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Abstract. This paper is a review of a suite of mathematical models of increasing
complexity on particle dissolution in metallic alloys. This work deals with
models for multi-component particle dissolution in multi-component alloys,
where various chemical species diffuse simultaneously, and a two-dimensional
model incorporating interfacial reactions as in the model of Nolfi [1]. The work
is mathematically rigorous where asymptotic solutions andsolution bounds
are derived but is also of a practical nature as particle dissolution kinetics is
modelled for industrially relevant conditions.
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1 Introduction

1.1 Technological background

In the thermal processing of both ferrous and non-ferrous alloys, homogeniza-

tion of the existing microstructure by annealing at such a high temperature that

unwanted precipitates are fully dissolved, is required to obtain a microstructure

suited to undergo heavy plastic deformation as well as providing an optimal star-

ting condition for a subsequent precipitation hardening treatment. Such a ho-

mogenization treatment is for example applied prior to hot-rolling of Al killed

construction steels, HSLA steels, all engineering steels, as well as in proces-

sing aluminium extrusion alloys. Although precipitate dissolution is not the only
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metallurgical process taking place during homogenization, it is often the most

critical of the processes occurring. The minimum temperature at which the an-

nealing should take place can be determined from thermodynamic analysis of the

phases present. However, the minimum annealing time at this temperature is not

a constant but depends on particle size, particle geometry, particle concentration,

overall composition etc. To make the homogenization treatment more efficient,

it is highly desirable to have robust physical models for the kinetics of particle

dissolution as a function of thermodynamics and thermokinetics data as well as

particle morphology and microstructural dimensions. Using such models the

minimum annealing times and optimum heating strategics can be calculated a

priori, rather than be determined experimentally, and at great cost.

Apart from their technological relevance, accurate physical models for parti-

cle dissolution are, due to the complexity of the processes, also of great scientific

and mathematical interest in themselves.

1.2 Existing models for particle dissolution

To describe particle dissolution several older mathematical models have beende-

veloped, which incorporate long-range diffusion [2–4] and non-equilibrium con-

ditions at the interface [1, 5]. In general, the dissolution of particles proceeds

via decomposition of the chemical compound, the crossing of the atoms of the

interface and long-range diffusion in the matrix. The first two processesare

referred to as the interfacial processes. The long-range diffusion models are based

on the assumption that the interfacial processes are infinitely fast. Hence,these

models provide an upper boundary for the dissolution kinetics.

The first models were based on analytical solutions for the interfacial position

as a function of time (see for instance Whelan [2] and Crank [6]). However, in

these solutions the volume in which dissolution takes place is infinite. As far as we

know, Baty, Tanzilli and Heckel were the first authors in the metallurgical commu-

nity to applied a Finite Difference Model [3] where the volume is bounded. Tundal

and Ryum [4] also applied a Finite Difference Model in which a lognormal par-

ticle size distribution is included. They showed that the macroscopic dissolution

rates depend strongly on the particle size and possible interactions betweensub-

sequent particles. Nolfi’s [1] model was, as far as known, the first model in which
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non-equilibrium conditions at the particle-matrix interface were included. Howe-

ver, the interface migration was not included. The non-equilibrium conditionis

modelled by a Robin-condition at the interface. Their solution is in terms of a

Fourier series. Aaron and Kotler [5] combine Whelan’s solution with the incorpo-

ration of the Gibbs-Thomson effect to deal with the influence of curvatureon the

interface motion. Further, they transform the Robin-boundary condition of Nolfi’s

model into a Dirichlet boundary condition. Recently, Svobodaet al [7] ana-

lyzed the kinetics of diffusional transformations where mechanical and chemical

forces exerted on interfaces between subsequent phases are incorporated. Their

approach is based on thermodynamical concepts that can be found in Hillert [8].

They obtain a thermodynamically based procedure to predict non-equilibrium

interface kinetics by using both analytical and numerical techniques.

However, all these mentioned models did not consider the technologically

important dissolution of multi-component particles in multi-component alloys.

