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Abstract. We present here a numerical study of laminar doubly diffusive
free convection flows adjacent to a vertical surface in a stable thermally
stratified medium. The governing equations of mass, momentum, energy
and species are non-dimensionalized. These equations havebeen solved by
using an implicit finite difference method and local non-similarity method.
The results show many interesting aspects of complex interaction of the two
buoyant mechanisms that have been shown in both the tabular as well as
graphical form.
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1 Introduction

Many free convection processes occur in environments with temperature strat-

ification. Good examples are closed containers and environmental chambers

with heated walls. Also the free convection flow associated with heat-rejection

systems for long duration deep ocean power modules where the ocean envi-

ronment is stratified, (Yang et. al., [1]). Stratification of fluid arises due to

temperature variations, concentration differences or the presence of different

fluids. Cheesewrit’s [2] work and also of Yang et. al. [3] showed that similar

solutions were not possible. This fact is supported by Eichhorn [4] andby

Fujii, et. al. [5] and therefore they developed series solutions to accountfor

the nonzero leading edge temperature difference. Eichhorn [4] had calculated
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only three terms in the series solution. On the other hand Fujii, et. al. [5]

gave both analytical and experimental results for a temperature stratificationin

which the ambient temperature distribution varies with distance. In the above

investigation they also showed that the fourth term in the series solutions are

necessary for comparing the experimental results. The experimental andtheo-

retical study in which both the wall temperature and the ambient temperature

varied with a power of the distance along the plate was carried out by Piau [6].

His experimental temperature distributions compare well with his theoretical

results; in order to make the comparison, the author had to use a nonzero

starting length of the surface. Later Chen and Eichhorn [7] considereda finite

isothermal vertical plate in a stable thermally stratified fluid. The experimental

results of their paper have represented clear information on heat transfer to

a vertical cylinder in water for both the unstratified and the stratified cases.

Kulkarni, et. al. [8] investigated the problem of natural convection from an

isothermal flat plate suspended in a linearly stratified fluid medium using the

Von-Karman-Pohlhausen integral solution method.

The case of non-similar laminar natural convection from a vertical flat plate

placed in a thermally stratified medium was studied by Venkatachala and Nath

[9]. For getting the desired results they used implicit finite difference scheme

developed by Keller and Cebeci [10]. They also used the perturbation series

expansion and local non-similarity methods.

Gebhart and Pera [11] presented similarity solutions and investigated the

laminar stability of natural convection flows driven by thermal and concen-

tration buoyancy adjacent to flat vertical surfaces. They also presented an

excellent summary of this class of doubly diffusive natural convection. Pera

and Gebhart [12] extended their previous work flows from horizontalsurfaces.

In the above studies the effect of stable ambient stratification on heat and

mass transfer was not considered. In the cooling ponds, lakes, solar ponds and

atmosphere a stable thermal stratification in the ambient is usually present. A

numerical study of the double-diffusive natural convection flow adjacent to a

vertical surface in a thermally stratified ambient was presented by Angirasa

and Srinivasan [13]. They used the boundary layer approximation forthe

problem. For solving the conservative equations of mass, momentum, energy
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and species they used an explicit finite-difference scheme.

In this paper the conservative equations of mass, momentum, energy and

species have been solved by using implicit finite-difference scheme and local

non-similarity method. The results show many interesting aspects of complex

interaction of the two buoyant mechanisms that have been shown in both the

tabular as well as graphical form.

2 Formulation of the problem

Let us consider the two dimensional steady boundary layer flow, heat transfer

and mass transfer of a viscous incompressible fluid along an isothermal vertical

finite plate immersed in a stable thermally stratified fluid. The coordinate

system and the flow configuration are shown in Fig. 1.
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Fig. 1. The flow configuration and the coordinate system.

Using Boussinesq approximations, we obtain the following mass, momen-

tum, energy and species conservation equations for laminar flow adjacentto a

flat vertical surface.

