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Abstract. In this paper, laminar natural convection flow from a permeable
and isothermal vertical surface placed in non-isothermal surroundings is
considered. Introducing appropriate transformations into the boundary layer
equations governing the flow derives non-similar boundary layer equations.
Results of both the analytical and numerical solutions are then presented
in the form of skin-friction and Nusselt number. Numerical solutions of
the transformed non-similar boundary layer equations are obtained by three
distinct solution methods, (i) the perturbation solutionsfor small ξ (ii) the
asymptotic solution for largeξ (iii) the implicit finite difference method for
all ξ whereξ is the transpiration parameter. Perturbation solutions for small
and large values ofξ are compared with the finite difference solutions for
different values of pertinent parameters, namely, the Prandtl numberPr,
and the ambient temperature gradientn.
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1 Introduction

Thermal boundary layer non-similarity may result from various cases. Perhaps

the most common cause is the non-similarity of the velocity boundary layer.

In turn, there are various factors, which may give rise to velocity boundary

layer non-similarity, among which are: (i) stream wise variations in the free

stream velocity, (ii) surface mass transfer (iii) transverse curvature and (iv)

non-isothermal surroundings. Also thermal boundary layer can be non-similar
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even when the velocity boundary layer is similar, as will occur when stream

wise variations in the surface temperature, surface heat flux or volume heat

generations are not restricted to certain simple forms. Thus, there are many

classes of non-similarity in thermal boundary layer. The different classes of

thermal boundary layer non-similarity are generated by mathematical systems,

which differ in various details one from other. Sparrow and Yu [1] usedthe

local non-similarity method to solve the thermal boundary layer equation for

the steady flow with uniform free stream velocity in the presence of surface

mass-flux, transverse curvature, stream wise variations of the free stream ve-

locity, and stream wise variations of the surface temperature. Kao [2] applied

the shooting method technique as described by Nachtsheim and Swigert [3]to

solve the non-similarity boundary layer and thermal boundary layer equations

for the forced convection along a flat plate with arbitrary suction or injection

at the wall.

Many free convection processes occur in environments with temperature

stratification. A room that is heated by electrical wires embedded in the ceiling

may be thermally stratified. A room fire with an open door or window through

which fresh air is supplied near the bottom is another example of a thermally

stratified situation. Several attempts have been made in recent years to in-

vestigate the problem of natural convection over a vertical wall in a stratified

medium due to its obvious importance. Early studies were focused on seeking

similarity solution because the similar variables can give great physical insight

with minimal efforts. Yang [4] first presented a general approach for obtaining

similarity solutions to a class of problems for a non-isothermal vertical wall

surrounded by an isothermal atmosphere. For laminar free convection along

a vertical plate, Cheesewright [5] obtained similarity solutions dealing with

various types of non-uniform ambient temperature distributions by using the

technique of Yang [4]. None of the variety of cases presented by Cheesewright

[5] and Yang et al [6] included a case in which the wall was isothermal andthe

ambient atmosphere had a linearly increasing temperature distribution. Fujii

et al. [7] presented both analytical and experimental results for a temperature

stratification in which the ambient temperature distribution varies withx. Piau

[8] carried out a study in which both the plate temperature and the ambient
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temperature varied with power ofx. Later, Eichhornet al. [9] presented ex-

perimental heat transfer results for isothermal spheres and horizontalcylinders.

Chen and Eichhorn [10] concluded that a similarity solution of the prob-

lem of an isothermal heated wall in a linearly stratified stable atmosphere was

not possible and hence used the local non-similarity approach to solve the

problem. Non-similarity solutions dealing with various types of non-uniform

ambient temperature had also been Venkatachala and Nath [11] in which the

local variable introduced depending on the stratification of the media had also

produced temperature.

Very recently, Chamkha and Khaled [12], investigated the problem of

steady, hydro magnetic simultaneous heat and mass transfer by mixed convec-

tion flow over a vertical plate embedded in a uniform porous medium with a

stratified free stream and taking into account the presence of thermal dispersion

is investigated for the case of power-law variations of both the wall temperature

and concentration by using local-similarity form.

A problem of interest and importance in some applications concerns the

effect of blowing and suction in a natural convection boundary layer. This

situation would arise, for instance, if heat transfer from a porous surface were

being investigated and fluid were being added to or removed from the flow.

