  ns [10], or 4~24τ  ns and 103 =τ  ps [11]. Using these values
of the relaxation times, we could not achieve an agreement between the
calculated values of transmission with the experimental ones (the latter did not
depend on the duration of the exciting pulse ( 150=τ L ps or 5.2=τ L  ns) by
selecting the values of the cross-sections. The durations of the laser pulses used
in the experiments were close enough to the specified relaxation times.
Therefore, for the cases where the calculated and experimental transmission
values were in agreement for the short exciting pulses, the calculated
transmission values were significantly different from the experimental ones in
case of the longer exciting pulses, and vice-versa.

On the other hand, solution of the inverse problem – determination of the
parameters of the SA from the experimental transmission data – requires
calculation of the transmission (11) for a large number of the sets of the SA
parameters at various incident pulse energy values corresponding to the
experimental data. Besides, solution of the inverse problem by minimizing the
function that evaluates the mean square deviations of the calculated values from
the measured ones might have several local minima in case of the presence of
many variables [18]. This factor significantly aggravates the minimization
process. In this situation, the time of solution of the direct problem with
sufficient accuracy becomes a critical factor requiring to simplify the utilized
model. For that case, neglecting the diffraction ( 0→D ) when using
sufficiently broad beams ( lLD >> ) and also assuming ee σ≡σ 1 , 03 →τ  and

slow cross-relaxation ( 24τ<<τL ) to the neighboring set of levels, it is easy to
obtain from equations (1) – (7) the standard four-level scheme of the SA. It can
be also seen that the equivalent and commonly used four-level scheme can be
obtained from the five-level one by setting also 01 =σe , ee σ≡σ 2  and
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0, 524 →ττ . Using these approximations, and following the technique
described in [9], the following equation governing the variation of the pulse
energy density inside the SA can be obtained:

[ ] ).,(1)),(exp(),(
2

0

21 zruzru
dt

zrdu
o γσ

σ
γγ

−−−
−

= (12)

The transmission in every point ),( zr  of the beam is determined by only
three independent parameters of the SA: 0σ , α+σ=γ 001 n , and

α+σ=γ en02 . We shall note that a recent paper [14] also includes additively
in an equation of a similar type the terms describing the absorption from the
phototropic centers aligned perpendicularly to the linear polarization vector of
the exciting beam. Therefore, it is not quite clear how the contributions of the
different terms can be discriminated when solving the inverse problem of
determination of the absorption cross-section. In our opinion, introduction of
similar terms is not completely substantiated, especially as the values of the
absorption cross sections obtained in [14] for the radiation with perpendicular
polarization is by an order of magnitude smaller than the values of absorption
cross sections for the radiation with parallel polarization and fall within the
error limits of the latter.

For sufficiently broad beams with the rectangular transverse distribution of
the energy density 0u , the following relations for the transmission can be
obtained [9]:

,1),1)(/1(
2
1),exp(,/1 012010 <<−γγ−σ−=γ=+≅ u ab a buaT (13)

,1,/)1)(1/(),exp(,/ 001220 >>σ−−γγ−=γ−=+≅ u cd c udcT  (14)

permitting, in general, to determine the absorption cross sections 0σ  and eσ
from the initial and the final parts of the transmission curves. As it is seen from
(13), in order to determine the parameter 1γ , it is necessary to use the fitting
procedure and to find the limit value 0T  of transmission when 00 →u , instead
of simply using the experimentally registered minimum transmission value.

However, as we have already mentioned above, experimental possibility
to obtain the rectangular distribution of intensity in a sufficiently wide beam is
not always available. On the other hand, utilization of small hard diaphragms
for separating the rectangular part of the beam results in significant diffraction
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distortions of the exciting beam. Therefore, the direct utilization of formulae
(13)–(14) again introduces large, unpredictable errors to the results of solution
of the inverse problem. Therefore, utilization of sufficiently broad beams with
the Gaussian transverse intensity distribution is more reasonable.

Since the publication of [25], it is well known (see also [26] and references
therein) that equation (12) with the non-zero linear absorption ( 0≠α ) does not
have analytical solution in the entire region of possible values of the energy
density of the exciting radiation. In case of instantaneous relaxation of the
excited levels, the presence of the excited-state absorption can be thought of as
simply increasing the linear absorption from α  to 2γ . Therefore, only certain
approximate solutions of equation (12) are possible. One of these kinds of
approximations is proposed in [10] that can be expressed as follows in our
notations:

FNA TTT
)exp(1

)exp()exp(
)exp(1
)exp(1

1

12
0

1

2

γ−−
γ−−γ−+

γ−−
γ−−= , (15)

where ]}1))[exp(exp(1ln{)( 001
1

00 −σγ−+σ= − uuTFN  is the Frantz-Nodvik
transmission in a two-level media approximation. Although this approximate
expression deviates from the exact solution of equation (12) quite
insignificantly throughout the entire interval of the values of the energy density
[13], the approximation for the low energy densities obtained using this
expression differs from approximation (13) obtained using the approximation
of the initial equation. We shall note that approximate expression (10) in [10]
for the transmission coefficient lacks a factor of the form )1/(1 0T−  in front of
the term linear with respect to 0u . We would also like to draw attention to the
fact that the transmission values obtained at 00 →u  should be used as

)exp( 10 γ−=T  in the above expressions rather than simply the minimum values
of transmission obtained in the experiment [10].