As far as we know Ågrenet al [9] was the first to extend the models to multi-

component alloys. His formalism was based on a thermodynamic treatment of

diffusion in terms of chemical potentials and an interface motion from a material

balance. The numerical methods that were used by Ågren were improved by

Crusiuset al [10] and the diffusion model was improved in [11], which forms the

backbone of the software-package DICTRA suitable for dissolution andgrowth

problems with one spatial dimension. The thermodynamic relation, which defined

the boundary conditions at the moving interface, was simplified to a hyperbolic

relationship. This has been done for iron-based alloys by Viteket al [12] and

Hubert [13]. Furthermore, Reisoet al [14] investigated the dissolution of Mg2Si

alloys in aluminium alloys by the use of the same principles.

The above mentioned authors viewed particle dissolution as a Stefan prob-

lem: a diffusion equation with a sharp moving interface. A recent approachis

the phase-field approach, which is derived from a minimization of the energy

functional and based on a diffuse interface between the consecutive phases. This

approach has, among others, been used by Kobayashiet al [15] and Burmanet

al [16] to simulate dendritic growth. An extension to multi-component phase-

field computation is done by Grafeet al [17], where solidification and solid-state

transformation is modelled. For the one-dimensional case they obtain a perfect
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agreement between the phase-field approach and the software package DICTRA,

which is based on a sharp interface between the consecutive phases. Furthermore,

some recent comparison studies of phase-field with a Stefan problem, solved by a

moving mesh method or a level-set method or a mesh-free method, were done by

Javierreet al[18] and Kovacevic and Sarler [19] respectively. Some disadvantages

of the phase-field approach are that (1) no simple quick estimation of the solution

is available, and that (2) physically justifiable parameters in the energy functional

are not easy to obtain. Generally those parameters are to be obtained fromfitting

procedures that link experiment, thermodynamic data-bases and numericalcom-

putation. An other disadvantage of the phase-field is the requirement of a fine

grid resolution in the diffuse interface region in order to have agreement with the

solution of the “sharp interface problem”. This poses a severe time-step criterion

and hence time consuming computations. This was observed by Burmanet al [16]

and Javierreet al [18]. Therefore, we limit ourselves here to viewing particle

dissolution as a (vector) Stefan problem. We remark that Thorntonet al [20]

wrote a nice review paper on simulating diffusional phase transformations using

several physical model approaches as the updated thermodynamic methods by

Ågren, used in the package DICTRA, and the diffuse interface phase-field and

(Allen)-Cahn-(Hilliard) approach. Thorntonet al [20] also describe several two-

dimensional applications of phase coarsening with Ostwald Ripening using the

diffuse interface approach. The present review paper will focus onthe computa-

tional aspects of solving Stefan problems with a sharp interface applied to particle

dissolution in (multi-component) alloys. Furthermore, some mathematical issues

will be summarized.

Although much work on the mathematical modeling of dissolution of parti-

cles had been done, some major limitations remained (until recently):

1. No fast and efficient numerical method for the simultaneous dissolution of

a particle and a segregation at the grain boundary was available. Further-

more, no quick and well motivated self-similar solution for the dissolution of

particles in multi-component has been reported.

2. Some particles may be disk-shaped, hence a two-dimensional model is neces-

sary to compute the dissolution of the particle. With the classical literature

of Finite Elements the computation of the interface movement with a sharp
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angle within the boundary is impossible. Furthermore, the case where two

particles dissolve in one cell needs to be discussed.

3. No numerical model, be it 2D or quasi 3D, that treats the interface movement

while the interfacial reactions take place exists.

4. Metallurgical experiments on alloys indicate that dissolving particles or pha-

ses may break up into smaller particles or phases in some circumstances. No

metallurgically sound model in three spatial dimensions, based on the sharp

interface approach, exists to deal with these topological changes.

These limitations where lifted in a suite of mathematical models of increasing

complexity. This paper presents a coherent total picture of the basic concepts and

equations in these models and illustrates their potential.

Furthermore, an experimental validation of the above mentioned models can

be found in [21] and [22]. In the first paper the activation energy forparticle

dissolution has been analyzed. In the second paper the experimental validation

was carried out using DSC-measurements. New work concerns the analysis of

particle dissolution where cross-diffusion aspects and a relaxation of thermody-

namic equilibrium, are incorporated. Further, the level-set method and moving

grid method are analyzed as candidates to model particle growth. In this paper we

only consider the moving grid method and a presentation of the level-set method.