For the flat plate with suction Emmons and Leigh [13] found solutions of

the momentum equation, while the corresponding heat transfer results for the

isothermal porous plate were presented by Schilichting and Bussemann [14]

and Hartnett and Eckert [15]. These later investigations also included heat

transfer and skin-friction result for an isothermal plane-stagnation region with

wall suction. A problem of greater practical applicability is that of a uniform

blowing or suction velocityv0. But this does not give similarity. Sparrow and

Cess [16] considered this case for an isothermal surface. They employed a

perturbation technique. Merkin [17] obtained asymptotic expansion, asx →
∞, for temperature and velocity. Clarke [18] obtained the next approxima-

tion to the solution of the Navier-Stocks equations for large Grashof number

and considered density variations, avoiding the Boussinesq approximation.

Aroesty and Cole [19] also considered strong blowing for bodies of general

shape.
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In this paper, we have considered a permeable vertical surface, whichis

immersed, in a thermally stratified medium. Here the ambient temperature

is assumed to be power function ofx. Using appropriate transformations

the boundary layer equations for momentum and heat transfer are reduced to

non-similar partial equations which arises due to the transpiration parameter

ξ. Solutions of these equations are obtained, for all values ofξ, which em-

ploying the finite difference method together with the Keller-box elimination

technique. Appropriate perturbation solutions are also obtained for small and

large values ofξ which then compared with the finite difference solutions for

different values of pertinent parameters, such as, the Prandtl numberand the

ambient temperature gradient. Results are presented graphically in terms of

local skin-friction as well as the local Nusselt number.

2 Mathematical formulation

Let us consider the steady two-dimensional viscous incompressible fluid on

a vertical porous surface immersed in non-isothermal surroundings. Let x

denotes distance along the surface from the leading edge andy is the normal

distance from the surface. The wall temperature is considered as uniform at

θw and the ambient temperatureθ∞(x) is assumed to vary asxn.

The flow configuration and the co-ordinate system are shown in Fig. 1.

With respect to the co-ordinate system, the equations of continuity, momentum
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Fig. 1. The flow configuration and co-ordinate system.

and energy, which govern the flow and heat transfer in a laminar boundary
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layer in the presence of a body force are respectively,

∂u

∂x
+
∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

dp

dx
+ Ω + ν

∂2u

∂y2
, (2)

u
∂θ

∂x
+ v

∂θ

∂y
=

κ

ρcp

∂2θ

∂y2
(3)

whereu andv are the fluid velocity components alongx- andy-axis which

are parallel and normal to the plate respectively,Ω is the body force term in

boundary layer equation,ν is the kinematic viscosity,θ is the temperature,p is

the pressure,ρ is the density,κ is the thermal conductivity,Cp is the specific

heat capacity.

If consideration is restricted to a region of plate, having a temperature

everywhere greater than or equal to that of its surroundings, we can write

Ω = −g. It should be noted that for cases in whichθw − θ∞ decreases

with distance up the plate, the above restrictions lead to the consideration of a

region of limited extent rather than the semi-infinite region usually considered

in boundary-layer problems.

Outside the boundary layer equation (2),

u∞
∂u∞
∂x

+
1

ρ∞

dp

dx
+ g = 0 (4)

whereu∞ the free stream velocity. Since we can consider pure free convection

flow, u∞ = 0. From (2) and (4),

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −g(ρ− ρ∞) + µ

∂2u

∂y2
. (5)

Following Ostrach [20], property variations are assumed to be important only

in so far as they affect the body force term, and the density variation is repre-

sented by,

ρ = ρ0

[
1 − β(θ − θ0)

]

whereρ0 is the density at an arbitrary reference temperatureθ0, β is the

coefficient of cubical expansion (1/T0 for a perfect gas). Now equation (5)

155



S.C. Saha, C. Akhter, M.A. Hossain

becomes

u
∂u

∂x
+ v

∂u

∂y
= gβ(θ − θ0) + ν

∂2u

∂y2
. (6)

Now the equations are,

u
∂u

∂x
+ v

∂u

∂y
= 0, (7)

u
∂u

∂x
+ v

∂u

∂y
= gβ(θ − θ∞) + ν

∂2u

∂y2
, (8)

u
∂θ

∂x
+ v

∂θ

∂y
=

κ

ρcp

∂2θ

∂y2
. (9)

The corresponding boundary conditions

u = 0, v = −v0, θ = θw at y = 0,

u = 0, θ = θ∞(x) as y → ∞.
(10)

For suctionv0 is positive and for injection it is negative.