In case of sufficiently broad Gaussian beams )(ruG  =
)/2exp()0,( 2

0
2

0 wruzru −== , equation (12) can be solved independently for
different values of the radius r  and then formula (11) used for calculation of
the integral transmission. For this type of beams with the energy density

10 <<u  at the beam axis, an approximate expression for the transmission that is
convenient for determination of the parameter 1γ  can be obtained. Substitution
of the expression



48

)(
)(

)1,(
rbua

ruru
G

G

+
= (16)

into (11) for the normalized energy density at the exit from the SA and
integration over the transverse cross section gives the following expression for
the transmitted energy:

|1|ln
2

)1,(2)1( 00

2
0 u
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b

b
wrdrruW +== ∫

∞ ππ . (17)

Using 2/)1ln( 2xxx −≈+  and 2/)0( 2
00 wuW π= , it is easy to obtain the

following expression for the energy transmission coefficient:

22
0

)0(1))0((
aw

bW
a

WT
π

−≈ . (18)

Since 0<b , the transmission increases linearly as the normalized energy
increases, and the minimum transmission value is given by the limit 0)0( →W .
Therefore, for the Gaussian beams, in the same way as for the rectangular ones,
the minimal transmission differs from the experimentally measured minimal
value and equals ).exp( 10 γ−=T  For instance, determination of e

1γ  from the
experimentally measured minimum transmission value 138.0min =

eT  (see Fig. 1)
gives 98.1)ln( min1 =−= ee Tγ , while the standard procedure of the linear fitting
gives )%03.018.13(0 ±=T  and 03.21 =γ . As it will be seen below, this small
discrepancy results in deviation of the cross section value 0σ  by ~ 7.4%.

Thus, using the standard four-level model for modeling the transmission of
the sufficiently broad Gaussian beams, only two parameters must be
determined: 0σ  and 2γ . Independent data about the concentration 0n  of the
Cr4+ ions in the tetrahedral positions usually are not available. The normalized
coefficient of the nonresonant absorption α  is not contained explicitly in
equation (12). When using it as an independent parameter, the initial density
and the excited-state absorption cross section can be expressed as follows:

( ) 010 σα−γ=n , ( ) ( )α−γα−γσ=σ 120e . (19)
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Therefore, in order to determine eσ , certain assumptions should be made about
the value α . It is usually assumed that this coefficient is small, and it is set

0=α  in (19). However, in Ref. [14] it is assumed that there is no absorption at
all from the excited states of the Cr4+ ions, i.e. α=γ2  and 0=σe . In the
assumption of the instantaneous relaxation of excitations from the upper levels
of Cr4+, it is indeed impossible to differentiate between the contributions of the
excited-state absorption and the linear absorption not only in the processes of
the Cr4+ transmission saturation, but also in case of utilization of the latter for
the passive Q-switching [12, 19-21]. Therefore, in order to conclude the
discussion about the presence/absence of the excited-state absorption in Cr4+,
special experiments are necessary, e.g., the measurements of the
photoconductivity, etc.

In order to account for the transverse energy density distribution of the
incident collimated pump beam in calculation of transmission, it is necessary to
divide the transverse cross section of the beam into thin concentric rings.
Solution of equation (12) for each of these rings gives the transmission

))(( ruT . The output energy of the pulse is then given by

∫
∞

π=
0

)())((2)1( rdrruruTW . (20)

In case of the Gaussian beam, introducing a new integration variable
)/2exp( 2

0
2

0 wruq −= , we obtain the following expression for the transmission
coefficient:

∫==
0

000 )()/1()0(/)1()(
u

G dqqTuWWuT , (21)

where )(qT  is the transmission coefficient calculated in the plane wave
approximation. This result has a clear geometrical interpretation (Fig. 2). The
integral in (21) gives the area under the transmission curve calculated in the
plane wave approximation (solid line). This area is equal to an area under the
horizontal dashed line at the level equal to the value of the transmission for the
Gaussian beam, i.e., expression (21) can be thought of as a weighted average of
the transmission values calculated using the plane wave approximation. For
comparison, the dotted line in Fig. 2 denotes the value of the transmission