∂u

∂x
+
∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+ gβ(t− t∞,x) − gβ∗(c− c∞,0), (2)

u
∂t
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∂2t

∂y2
, (3)

u
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∂x
+ v

∂c

∂y
= D

∂2c

∂y2
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with the boundary conditions

u = v = 0, t = tw at y = 0,
u = 0, t = t∞,x, c = c∞,0 as y → ∞

(5)

whereu and v are thex- and y-components of the velocity field, respec-

tively, g is the acceleration due to gravity,β∗ is the volumetric coefficient of

concentration. Here the volumetric coefficient due to temperatureβ must be

positive butβ∗ may have either sign. If the molecular weight of the species is

higher than the solution thenβ∗ is positive and vice versa. Hence we see in

equation (2), the two buoyant mechanisms aid each other when the quantities

β(tw − t∞) and β∗(cw − c∞) have opposite signs and oppose each other

when they have the same sign.tw is the temperature of the wall andt∞,x

is the ambient temperature of the fluid.cw − c∞ is the difference between

species concentration of the boundary layer and the ambient concentration.

α is the thermal diffusivity andD is the molecular diffusivity of the species

concentration.

The non-dimensional variables can be written as follows:

X = x
(gβ∆t0

v2

)1/3
, Y = y

(gβ∆t0
v2

)1/3
,

U =
u

(vgβ∆t0)1/3
, V =

v

(vgβ∆t0)1/3
, (6)

T =
t− t∞,x

tw − t∞,0
, C =

c− c∞,0

cw − c∞,0

where∆t0 = tw − t∞,0 (t∞,0 is constant).

The non-dimensional conservative equations are then obtained as

∂U

∂X
+
∂V

∂Y
= 0, (7)

U
∂U

∂X
+ V

∂U

∂Y
=
∂2U

∂Y 2
+ T −BC, (8)

U
∂T

∂X
+ V

∂T

∂Y
+ SU =

1

Pr

∂2T

∂Y 2
, (9)

U
∂C

∂X
+ V

∂C

∂Y
=

1

Sc

∂2C

∂Y 2
(10)

whereB = β∗(cw−c∞)/β(tw−t∞) is defined as the buoyancy ratio andS =

(1/∆t0)dt∞,x/dx as the thermal stratification parameter.Pr is the Prandtl

number defined byν/α andSc is the Schmidt number defined byν/D.
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We obtain the boundary condition for temperature at the wall in non-di-

mensional form as follows:

T =
tw − t∞,x

tw − t∞,0
= 1 −

t∞,x − t∞,0

tw − t∞,0
. (11)

Sincet∞,x is a linear function

T = 1 −
1

∆t0

dt∞,x

dX
X = 1 − SX. (12)

For linear thermal stratificationS is constant and for other variation it can be

represented as a function ofX. The boundary conditions (5) then become

U = V = 0, T = 1 − SX at Y = 0,

U = T = C → 0 as Y → ∞.
(13)

Equation (7)–(8) subject to the boundary conditions (13) had been investi-

gated by Angirasa and Srinivasan [13] employing the explicit finite difference

method.

3 Transformation of the equations

Let us consider the following transformations

ψ = X3/4f(X, η), η = Y X−1/4,

T (X,Y ) = θ(X, η), C(X,Y ) = φ(X, η)
(14)

whereψ is the stream function, defined by

U =
∂ψ

∂Y
and V = −

∂ψ

∂X
(15)

which satisfies the equation of continuity (5). In (14),f , θ andφ are the

non-dimensional stream function, temperature and concentration functions,

respectively andη is the pseudo-similarity variable.