It may be noted that equation (8) is identical with the corresponding equa-

tion for the caseθ∞ = const. The above derivation has been given because it

is not felt that this identity is obvious.

The continuity equation (7) is automatically satisfied when a stream func-

tionψ is introduced, i.e.

u =
∂ψ

∂y
, v = −∂ψ

∂x
.

Now the equation (8) and (9) become,

∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2
= gβ(θ − θ∞) + ν

∂3ψ

∂y3
, (11)

∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y
=

κ

ρcp

∂2θ

∂y2
. (12)

It is convenient to make these equations dimensionless by writing

X =
x

L
, Y =

y

L
, Ψ =

ψ

ν
,

G =
gβL3(θ − θ0)

ν2
, G∞ =

gβL3(θ∞ − θ0)

ν2

(13)
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whereL is characteristic length. Now equation (11) and (12) become,

∂Ψ

∂Y

∂2Ψ

∂X∂Y
− ∂Ψ

∂X

∂2Ψ

∂Y 2
= G−Gθ +

∂3Ψ

∂Y 3
, (14)

∂Ψ

∂Y

∂G

∂X
− ∂Ψ

∂X

∂G

∂Y
=

1

Pr

∂2G

∂Y 2
(15)

with the boundary conditions,

ΨY = 0, ΨX = s, G = Gw at Y = 0,

ΨY = 0, G = G∞(x) as Y → ∞.
(16)

3 Transformation of the equations

We may introduce the new transformation:

Ψ = X
n+3

4

[
f(η, ξ) ± ξ

]
, Φ(η, ξ) =

G−G∞

Gw −G∞

, η = Y X
n−1

4

Gw −G∞ = Xn, ξ = X
1−n

4 s, s =
V L

ν
, Gw =

gβL3(θw − θ∞)

ν2
.

(17)

Thus the momentum and energy equations are,

f ′′′ +
n+ 3

4
ff ′′ − n+ 1

2
f ′

2
+ Φ ± ξf ′′

=
1 − n

4
ξ

(
f ′
∂f ′

∂ξ
− f ′′

∂f

∂ξ

)
, (18)

1

Pr
Φ′′ +

n+ 3

4
f Φ′ − nf ′(Φ − 1) ± ξΦ′

=
1 − n

4
ξ

(
f ′
∂Φ

∂ξ
− Φ′

∂f

∂ξ

)
(19)

with the boundary conditions,

f = f ′ = 0, Φ = 1 at η = 0,

f ′ = 0, Φ = 0 as η → ∞.
(20)

From solving equations (18) and (19), we find the value off ′′(0) andθ′(0).

Now dividing f ′′(0) by
√

2 and multiplyingθ′′(0) by
√

2 and compare these

results with the Cheesewright [5] result in Table 1.
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Table 1. Numerical values off ′′(0) andθ′′(0) takingPr=0.708 andξ=0.0

f ′′(0) θ′(0)
n Cheesewright Present Cheesewright Present

[5] [5]
−0.15 0.65949 0.65817 −0.55423 −0.55371
−0.30 0.64099 0.64097 −0.50414 −0.60413

Here we are proposing to find solutions of the equations (18) and (19) along

with the boundary conditions (20) employing the three different solution meth-

ods, namely (i) the series solution for smallξ,(ii) the asymptotic solution for

largeξ and (iii) the implicit finite difference method together with Keller-box

method for allξ.

4 Physical quantity

The important physical quantities are wall shearing stress factor,τw, and the

heat transfer rateq(x).

The magnitude ofτw andq(x) may be defined as,

τw = µ

(
∂u

∂y

)

y=0

, q(x) = −κ
(
∂θ

∂y

)

y=0

. (21)

The dimensionless shearing stress factor or the skin-friction,Cf , may be

expressed as follows:

Cf =
2τw

ρ
(ν
x

)2 . (22)

Using the quantity of equation (21) and the transformation (17) in equa-

tion (22), we investigate the local skin-friction in terms of the dimensionless

shearing stress,Cf , given as

Cf

Gr
3/4
x

= f ′′(0, ξ). (23)

We may define a non-dimensional coefficient of heat transfer in terms of

nusselt numberNux which is known as,

Nux =
q(x)x

κ∆θ0
. (24)
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Substituting the transformation (17) and (21) in (24), we obtain the rate of

heat transfer, in terms of the dimensionless Nusselt number, given as,

Nux

Gr
1/4
x

= −Φ′(0, ξ). (25)

5 Solution methodologies

We are proposing here to find solutions of the equations (18) and (19) along

with the boundary conditions (20) employing the three different solution

methods: namely (a) the series solution for smallξ (b) the asymptotic solution

for largeξ and (c) the implicit finite difference method together with Keller-

box method for allξ.