1.3 Organization of the paper

The current paper does not aim at being mathematically rigorous but merelyaims

at being descriptive about the implications of the developed mathematics of these

more complex models. First we formulate the mathematical models for particle

dissolution in Section 2. Here a one-dimensional multi-component model and

two-dimensional model is formulated. Section 2 ends with a brief description of

the mathematical implications of the models. Section 3 starts with available self-

similar solutions for the one-dimensional (multi-component) models. Next, the

numerical methods to solve the one- and two-dimensional models are described.

Section 4 deals with applications of the models to experimental and industrial

set-ups. Finally, some concluding remarks about the work are given andongoing

research is indicated.

261



F. J. Vermolen, C. Vuik, E. Javierre, S. van der Zwaag

2 Models

2.1 Models for multi-component alloys

We consider a particle of a multi-componentβ phase surrounded by a “matrix” of

phaseα, of either uniform or non-uniform composition. The boundary between

theβ-particle andα-matrix is referred to as the interface. The metal is divided

into representative cells in which a single particle of phaseβ dissolves in anα-

matrix. Particle dissolution is assumed to proceed by a number of subsequent

steps [1,23]: decomposition of the chemical bonds in the particle, crossingof the

interface by atoms from the particle and long-distance diffusion in theα-phase. In

the models of thermodynamic equilibrium, we assume in this section that the first

two mechanisms proceed sufficiently fast with respect to long-distance diffusion

and do not affect the dissolution kinetics. Hence, the interfacial concentrations are

those as predicted by thermodynamics (local equilibrium). In [24] we considered

the dissolution of a stoichiometric particle in a ternary alloy. The hyperbolic

relationship between the interfacial concentrations for ternary alloys is derived

using a three-dimensional Gibbs space. For the case that the particle consists ofn

chemical elements apart from the atoms that form the bulk of theβ-phase, a gener-

alization to an-dimensional Gibbs hyperspace has to be made. The Gibbs surfaces

become hypersurfaces. We expect that similar consequences apply and that hence

the hyperbolic relation between the interfacial concentrations remains valid for

the general stoichiometric particle in a multi-component alloy. We denote the

chemical species bySpi, i ∈ {1, . . . , n+ 1}. We denote the stoichiometry of the

particle by (Sp1)m1
(Sp2)m2

(Sp3)m3
(. . .)(Spn)mn . The numbersm1,m2, . . .

are stoichiometric constants. We denote the interfacial concentration of species

i by csol
i and we use the following hyperbolic relationship for the interfacial con-

centrations:

f(csol
1 , csol

2 , . . . , csol
n ) = (csol

1 )m1(csol
2 )m2(. . .)(csol

n )mn −Ksol = 0,

where Ksol = Ksol(T ).
(1)

The factorKsol is referred to as the solubility product. It depends on temperature

T according to an Arrhenius relationship. In principle, the model can handleany

form of temperature dependence for the solubility product.
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We denote the position of the moving interface between theβ-particle andα-

phase byS(t). Consider a one-dimensional domain, i.e. there is one spatial vari-

able, which extends from0 up toM . Since particles dissolve simultaneously in the

metal, the concentration profiles between consecutive particles may interactand

hence soft-impingement occurs. This motivates the introduction of finitely sized

cells over whose boundary there is no flux. For cases of low overall concentrations

in the alloy, the cell sizeM may be large and the solution resembles the case where

M is infinite. The latter case can be treated easily with (semi) explicit expressions.

The spatial co-ordinate is denoted byr, 0 ≤ S(t) ≤ r ≤M . Theα-matrix where

diffusion takes place is given byΩ(t) :=
{

r ∈ R : 0 ≤ S(t) ≤ r ≤ M
}

. The

β-particle is represented by the domain0 ≤ r < S(t). Hence for each alloying

element, we have forr ∈ Ω(t) andt > 0 (wheret denotes time)

∂ci
∂t

=
n

∑

j=1

Dij

ra

∂

∂r

{

ra∂cj
∂r

}

, for i ∈ {1, . . . , n}. (2)

HereDij and ci respectively denote the (cross-)diffusion coefficients and the

concentration of the speciesi in theα-rich phase. IfDij < 0 for somei 6= j, then,

the transport of elementi is delayed by the presence of elementj. ForDij > 0,

the opposite holds. Experiments with Differential Scanning Calorimetry by Chen

et al [22] for Al-Si-Mg alloys indicate that disregarding cross-diffusion terms

gives a good approximation. However, for some other alloys the full diffusion

matrix should be taken into account. A physical motivation of the above partial

differential equation is given by Kirkaldy and Young [25]. The geometryis planar,

cylindrical and spherical for respectivelya = 0, 1 and2. Let c0i denote the initial

concentration of each element in theα phase, i.e. we take as initial conditions

(IC) for r ∈ Ω(0)

(IC)







ci(r, 0) = c0i (r), for i ∈ {1, . . . , n},

S(0) = S0.

