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Abstract. The model of Abrikosov vortices motion from the edges of thin
superconducting film, when the current slightly exceeds thecritical current,
is considered. It is shown that the additional dynamic barrier is formed in
the regions of a weak pinning. It is assumed for simplicity that the group of
vortices is derived in the shape of one-dimensional chain. It is demonstrated,
that the barrier hinders the penetration of such a chains in the film.
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1 Introduction

A lot of studies are devoted to critical state of thin superconducting films.

The interest to this problem was restored with occurrence of high-temperature

superconductors and in connection with applied problems. The problem of

penetration of magnetic vortices into hard superconductor is still actual as itis

related to definition of a critical current.

Usually it is considered that in a thin sample of a hard superconductor with

a critical current density, the Abrikosov vortex, which has to overcome aBean

boundary barrier, can itself behave according to one of two following scenario.

The vortex moves perpendicularly to the sample current either at once or,if

there are pinning centers, after the current density reaches the certainvaluejp

at which the Lorentz force overcomes a pinning force. However there can be

a situation, when this process becomes more complex. It is known that the

current in a superconducting film is distributed non-uniformly on a width of a
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film. It has a maximal value on the edges and decreases towards the middle

of the film [1]. Let’s assume that somewhere at the edges the current density

has slightly exceededjp, but in other places – still not. Then the vortices

in this area should begin a dissipative motion, and the resistance occurs in

the sample. This situation is not energetically favorable, therefore the current

bypass this area and superconductivity is conserved. Therefore near edges

of a superconductor there will be an area of vortices from which the current

is pushed out. Two forces will operate in this situation. The Lorentz force

between the current and vortices pulls the vortices inside the sample. On the

other hand, the redistribution of the current changes the energy of a magnetic

field, and therefore the force will arise expelling this area from the sample.

The balance of these forces creates the conditions for a separation of area of

vortices from edges and subsequent dissipative motion crosswise the sample.

2 Model and solution

Let’s assume, that the sample of a hard superconductor has length, width

and thickness in the ratio:l � b � d, and the currentJ flows along the

sample. Our coordinates are guided along length (X-axis), width (Y -axis) and

thickness (Z-axis) of the sample. Then for a thin sampleλ > d, whereλ is the

Londons penetration depth, we can write the Londons equation [1]:

2π
λef

b

dj

dy
+ 2

1
∫

−1

j(y′)dy′

y′ − y
+ n(y)Φ0 = 0, (1)

herey = Y/b is a dimensionless coordinate,λef = λ2/d is an effective

penetration depth in a thin sample,j is a current density integrated with respect

to the thickness of the sample (complete currentJ =
b
∫

0

j(y)dy), Φ0 = π~c/e

is an elementary magnetic flux andn(y) is the density of vortices. For a hard

superconductor we assume that the magnetic field, when the current density is

sufficient for formation of a mixed state, will enter in the form of vortices. If

the magnetic field, caused by a current near the edges of a sample, is less than

Hc1, the sample will be in the Meysner state with distribution of a current far
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from the edges

j(y) =
2J

πb
(1 − y2)−1/2. (2)

Here we consider that the middle of the sample isy = 0. The divergences

at the edges are related to accepted approaches and usually are eliminatedby

equatingj to any constant value near the edges of the sample with a require-

ment of maintaining of a complete current (see eg. [2]). At the edges of the

sample the magnetic field also has the largest values only of opposite signs [3]:

H0

z (y) =
2d

c

1
∫

0

j(y′)(y − y′)dy′

(y − y′)2 + z2
. (3)

With increase of current, the magnetic field at the edges exceeds the magnitude

necessary for overcoming of the Bean barrier,Hs > Hc1, and vortices will

penetrate the sample. If there are no pinning forces, the vortices under the

action of Lorentz force will move across the current with a dissipation, and

the superconductor will transfer to a resistive state at once. However inreal

structures the vortices are restrained by the pinning centers, and the supercon-

ductivity is maintained, until the current density does not reach a certain value

jp necessary for overcoming the pinning forces.

We assume that in some area near the edges, where the pinning forces

are weaker, the vortices have penetrated into a sample and created the area

of normal conductance. We assume, that the vortices will permeate as one-

dimensional chain of lengthh. Then the difference of magnetic energies in the

sample with and without chain of vortices is:

∆E =
1

8π

∞
∫

−∞

dx

1
∫

λef /b

[

(H1

z )2 − (H0

z )2
]

dy. (4)

To find the distribution of a current after occurrence of a chain of vortices, we

represent a planex, y as a complex planez = x + iy and make its conformal

representation on a planew = u+ iv in such a way that the segment(0, h) has

been substituted to a segment (h,0). Such transformation is performed by the
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function:

w = z +
πh2

4b2
cth

π

2
z. (5)

After this transformation the current distribution in the planeu, v is analogous

to (2), and for∆E we obtain:

∆E =
bJ2

πc2

∞
∫

−∞

dx

1
∫

λef /b

[

1

v(1 − v)
−

1

y(1 − y)

]

dy, (6)

where

v = y −
πh2

4b2

(

ctg
π

2
y · sh2

π

2
x + tg

π

2
y · ch2

π

2
x
)

−1

. (7)

Then the force expelling chain of vortices from the sample will be equal to

a gradient with respect to the difference between the magnetic field energies.

Then

Fout =
π3J2

8c2
·

h2

λ2

ef

· (1 + h2/2λ2

ef )−1/2 (8)

ath/b � 1.

Let’s determine the Lorentz force which operates between vortices area

and the current. Magnetic field generated by one vortex at distancey from its

core is [4]:

hz = Φ0K0(y/λ)/2πλ2, (9)

whereK0(z) is the Bessel function. The interaction force between one vortex

and a current of a sample is equal

fi =
b

c

1
∫

yi

j(y)hi
zdy. (10)

In order to get the summary Lorentz force, we have to sumfi over all the chain

with the density of vortices in the chain

n =
1

hΦ0

h
∫

0

(H1

z − Hs)dy. (11)
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Then fornλ � 1 the chain of vortices of lengthh will interact with a current

with a force

Fl ≈ (πλ/2b)1/2
Φ0J

cπ2hλ
exp(−1/nλ). (12)

At h ∼ λef the forceFout exceedsFl and increase proportionally toh2.

Thus, the expelling force exceeds Lorentz force, and we can conclude that the

vortices will not penetrate through the edge of a sample as one-dimensional

chains. In [5] the penetration problem of a group of vortices as two-dimensional

bundles was solved. It was shown, that the size of vortices area, necessary for

the group to penetrate the edges, depends on the difference between thecurrent

in the sample and the critical current.
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