5.1 Perturbation solution for small ξ (PS)

We assume the following expansions for the functionsf andΦ for smallξ

f(η, ξ) =
n∑

i=0

(±ξ)ifi(η), Φ(η, ξ) =
n∑

i=0

(±ξ)iΦi(η). (26)

Substituting the expression (26) into the equations (18)–(20) and equating

the coefficient of various powers ofξ, the following sets of equations can be

obtained:

f ′′′0 +
n+ 3

4
f0f

′′

0 − n+ 1

2
f ′0

2 + Φ0 = 0, (27)

1

Pr
Φ′′

0 +
n+ 3

4
f0Φ

′

0 − nf ′0(Φ0 − 1) = 0 (28)

boundary conditions are,

f0 = f ′0 = 0, Φ0 = 1 at η = 0,

f ′0 = 0, Φ0 = 0 as η → ∞.
(29)

The higher order equations, fori ≥ 1,

f ′′′i + f ′′i−1 +
1

4

i∑

r=0

[
(n+ 3) + (1 − n)r

]
frf

′′

i−r

− 1

2

i∑

r=0

[
(n+ 1) +

1 − n

2
r

]
f ′rf

′

i−r + Φi = 0,

(30)
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1

Pr
Φ′′

i + Φ′

i−1 +
1

4

i∑

r=0

[
(n+ 3) + (1 − n)r

]
frΦ

′

i−r

−
i∑

r=0

[
n+

1 − n

4
r

]
f ′i−rΦr + nf ′i = 0

(31)

boundary conditions are,

fi = f ′i = 0, Φi = 1 at η = 0,

f ′i = 0, Φi = 0 as η → ∞.
(32)

We know the solutions for the functionsfi andθi (i = 0, 1, 2) and their

derivatives from the above sets of equations, we obtain the values of thelocal

skin friction.

Cf

Gr
3/4
x

= f ′′(0, ξ) =
n∑

i=0

ξifn
i (0). (33)

The Nusselt number is defined as,

Nux

Gr
1/4
x

= −θ′(0, ξ) =
n∑

i=0

ξiθ′i(0). (34)

For example, taking Prandtl numberPr = 0.708 andn = 0.3, the above

series (33) and (34) can be written as

Cf

Gr
3/4
x

= 0.99290 + 0.19379ξ − 0.11206ξ2,

Nux

Gr
1/4
x

= 0.28559 + 0.31559ξ + 0.11505ξ2.

Substituting the particular value of the suction parameterξ (i.e.

ξ = 0.1) in the above expression, we obtain the numerical values of the skin-

friction and heat transfer are 1.0111584 and 03182995 respectively. Similarly,

for the different values of suction parameterξ and the ambient temperature

gradientn we can find the values ofCf/Gr
3/4
x andNu/Gr3/4

x by using above

expression. The result of these for different values of Prandtl number, have

been compared that of the other methods in Table 2 and for different values

of ambient temperature gradient n, have been compared the other methods in

Fig. 2.
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Table 2. Numerical values of the (a) skin-friction and (b) heat-transfer
obtained by different methods for different values ofξ while Pr = 0.1

andPr = 0.708 atn = 0.3

(a) Skin-friction

Cf/Gr
3/4

x = f ′′(0, ξ)
ξ Pr = 0.1 Pr = 0.708

PS & AS FD PS & AS FD
−1.0 0.72449p 0.75159 0.68035p 0.73300
−0.6 0.90024p 0.90928 0.83240p 0.85065
−0.2 1.08294p 1.09077 0.94402p 0.95891

0.0 1.17690p 1.18382 0.98467p 0.99612
0.6 1.46921p 1.48230 1.04596p 1.04522
1.0 1.67278p 1.67284 1.03627p 1.01265
2.0 2.04193 0.68269
4.0 2.11506 0.34165
5.0 1.92312a 1.88208 0.28257a 0.27344