( )2/0uTTB =  calculated using the plane wave approximation, as proposed in
[10]. In Fig. 2 it is seen how the latter approximation overestimates the
calculated transmission value for a Gaussian beam.
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As stated above, from the three parameters 0σ , 1γ , 2γ , the parameter 1γ  is
easiest to determine in the four level model from the initial part of the
transmission data. Determination of the actual values of the оther two
parameters 0σ , 2γ  from the experimental transmission data is carried out by
minimizing the quantity [24,27,28]

( ) ( )2
1

22
,,

2 −σ−=χ ∑
=

NTT
N

j
Tjejc , (22)

that characterizes the difference between the experimental and calculated
transmission values. Expression (22) is regarded as a function of two variables

0σ , 2γ , while the parameter 1γ  is determined from the minimum transmission
value 0T . Since the theoretical values of the transmission jcT ,  are numerically
calculated solving Eq. (12), for minimization of (22) we used the downhill
simplex method [24,29], because it does not require calculation of the function

derivatives. If the fitting is correct, one could set 12 =χ  and estimate Tσ  via
[24,28]

( ) ( )∑
=

−−=σ
N

j
jejcT NTT

1

2
,,

2 2 . (23)
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Fig. 2. Geometrical interpretation of the Gaussian beam
transmission calculation.
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In this way, the required values of the parameters min,0σ  and min,2γ  are
determined by minimizing (22) or (23). As it was mentioned above, relatively
small errors in determination of the parameter 1γ  ( %2~/ 11 γγ∆ ) result in a
significantly larger deviations ( min,0min,0 /σσ∆ ~7.4% and min,2min,2 / γγ∆ ~3.7%)

from the optimal min,0σ  and min,2γ  that minimize the 2χ  (22) and the
dispersion (23).

Systematic errors in measurement of the beam energy and radius, as it is
seen from (18), practically do not influence the value of 1γ , since it is
determined at 0)0( →W . At the same time, systematic errors in determination
of the energy density on the beam axis arising from the corresponding errors in
measurements of the total energy or the beam radius lead to a shift of the values
of min,0σ  and min,2γ . It can be verified easily by artificially multiplying the
energy densities of the experimental data by an appropriate factor, while
leaving the transmission values at the corresponding points the same, thereby
simulating a systematic error in experimental measurement of the former, and
then determining the absorption cross-sections from the nonlinear fitting of the
curve with modified energy densities. E.g., the error of 4% in measurement of
the beam radius result in an error of up to ~8.5% in determination of the
ground-state absorption cross section. In general, it follows from the
calculations that the systematic error in measurement of the axial energy
density | 00 / uu∆ | results in a relative shift | min,0min,0 /σσ∆ | of the same absolute
value and the opposite sign.

Rough errors in normalizing the experimental data or converting the
energy densities to dimensionless units result in obtaining the false values of

min,0σ  and min,2γ  that are far from the real values of the absorption cross-
sections. However, it is difficult to detect the presence of serious errors without
additional research, e.g., analysis of generation dynamics of lasers with passive
Q-switching [20,21], since the dispersion Tσ  does not change drastically
enough in that case.

We shall note that the physics papers usually do not inform what
considerations are used as the basis for indication of the certain measurement
errors. As the basis for assessment of these errors, the above mentioned shifts

min,0σ  and min,2γ  arising on the boundaries of the interval of the standard
deviation in the measurement of the axial energy density can be used. However,
these mean square deviations of the axial energy density usually do not exceed
10%. We shall demonstrate that the procedure of their determination using the
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least squares method leads to considerably larger uncertainty intervals of the
parameters being determined.

The confidence limits of the parameter values given by the minimization
procedure can be assessed by calculating the deviation of the parameters 0σ∆
and 2γ∆  from the optimal values min,0σ , min,2γ  giving the constant values of

22
min

2 χ∆+χ=χ  with 0.12 =χ∆ , 2.71 and 6.63 [24]. Fig. 3 depicts the isolines

of the constant values of 2χ . The confidence limits of a fitting parameter are
then given by the projection of the corresponding ellipse to the axis of this
parameter, e.g., the interval given by the projection of the ellipse with

63.62 =χ∆  contains 99% of the normally distributed data [24].

Determination of the absorption cross-sections from the transmission data
for the SA rotated by 45 degrees (the lower set of points in Fig. 1) results in
relatively small shift of the mean values min,0

~σ , min,2
~γ  minimizing (22), (23)

and increase of the confidence intervals.

4  Conclusion

We have shown that for precise description of the energy transmission and
determination of absorption cross sections of the Cr4+:YAG crystals, it is
sufficient to use the standard four-level scheme with fast relaxation excitation,
taking into account the anisotropy of absorption and nonhomogeneous
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Fig. 3. Confidence region “ellipses” correspoding to
values of chi-square larger than the fitted minimum.
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transverse energy distribution of nano- and subnanosecond pump pulses.
Critical analysis of typical simplifications commonly used for solving the
inverse problem of determination of absorption cross sections is undertaken. A
simple technique for determination of confidence intervals in case of the
nonlinear regression is emphasized.
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