Applying the above transformations we get the following non-similarity

equations:

f ′′′ +
3

4
ff ′′ −

1

2
f ′2 + θ −Bφ = X

(

f ′
∂f ′

∂X
− f ′′

∂f

∂X

)

, (16)

1

Pr
θ′′ +

3

4
fθ′ − SXf ′ = X

(

f ′
∂θ

∂X
− θ′

∂f

∂X

)

, (17)

1

Sc
φ′′ +

3

4
fφ′ = X

(

f ′
∂φ

∂X
− φ′

∂f

∂X

)

(18)
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with boundary conditions

f(X, 0) = f ′(X, 0) = 0, θ(X, 0) = 1 − SX, φ(X, 0) = 1,

f ′(X,∞) = θ(X,∞) = φ(X,∞) = 0.
(19)

In the present investigation we integrate the set of equations (16)–(19)

employing two methods; namely the implicit finite difference method together

with the Keller-box elimination techniques and the local non-similarity method.

The methods of solution are discussed in the following sections.

Once we know the values off , θ andφ and their derivatives, we may

calculate the values of the quantities of physical interest such as the local

Nusselt number,Nux and the local Sherood numberShx from the following

relations againstX, the axial distance along the surface of the plate measured

from the leading edge.

The local Nusselt number is

Nux = −X3/4θ′(Y,X). (20a)

The local Sherood number is

Shx = −X3/4φ′(Y,X). (20b)

4 Methods of solution

In the present investigation we shall integrate the equations (16) to (19) for

all values ofX by implicit finite difference method as well as the local non-

similarity method.

Implicit finite difference method (FD). For all X, here we propose to

integrate the local non-similarity partial differential equations (16)–(18) sub-

jected to the boundary conditions (19) by implicit finite difference method

together with Keller-box elimination technique, which was first introduced by

Keller [14]. To begin with the partial differential equations (16)–(18) are first

converted in to a system of first order equations. Then these equations are

expressed in finite difference forms by approximating the functions and their

derivatives in terms of the center difference. Denoting the mesh points in the
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X, η-plane byXi andηj wherei = 0, 1, . . . ,M andj = 0, 1, 2, 3, . . . , N cen-

tral difference approximations are made, such that those equations involvingX

explicitly are centered at(Xi−1/2, ηj−1/2) and the remainder at(Xi, ηj−1/2)

whereηj−1/2 = (ηj − ηj−1)/hj etc. This results in a non-linear difference

equation for the unknowns atXi in terms of their values atXi−1. To solve

resulting equations, Newton’s iterations technique together with Keller-box

method is then introduced. Recently this method has been discussed in more

detailed and was used efficiently by Hossain et. al. [15] in studying the

effect of oscillating surface temperature on the natural convection flow from

a vertical flat plate. To initiate the process withX = 0, we first prescribe

the profiles for the functionsf, f ′, f ′′ and θ, θ′ andφ, φ′ obtained from the

solution of the equations (16)–(19) by puttingX = 0. These profiles are then

employed in the Keller-box scheme with secondary accuracy to march step

by step along the boundary layer. For a givenX, the interactive procedure is

stopped to get the final velocity, temperature and concentration distributions

when the difference in computing the velocity, the temperature and the species

concentration in the next procedure becomes less than10−5, i.e. |δf i| ≤

10−5 where the subscripti denotes the number of iterations. Throughout

the computations, instead of using equal grid in theη-direction, non-uniform

grids have been incorporated consideringη = sinh(j/i). This consideration

has saved a lot of computational times and on-board memory space. In the

computations, the maximumηe ranged up to 25.0,X ranging from 0.0 to

100.0.

Local non-similarity method (LNS). The local non-similarity method

was developed by Sparrow and Yu [16] and has been applied by many inves-

tigators, for example Minkowycz and Sparrow [17], Hossain [18], to solve

various non-similar boundary layer problems. This method embodies two

essential feathers. First the non-similar solution at any specific stream wise

location is found (i.e. each solution is locally autonomous). Second, the local

solutions are found from differential equations. These equations can be solved

numerically by well-established techniques, such as forward integration (e.g.

a Rungr-Kutta scheme) in conjunction with a shooting procedure to determine

the unknown boundary conditions at the wall. The method also allows some
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degree of self-checking for accuracy of the numerical results.