20.0 0.49992a 0.50266 0.07062a 0.07418
60.0 0.16667a 0.16665 0.02354a 0.04967

100 0.10000a 0.09576 0.01412a 0.03673

(b) Heat-transfer

Cf/Gr
3/4

x = f ′′(0, ξ)
ξ Pr = 0.1 Pr = 0.708

PS & AS FD PS & AS FD
−1.0 0.09482p 0.09089 0.08754p 0.07047
−0.6 0.11274p 0.10836 0.13965p 0.12961
−0.2 0.13185p 0.12770 0.23018p 0.22122

0.0 0.14185p 0.13846 0.28982p 0.28391
0.6 0.17364p 0.17192 0.52624p 0.53625
1.0 0.19633p 0.19488 0.73178p 0.74797
2.0 0.25759 1.42883
4.0 0.41250 2.85938
5.0 0.50218a 0.50524 3.54141a 3.56709

20.0 2.00003a 2.00349 14.1600a 14.2685
60.0 6.00000a 5.99973 42.4800a 43.6236

100 10.0000a 9.99501 70.8000a 70.8295

∗Here p stands for perturbation solution and a stands for asymptotic solution.
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Fig. 2. (a) Dimensionless skin-friction and (b) dimensionless heat-transfer
for different values ofξ as well asn with the selected Prandtl number

Pr = 0.708.

5.2 Asymptotic solution for large ξ (AS)

Now, attention has been given to the behavior of the solution of the equations

(18) and (19) whenξ is positively large. The following substitutions for the

asymptotic solution are introduced:

f(η, ξ) = ξ−3f̂(η̂, ξ), Φ(η, ξ) = Φ̂(η̂, ξ), η̂ = ξη. (35)

Substituting the transformation (35) to the equation (18)–(20) we get the fol-

lowing equations,

f̂ ′′′ + f̂ ′′ + nξ−4(f̂ f̂ ′′ − f̂ ′2) + Φ̂

=
1 − n

4
ξ−3

(
f̂ ′
∂f̂ ′

∂ξ
− f̂ ′′

∂f̂

∂ξ

)
, (36)

1

Pr
Φ̂′′ + Φ̂′ + nξ−4

(
f̂Φ̂′ − f̂ ′(Φ̂ − 1)

)

=
1 − n

4
ξ−3

(
f̂ ′
∂Φ̂

∂ξ
− Φ̂′

∂f̂

∂ξ

)
(37)

with the boundary conditions,

f̂ = f̂ ′ = 0, Φ̂ = 1 at η̂ = 0,

f̂ ′ = 0, Φ̂ = 0 as η̂ → ∞.
(38)
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We assume the following expansions for the functionsf̂ andΦ̂ are of the form

for largeξ.

f̂(η̂, ξ) =
n∑

i=0

ξ−4if̂i(η̂), Φ̂(η̂, ξ) =
n∑

i=0

ξ−4iΦ̂i(η̂). (39)

Substituting the expression (39) into the equations (36)–(38) and equatingthe

coefficients up to the(ξ−4), we obtain the followings equations:

For ξ0 = 1,

f̂ ′′′0 + f̂ ′′0 + Φ̂0 = 0, (40)
1

Pr
Φ̂′′

0 + Φ̂′

0 = 0 (41)

boundary conditions are,

f̂0 = f̂ ′0 = 0, Φ̂0 = 1 at η̂ = 0,

f̂ ′0 = 0, Φ̂0 = 0 as η̂ → ∞.
(42)

For ξ−4,

f̂ ′′′1 + f̂ ′′1 + n(f̂0f̂
′′

0 − f̂ ′0
2) + Φ̂1 = 0, (43)

1

Pr
Φ̂′′

1 + Φ̂′

1 + n
[
f̂0Φ̂

′

0 − f̂ ′0(Φ̂0 − 1)
]

= 0 (44)

boundary conditions are,

f̂1 = f̂ ′1 = 0, Φ̂1 = 1 at η̂ = 0,

f̂ ′1 = 0, Φ̂1 = 0 as η̂ → ∞.
(45)