At a boundary not being an interface, i.e. atM or whenS(t) = 0, we assume no

flux through it, i.e.

∂ci
∂r

= 0, for i ∈ {1, . . . , n}. (3)
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Furthermore at the moving interfaceS(t) we have the “Dirichlet boundary condi-

tion” csol
i for each alloying element. The concentration of elementi in the particle

is denoted bycpart
i , this concentration is fixed at all stages. This assumption

follows from the constraint that the stoichiometry of the particle is maintained

during dissolution in line with Reiso et al [14]. The dissolution rate (interfacial

velocity) is obtained from a mass-balance. Summarized, we obtain at the interface

for t > 0 andi, j ∈ {1, . . . , n}:











ci(S(t), t) = csol
i ,

dS

dt
=

n
∑

j=1

Dij

c
part
i − csol

i

∂cj
∂r

(

S(t), t
)

=⇒
n

∑

k=1

Dik

c
part
i − csol

i

∂ck
∂r

=
n

∑

k=1

Djk

c
part
j − csol

j

∂ck
∂r

. (4)

The right part of the above equations, which holds onS(t), follows from local

mass-conservation of the components. Above formulated problem falls within

the class of Stefan-problems, i.e. diffusion with a moving boundary. Since we

consider simultaneous diffusion of several chemical elements, it is referred to

as a “vector-valued Stefan problem”. The unknowns in above equationsare the

concentrationsci, interfacial concentrationscsol
i and the interfacial positionS(t).

All concentrations are non-negative. The model was analyzed in [26–28].

In the above formulation, it was assumed that the interface concentrations

satisfy thermodynamic equilibrium. In the next section we will abandon this

assumption, i.e. the interface reactions will be taken into account.

The influence of cross-diffusion is investigated in terms of a parameter study

in [29] and in terms of self-similar solutions as exact solutions for the unbounded

domain in [26]. An numerical analysis of cross-diffusion controlled particle dis-

solution is presented in [27]. An application to Al-Cu-Mg alloys of this type of

model was presented by Vusanovic and Krane [30]. Furthermore, somemodels

for multi-component solid-state phase transformations, based on more thermody-

namic considerations, have been presented in [9,11,20,31].

For a mathematical overview of Stefan problems we refer to the textbooks of

Crank [6], Chadam and Rasmussen [32] and Visintin [33].
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2.2 Two dimensional models for binary alloys

In this section we consider a particle in a binary alloy in two spatial dimensions.

Further, we take interfacial reactions as additional rate determining processes

into account. To highlight the effect of the geometry and the interfacial reaction

on dissolution kinetics we drop the multi-component approach and consider the

simple case of a binaryα-β alloy with aβ particle. The initial concentration ofβ

in theα-rich phase is equal toc0 (mol/m3), whereascpart denotes the concentration

of β in the particle. The equilibriumβ concentration in the alloy iscsol (cpart >

csol > c0). When the temperature is increased, dissolution of theβ-particle sets

in.

In the 2D-model we use the geometry as given in Fig. 1. The domain filled

S(t)

Γ Γ

Γ

Γ

Al-Cu
1

4

3

2

Ω (t)

Al Cu2

Fig. 1. Geometry of anβ
particle in Aluminum.

t

∆

2

t

∆ t) xS(t +S(t)

Al-Cu Al Cu

Fig. 2. The control volume.

with theα-rich phase is denoted byΩ(t). The boundary of this domain consists

of the interfaceS(t) and the outer boundariesΓi, i ∈ {1, 2, 3, 4}. The outer

boundaries are fixed in time, except the intersections ofΓ1 andΓ4 with S(t). In

theα-rich phaseΩ(t), theβ concentrationc(x, y, t) satisfies the (linear) diffusion

equation

∂c

∂t
= D∆c, (x, y) ∈ Ω(t), t ∈ (0, T ]. (5)