In the local non-similarity method, all the terms in the transformed conser-

vation equations are retained, with theX derivatives discussed by the new

functionsf1 = ∂f/∂X, θ1 = ∂θ/∂X, φ1 = ∂φ/∂X. These represent

three additional unknown functions, therefore it is necessary to deduce three

further equations to determine thef1, θ1 andφ1. This is accomplished by cre-

ating subsidiary equations by differentiation of the transformed conservation

equations and boundary conditions (i.e.f1, θ1 andφ1 system of equations)

with respect toX. The subsidiary equations forf1, θ1 andφ1 contain terms

∂f1/∂X, ∂θ1/∂X, ∂φ1/∂X and theirη derivatives. When these terms are

ignored the system of equations forf, θ, φ, f1, θ1 andφ1 reduces to a system

of ordinary differential equations that provides locally autonomous solutions

in the stream wise direction. This form of the local non-similarity method is

referred to as the second level of truncation, because approximations are made

by dropping terms in the second level equation.

To carry the local non-similarity method to the third level of truncation,

all terms are retained in both thef, θ, φ and f1, θ1, φ1 equations. The

X derivatives appearing in thef1, θ1 andφ1 are disguised by introducing

f2 = ∂f1/∂X = ∂2f/∂X2, θ2 = ∂θ1/∂X = ∂2θ/∂X2, φ2 = ∂φ1/∂X =

∂2φ/∂X2. Thef1, θ1 andφ1 and their boundary conditions are then differen-

tiated with respect toX to obtain three additional equations for the functions

f2, θ2 andφ2. In these new equations, terms involving∂f2/∂X, ∂θ2/∂X,

∂φ2/∂X and theirη derivatives are deleted, so that once again a locally au-

tonomous system of ordinary differential equations forf, θ, φ, f1, θ1, φ1, f2,

θ2, andφ2 can be derived.

The procedure as described above in the formulation of the local non-

similarity method can result in a large number of ordinary differential equa-

tions that may require simultaneous solution. For example, at the third level of

truncation there will be nine equations involvingf, θ, φ, f1, θ1, φ1, f2, θ2,

andφ2. It is expected that the accuracy of the local non-similarity method

results will depend upon the truncation level. Below we give only the equations
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valid up to the third level of truncation:

f ′′′ +
3

4
ff ′′ −

1

2
f ′2 + θ −Bφ = X

(

f ′
∂f ′

∂X
− f ′′

∂f

∂X

)

, (21)

1

Pr
θ′′ +

3

4
fθ′ − SXf ′ = X

(

f ′
∂θ

∂X
− θ′

∂f

∂X

)

, (22)

1

Sc
φ′′ +

3

4
fφ′ = X

(

f ′
∂φ

∂X
− φ′

∂f

∂X

)

, (23)

f ′′′1 +
3

4
ff ′′1 +

7

4
f ′′f1 − 2f ′f ′1 + θ1 −Bφ1

= X(f ′f ′2 + f ′1
2 − f ′′f2 − f ′′1 f1), (24)

1

Pr
θ′′1 +

3

4
fθ′1 +

7

4
f1θ

′ − f ′θ1 − Sf ′ − SXf ′1

= X(f ′1θ1 + f ′θ2 − θ′f2 − θ′1f1), (25)
1

Sc
φ′′1 +

3

4
fφ′1 +

7

4
f1φ

′ − f ′φ1

= X(f ′φ2 + f ′1φ
′

1 − φ′f2 − φ′1f1), (26)

f ′′′2 +
3

4
ff ′′2 +

7

2
f ′′1 f1 +

11

4
f ′′f2 − 3f ′f ′2 + θ2 −Bφ2

= X(f ′1f
′

2 + 2f ′1f
′

2 − 2f ′′1 f2 − f ′′2 f1), (27)
1

Pr
θ′′2 +

3

4
fθ′2+

7

4
f1θ

′

1+
11

4
f2θ

′ − 2f ′θ2 − 2f ′1θ1 − 2Sf ′1 − SXf ′2

= X(2f ′1θ2 + f ′2θ1 − 2θ′1f2 − θ′2f1), (28)
1

Sc
φ′′2 +

3

4
fφ′2 +

7

2
f1φ

′

1 +
11

4
f2φ

′ − 2f ′φ2 − 2f ′1φ1

= X(2f ′1φ2 + f ′2φ1 − 2φ′1f2 − φ′2f1). (29)