The solutions of the equations (40)–(45) yields

f̂0 =
1

Pr2
+

e−η̂

Pr(1 − Pr)
− e−Prη̂

Pr2(1 − Pr)
, (46)

f̂1 = n

[−Pr6 + 2Pr4 − 7Pr3 + 3Pr − 1

Pr4(1 + Pr)2(1 − Pr)3
− Pr3 − Pr + 1

Pr3(1 − Pr)2
η̂e−η̂

+
Pr7 + Pr6 − 3Pr5 − 10Pr4 + 6Pr3 − 4Pr + 1

Pr4(1 + Pr)2(1 − Pr)3
e−η̂

− 1

Pr2(1 − Pr)2
η̂e−Prη̂ +

−Pr4 + 6Pr3 − 2Pr + 1

Pr4(1 + Pr)(1 − Pr)3
e−Prη̂

− Pr4 + Pr + 1

Pr4(1 + Pr)3
e−(1+Pr)η̂

]
. (47)
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And

Φ̂0 = e−Prη̂, (48)

f̂1 = n

[{
1

1 + Pr
− 1

(1 − Pr)2

}
e−Prη̂ +

1

1 − Pr
η̂e−Prη̂

+
1

(1 − Pr)2
e−η̂ − 1

1 + Pr
e−(1+Pr)η̂

]
. (49)

Finally one can find the local skin friction for largeξ as.

Cf

Grx3/4
= ξ−1

[
1

Pr

+ ξ−4

{
n(Pr7+Pr6−3Pr5−10Pr4+6Pr3−4Pr+1)

Pr4(1 + Pr)2(1 − Pr)3

− n(Pr4 − 6Pr3 + 2Pr − 1)

Pr4(1 + Pr)(1 − Pr)3
− Pr3 + Pr + 1

Pr4(1 + Pr)

+
2Pr3 + 2Pr2 − 2Pr + 2

Pr3(1 − Pr)2

}]

(50)

whenPr 6= 1.

From equation (50), we can see that the skin-friction depends on suction

parameter and Prandtl numberPr. But whenξ is asymptotically large (i.e.

ξ → ∞), the value of the skin-friction approaches to zero. We have compared

the solutions obtained from the equation (50) in terms of the skin-friction with

that of the other methods in Fig. 2a.

The Nusselt number is obtained as

Nu

Grx1/4
= ξ

[
Pr + ξ−4 n

1 + Pr

]
. (51)

From equation (51), we can see that the Nusselt number depends on the suction

parameterξ and Prandtl numberPr. We have compared the solutions obtained

from the equation (51) in terms of the heat-transfer with that of the others

methods in Fig. 2b.

5.3 Finite difference solution for all ξ (FD)

We have employed a most efficient solution method, known as implicit finite

method, which was first introduced by Keller [21] and widely used by Hossain
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et. al. [22, 23]. In this paper, the solutions are obtained forξ and the numerical

results are shown in both the tabular as well as graphical form.

To apply the aforementioned methods we first convert the equations (18)

and (19) into first order system of partial differential equations.

Now the system of linear equations together with the boundary conditions

can be written in matrix/vector form where the coefficient matrix has a block-

tridiagonal structure. Such a system is solved using a block-matrix versionof

the well-known Thomas or tridiagonal matrix algorithm. The whole procedure,

namely reduction to first order form followed by central difference approxima-

tions, Newton’s quasi-linearisation method and the block-Thomas algorithm,

is known as the Keller Box method and it was first introduced by Keller [21].

To initiate the process withξ = 0, we first prescribed the guess profiles from

the exact solutions of the equation (27)–(29). These profiles are then employed

in the Keller-Box scheme with second order accuracy to march step by step

along the boundary layer. For the givenξ the iterative procedure is stopped

to give the final velocity and the temperature distribution when the difference

in computing these functions in the next procedure becomes less than10−5,

i.e. |δf ′| ≤ 10−5, where the superscript denotes the number of iterations.

Throughout the computations, non-uniform grids in theη direction have been

incorporated, consideringηj = sinh
(
(j − 1)/a

)
wherej = 1, 2, 3, . . . , N

with N = 254 and a = 100, to get the quick convergence and thus save

computational time and space.

6 Results and discussions

Investigation of a problem on natural convection flow from a plane vertical

isothermal porous surface placed in non-isotherm surroundings has been pre-

sented here by employing three distinct solution methodologies, namely, the

perturbation method for smallξ, asymptotic solution for largeξ and the Keller-

box method for all values ofξ.