The diffusion coefficientD (m2/s) is supposed to be independent of concentration.
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As the initial condition we use

c(x, y, 0) = c0(x, y), (x, y) ∈ Ω(0), (6)

whereΩ(0) is prescribed. We assume no flux ofβ atoms through the outer

boundaries, so

∂c

∂n
(x, y, t) = 0, (x, y) ∈ Γi, i ∈ {1, 2, 3, 4}, t ∈ [0, T ]. (7)

To determine the position of the interface two conditions are necessary. To derive

these conditions for a spatially three dimensional problem, we consider a small

part of the interface. Suppose that the interface is smooth, which means that it

can locally be described by differentiable functions. For a small time step∆t

the interface moves in the direction perpendicular to the interface. Thex-axis is

chosen along the normal. With this choice the position of the interface is locally

described by the relationx = S(t). We consider a control volume of width∆y

and∆z. The intersection of the control volume with the surfacey = 0, z = 0 is

shown in Fig. 2. The balance ofβ atoms leads to the following equation (Stefan

condition):

(

S(t+ ∆t) − S(t)
)

∆y∆z · cpart

= D
∂c

∂x
∆y∆z∆t+

(

S(t+ ∆t) − S(t)
)

∆y∆z · cS ,
(8)

wherecS is the limit of the concentration inΩ(t) in the neighborhood of the

interface. The left-hand side of (8) is equal to the amount of atoms transferred

from the particle to the alloy. Assuming a first order reaction at the interfacethe

second equation is (Robbins condition):

Kint

(

csol − cS
)

∆y∆z∆t

= D
∂c

∂x
∆y∆z∆t+

(

S(t+ ∆t) − S(t)
)

∆y∆z · cS ,
(9)

whereKint (m/s) is a measure of the rate of the interface reaction. ForKint large

the problem is diffusion controlled, whereas forKint small the problem is reaction

controlled. Dividing (8) and (9) by∆y∆z∆t and taking the limit∆t → 0 one
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obtains

cpartvn(x, y, t)

= D
∂c

∂n
(x, y, t) + cSvn(x, y, t), (x, y) ∈ S(t), t ∈ (0, T ], (10)

Kint(c
sol − cS)

= D
∂c

∂n
(x, y, t) + cSvn(x, y, t), (x, y) ∈ S(t), t ∈ (0, T ]. (11)

wheren is the unit normal vector on the interface pointing outward with respect

to Ω(t) andvn is the normal velocity of the interface.

In the references [1], [23] and [34] comparable boundary conditions are used.

We remark that in the thermodynamic models, merely based on chemical po-

tentials, due to Svobodaet al [7] and Sietsma and van der Zwaag [35], non-

equilibrium interface conditions have been used too. Though, the last-mentioned

approaches are built on different equations to solve.

2.3 Consistency checks for the models

We require that the total mass of all chemical elements is constant in the whole

dissolution cell, i.e. over0 ≤ r ≤ M . Further, letc0i be constant overΩ(0), then

for the case of one spatial co-ordinate, we have

M
∫

0

ci(r, t)r
adr = c

part
i

Sa+1
0

a+ 1
+ c0i

Ma+1 − Sa+1
0

a+ 1
.

Subtraction of
M
∫

0

c0i r
adr = c0i

Ma+1

a+1 from both sides of above equation gives

M
∫

0

(

ci(r, t) − c0i
)

radr = (c
part
i − c0i )

Sa+1
0

a+ 1
. (12)

All solutions of the Stefan-problem have to satisfy this condition. A mathematical

theorem is rigorously proven in [36] also for multi-dimensional cases. We use an

intuitive argument to show that some Stefan-problems do not have solutions that

satisfy mass-conservation and hence areill-posed.

267



F. J. Vermolen, C. Vuik, E. Javierre, S. van der Zwaag

Suppose thatc0i < c
part
i < csol

i , this situation is sketched in Fig. 3. Since from

the maximum principle of the diffusion equation, it follows that extremes occur

only at boundaries or att = 0, the gradient must be negative, i.e.
∂ci
∂r

(S(t), t) < 0.

Since alloying elements diffuse from high concentration areas to low concen-

tration areas, the alloying elements diffuse from the interface into theα-phase.