The boundary conditions are

f(X, 0) = f ′(X, 0) = 0, θ(X, 0) = 1 − SX, φ(X, 0) = 1,

f1(X, 0) = f ′1(X, 0) = f2(X, 0) = f ′2(X, 0) = 0,

θ1(X, 0) = −S, θ2(X, 0) = φ1(X, 0) = φ2(X, 0) = 0,

f ′(X,∞) = f ′1(X,∞) = f ′2(X,∞) = 0,

θ1(X,∞) = θ2(X,∞) = φ1(X,∞) = φ2(X,∞) = 0.

(30)

At the third level of truncation, equations (28)–(29), the terms with

∂f2/∂X, ∂θ2/∂X, ∂φ2/∂X have been neglected. It can be seen that equa-

tions (21)–(30) form a coupled linear system of ordinary differential equations
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taking as a parameter. Equations (21)–(30) are solved numerically, employ-

ing the sixth order implicit Runge-Kutta-Butcher initial value problem solver

along with Nachtsheim-Swigert iteration technique. Here, solutions are ob-

tained, up to the third level of truncation, for different values ofSc andPr and

with X from zero to 10. Results for surface heat transfer and mass transfer

are given in the following Table. Comparison between the non-similarity

solutions and the finite difference solutions shows that consideration of the

above equations up to the third level of truncation is sufficient for the present

case.

5 Results and discussions

In this present problem two distinct solution methodologies, namely, (i) the

finite difference method together with the Keller-box method for allX, (ii) the

local non-similarity method for allX, have been applied to integrate the mo-

mentum, energy and concentration equation (16)–(19). Computed results thus

obtained in terms of the local Nusselt number and local Sherood number are

shown in tabular form. In Table 1 the numerical values of local Nusselt number

and local Sherood number forPr = 0.7 and 7.0 andSc = 0.7 and 100 against

X which are found by finite difference method and local non-similarity method

has been shown. We observe that with the increase ofX, both local Nusselt

number and local Sherood number are increasing. For increasing values of

Schmidt numberSc, both Nusselt number and Sherood number increase. In

the present investigation, we have considered the maximum value ofX to be

100 because for higher values ofX laminar flow may not be valid. We see

that forS = 0.01, the ambient temperature is equal to the wall temperature at

X = 100. lf S > 0.01, the temperature of a portion at the top of the surface

will be less than the ambient.

In Fig. 2a the velocity profiles are shown forX = 100 andPr = Sc = 0.7

for various values of the stratification parameterS. S = 0 indicates that the en-

vironment is unstratified. We have chosenB = −2 for the two buoyancies aid

each other. An increase in ambient thermal stratification invariably decreases

the velocity profile. The temperature profile atX = 100 are shown in Fig. 2b

for Pr = Sc = 0.7 and for the same values ofS as above. If thermal stratifica-
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Table 1. Numerical values of the Local Nusselt number and Local sherood
number for different values of the Prandtl numberPr and SchmidtSc

Pr = 7.0 andSc = 100.0 Pr = 0.7 andSc = 0.7

Local Nusselt Number Local Sherood Number Local Nusselt Number Local Sherood Number