While n = 1, the ambient temperature distributions are linear. Forn < 0,

the ambient temperature decreases withx. The former of these is the more

likely to occur in practical situations because this would in general represent

a stable situation, i.e. a lighter fluid lies over a heavier one. Forn = 0,
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the ambient temperature remains constant. This case is very rarely achieved.

Whenn > 0, the ambient temperature increases withx. This case may not

occur in practical situations because this would in general represent anunstable

situation, i.e. a lighter fluid lies below a heavier one.

For fluids of Prandtl number,Pr (Pr = 0.708 for air andPr = 0.10

for mercury) takesn = 0.3 the numerical values of the local skin friction,

Cf/Grx
3/4 and heat transfer,Nu/Grx1/4 obtained by perturbation solution

for small and large values of the transpiration parameterξ, are depicted in

Table 2 for comparison with the finite difference solution. When the Prandtl

number increases the table shows that the skin friction coefficient decreases

and the rate of heat transfer coefficient increases.

Fig. 2(a) and 2(b) show the influence of ambient temperature gradientn

on the skin friction and local heat transfer rate. As before, the comparison

shows excellent agreement between the solutions obtained by the perturbation

method for small transpiration parameter and the asymptotic solutions for large

transpiration parameter with the implicit finite difference solutions. From these

figures we may, further, observe that an increase in the value of the parameter

n leads to increase in the value of the skin-friction and decrease in value of

the rate of heat transfer. Here we also observe that for each value ofn there

is a local maxima for skin-friction near the leading edge and then its value

decreases to the asymptotic value as the value ofξ increases. The numerical

values show that forn = −0.9, the maximum value of the local skin-friction

is 084307 at ξ = 0.54375. The maximum value of skin-friction forn = −0.3

is 0.94194 which occurred atξ = 0.54375. Forn = 0.0 the maximum value

is 1.00621 at ξ = 0.58973, for n = 0.3 this value is1.06333 atx = 0.63665

and forn = −0.9 this value is1.10552 at ξ = 0.68459. This implies that an

increase in the value ofn leads to increase in the momentum boundary layer

thickness.

Now attention is given to the effect of pertinent parameters on the non-

dimensional velocity and the temperature distribution in the flow field. The

non-dimensional velocity and the temperature distribution are shown graphi-

cally in Fig. 3(a) and 3(b) only by the finite difference method. These figures

show that the influence of the ambient temperature gradientn and the transpi-
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ration parameterξ on the velocity and the temperature distributions.

Fig. 3. (a) The velocity distribution and (b) the temperature distribution for
different values ofξ with the selected Prandtl numberPr=0.708 andn=0.6.

The curves forξ = 0 are found to be identical with those obtained by

Cheesewright [5].

From Fig. 3 we can see that an increase in the value of the parameter

n leads to increase in the velocity profile and the temperature profile and

the velocity and the temperature profiles decrease with the increase of the

transpiration parameterξ. The curves forn = 0 are identical with those

obtained by Henkes and Hoogendoorn [24]. Therefore the presentresults

are in excellent agreement with those obtained by them. It can also be seen

that at each value of the transpiration parameterξ, there exists a local max-

imum value of velocity profiles in the boundary layer region. The maxi-

mum values are obtained as0.34603, 0.31004, 0.09524, 0.02469 at h =

2.08265, 1.43822, 0.68459, 032549 andx = −1.0, 0.0, 2.0, 4.0.

Fig. 4 shows the velocity and temperature profiles for suction. When

n increases the velocity and temperature increases. Fig. 5 shows a region

with small backflow and temperature deficit is found in the outer part of the

boundary layer in a stably stratified (n < 0) environment. There is no backflow

or temperature deficit in an unstably stratified (n > 0) environment.

The comparison shows that both the skin friction and the velocity pro-

files are increases with the increase of the ambient temperature gradientn.

The Nusselt number decreases and the temperature profile increases withthe

increasen, which are expected.
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Fig. 4. (a) The velocity distribution and (b) the temperature distribution for
different values ofn with the selected Prandtl numberPr = 0.708, ξ = 2.0.

Fig. 5. (a) The velocity distribution and (b) the temperature distribution for
different values ofnwith the selected Prandtl numberPr=0.708 andξ=0.6.
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