Combination ofcpart
i − csol

i < 0 and the rate-equation for the interface gives
dS
dt

> 0, i.e. theβ-phase grows in theα-phase. This gives an increase of the

concentration in the matrix of the alloying elements due to both growth (c
part
i >

c0i ) and to inward diffusion. This implies that the integral of the concentration,

e.g. the total mass, is not constant. Hence a contradiction follows. This is shown

in Fig. 3 where both the initial profile and a profile after a certain amount of time

have been sketched.

csol

t = 0                                                                  t > 0

part
c i

0c i

part
c

0c

i i

i

S(0)                                                                                      S(t)

(a)                                                                           (b)

Fig. 3. The hypothetical casec0
i
< cpart

i
< csol

i
which gives growth of theα-

phase and violation of the mass-balance. Left (a) shows the initial situation and
right (b) shows a hypothetical (but impossible) situation at some timet > 0.

The following second argument also supports the above mentioned contra-

diction. Suppose thatc0i < c
part
i < csol

i , i.e. the interfacial concentration exceeds

the initial concentration (see Fig. 3). Fromt = 0 the interfacial concentration can

increase (build up) only due to transport of atoms from the particle to the interface

and matrix (since concentration gradients and reactions are absent initially). This

implies that the total number of atoms of the alloying elements in the particle

must decrease. Since the concentration of the alloying elements in the particle is

assumed to be constant, the particle must dissolve since alloying elements diffuse
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from the particle into the matrix.

On the other hand from the maximum principle of the diffusion equation

follows that ∂ci

∂r
(S(t), t) < 0. Hence, the total number of atoms of the alloying

element in the matrix increases. Furthermore, we havec
part
i − csol

i < 0, which

implies dS
dt
> 0, hence the total number of atoms of the alloying elements in the

particle increases. This gives a contradiction with the remarks in the previous

paragraph. Both the interfacial movement due to growth and the increase of the

total number of atoms of the alloying element are sketched in Fig. 3. Mass can

not be conserved for this case.

Similar arguments can be used to show that the other casecsol
i < c

part
i < c0i

also violates mass-conservation (see Fig. 4). This statement can be generalized in

t = 0                                                                  t > 0

S(0)                                                                                      S(t)

c
part cpart

csol
i ii

0ci
0ci

(a)                                                                           (b)

Fig. 4. The hypothetical casecsol
i
< cpart

i
< c0

i
which gives growth of theα-

phase and violation of the mass-balance. Left (a) shows the initial situation and
right (b) shows a hypothetical (but impossible) situation at some timet > 0.

the following result:

Theorem. Let all concentrations be non-negative, then the following combina-

tions give non-conserving solutions in the sense of equation(12):

(i) csol
i < c

part
i < c0i ,

(ii) c0i < c
part
i < csol

i (seeFigs. 3, 4for both cases).

This result is used to reject possible (numerical) unphysical solutions that

result from the vector-valued Stefan problem. The theorem is proven in mathema-
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tically rigorous way in [36]. Furthermore, negative concentrations are unphysical

and hence rejected.

3 Solution procedures

3.1 Self-similar solutions and asymptotic approximations

We start this section by giving the self-similarity solution for the one-compo-

nent problem. Subsequently, we give the self-similarity solution for the multi-

component problem.

3.1.1 The binary alloy problem

Suppose that the interface concentration of a certain component is known, say

c(S(t), t) = csol. Then, we have to solve the following problem (we refer to this

problem as (P1)):

(P1)











































∂c

∂t
= D

∂2c

∂r2
,

dS

dt
=

D

cpart− csol

∂c

∂r

(

S(t), t
)

,

c
(

S(t), t
)

= csol,

c(r, 0) = c0 = c(∞, t), S(0) = S0.

As in [36] we search a self-similar solution for the functionc = c(r, t) and for

S = S(t). Trial of c = c
(

r−S0

2
√

Dt

)

shows that these expressions satisfy the differen-

tial equations in (P1). Settingη := r−S0

2
√

Dt
gives an ordinary differential equation

for c = c(η). Substitution ofc(S(t), t) = csol, solution of the ordinary differential

equation and use of the initial condition gives

c(r, t) =
c0 − csol

erfc
(

k

2
√

t

) erfc
(r − S0

2
√
Dt

)

+ c0.

The procedure to obtain the above result can be found in [36] or [29].For the in-

terface rate constantk one substitutes the relationS = S0+k
√
t into equation (4).

c0 − csol

cpart− csol ·
√

D

π
· e−

k2

4D

erfc( k

2
√

D
)

=
k

2
(13)
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above equation is solved fork using a standard zero-point iteration method.