X FD LNS FD LNS FD LNS FD LNS

0.0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

0.2 0.23983 0.2275 0.70224 0.7061 0.14131 0.1424 0.14131 0.1461
0.4 0.40334 0.3827 1.18103 1.1875 0.23766 0.2395 0.23766 0.2457
0.6 0.54669 0.5187 1.60077 1.6096 0.32212 0.3246 0.32212 0.3330
0.8 0.67834 0.6436 1.98625 1.9972 0.39969 0.4028 0.39969 0.4132
1.0 0.80192 0.7608 2.34809 2.3611 0.47251 0.4762 0.47251 0.4885
2.0 1.34866 1.2796 3.94901 3.9708 0.79466 0.8008 0.79466 0.8215
3.0 1.82797 1.7343 5.35250 5.3820 1.07708 1.0854 1.07708 1.1134
4.0 2.26816 2.1520 6.64141 6.6781 1.33645 1.3468 1.33645 1.3816
5.0 3.07427 2.5440 7.85132 7.8947 1.57992 1.5922 1.57992 1.6332
6.0 3.45106 2.9168 9.00179 9.0515 1.81143 1.8255 1.81143 1.8726
7.0 3.81457 3.2743 10.10506 10.1608 2.03344 2.0492 2.03344 2.1021
8.0 4.16687 3.9192 11.16948 11.2311 2.24764 2.2651 2.24764 2.3235
9.0 4.50950 3.9534 12.20105 12.2684 2.45522 2.4743 2.45522 2.5381

10.0 7.58404 4.2785 13.20430 13.2772 2.65711 2.6777 2.65711 2.7468
20.0 10.27944 22.20689 4.46870 4.46870
30.0 12.75479 30.09929 6.05689 6.05689
40.0 15.07842 37.34740 7.51543 7.51543
50.0 15.07842 44.15123 8.88457 8.88457
60.0 17.28788 50.62077 10.18644 10.18644
70.0 19.40671 56.82492 11.43490 11.43490
80.0 21.45092 62.81058 12.63940 12.63940
90.0 23.43205 68.61155 13.80673 13.80673

100.0 25.35878 74.25323 14.94200 14.94200
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a b c
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Fig. 2. Velocity (a), temperature (b) and concentration (c)profiles for diffe-
rent stratification parameterS takingPr = Sc = 0.7 andB = −2, X = 100.

tion is not present the temperature and concentration profiles will be identical

whenPr = Sc. We observe that forS = 0.01 and0.012, values of the non-

dimensional temperature are negative within the boundary layer. Because, for

S = 0.01 the temperature difference between the surface and the ambient at

X = 100 is zero. But fluid coming up from below with the flow sustained

by the other buoyant force will have a temperature that is considerably less

than that of the surface or the ambient. This is true forS = 0.012 also

accept that the non-dimensional temperature at the surface is−0.2 and it drops

further before asymptotically reaching zero. WhenS < 0.01 there is positive

thermal buoyancy atX = 100 but in the outer regions the temperatures are

still negative. For higher values of S the temperature in the ambient increases

rapidly with height.

In Fig. 2c the effect of thermal stratification on concentration boundary

layers is presented. ForS = 0.012 the increase in concentration boundary

layer thickness is almost double that ofS = 0.0 for Pr = Sc = 0.7, thus

indicating strong influence of thermal stratification on species diffusion. The

velocity profiles are qualitatively agreed with those of Angirasa and Srinivasan

[13].

6 Conclusions

In this paper we have investigated problems on natural convection flow from a

vertical plate placed in a stratified media.
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Investigation has been made to the natural convection flow with combined

buoyancy effects due to thermal and mass diffusion in a thermally stratified

medium. Implicit finite difference method and the local non-similarity method,

are employed and investigate the present problem for values of the distance

variableX in the interval[0, 100] for fluid having values ofPr = 0.7 and for

different values of the stratification parameterS. We may draw the following

conclusions for the present study:

• For increasing the values ofX both local Nusselt number and local Sherood

number are increasing.

• Ambient thermal stratification is found to decrease the local buoyancy

levels significantly, that reduces the velocities and increases the concen-

trations.

• The temperature defect is more pronounced in doubly diffusive free con-

vection flow.
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