3.1.2 A self-similar solution for the multi-component problem

In this section we only treat the case without cross-diffusion, i.e.Dij = 0 for

i 6= j and we defineDii =: Di. The solutions that are presented here can

be extended for cross-diffusion using a diagonalization or Jordan form for the

diffusion matrix. This is done in [26]. As a trial solution for the planar case in

a semi-unbounded region, we take the interfacial concentrations to be constant

(these concentrations are not constant in time for other cases). Equation(4) has to

be fullfilled, hence combined with equation (13) one obtains the following system

of non-linear equations to be solved fork andcsol
i for i ∈ {1, . . . , n}:















c0i − csol
i

c
part
i − csol

i

·
√

Di

π
· e

−
k2

4Di

erfc
(

k
2
√

Di

) =
k

2
, for i ∈ {1, . . . , n},

(csol
1 )m1(csol

2 )m2(csol
3 )m3(. . .) = Ksol.

(14)

Using the assumption
∣

∣

csol
i −c0i

c
part
i −csol

i

∣

∣ � 1, This gives the following set of equations to

be solved ink, csol
1 , csol

2 , . . . , csol
n :











k = 2
c0i − csol

i

c
part
i − csol

i

·
√

Di

π
, for i ∈ {1, . . . , n},

(csol
1 )m1(csol

2 )m2(csol
3 )m3(. . .) = Ksol.

(15)

The solution of (15) approximates the solution of (14) for
∣

∣

csol
i −c0i

c
part
i −csol

i

∣

∣ � 1.

The dilute case. We consider the case that the particle concentration is much

larger than the interface concentration. Furthermore, we assume that the initial

concentration in the matrix is almost equal to zero, i.e.c
part
i � csol

i � c0i ≈ 0.

From the upper and lower bounds in the above expression, it follows thatthe

interface velocity can be approximated by

dS

dt
= − csol

i

c
part
i

√

Di

πt
, for i ∈ {1, . . . , n}. (16)
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Since this has to hold for alli ∈ {1, . . . , n} it follows that all interfacial concen-

trations can be expressed in terms of, for instance, the interfacial concentration

corresponding to the first element, i.e.

− csol
i

c
part
i

√

Di = − csol
1

c
part
1

√

D1 =⇒ csol
i =

c
part
i

c
part
1

√

D1

Di
· csol

1 .

We substitute all these expressions forcsol
i into the hyperbolic relation for the

interfacial concentrations (equation (1)) to obtain a simple exponential equation

for csol
1 whose non-negative real-valued solution gives

(csol
1 )µ ·

(

c
part
2

c
part
1

√

D1

D2

)m2

·
(

c
part
4

c
part
1

√

D1

D4

)m4

. . .

(

c
part
n

c
part
1

√

D1

Dn

)mn

= Ksol

⇐⇒ csol
1 =

c
part
1√
D1

[ n
∏

i=1

(√
Di

c
part
i

)mi

·Ksol

]
1

µ

(∈ R
+),

where
∏n

i=1 fi := f1f2 . . . fn andµ := m1 +m2 + . . .+mn. Note again that we

consider only non-negative and real-valued concentrations. The solution for csol
1

is substituted into (16) to obtain the interface velocity:

dS

dt
= − csol

eff

c
part
eff

√

Deff

πt
,

csol
eff := Ksol

1

µ , c
part
eff :=

[

n
∏

i=1

(c
part
i )mi

]
1

µ
, Deff :=

[

n
∏

i=1

(Di)
mi

]
1

µ
.

(17)

We see that for this case particle dissolution in a multi-component alloy is ma-

thematically reduced to particle dissolution in a binary alloy. The effective pa-

rameters (particle concentration and diffusion coefficient) are equal to geometric

averages with weights according to stoichiometry. For the details on the derivation

as well as the solution for the solution for the dissolution of a spherical particle

we refer to [29]. The case where equation (2) is extended with cross-diffusion

terms is analyzed in [29] and [26]. In these papers a solution of the same nature

has been obtained and applied.

3.2 Numerical procedures

In the literature one can find various numerical methods to solve Stefan problems.

These methods can be distinguished in the following categories: front-tracking,
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front-fixing and fixed-domain methods. In a front-fixing method a transformation

to body fitted curvilinear coordinates is used (a special case is the Isotherm Mi-

gration Method (IMM) [6]). A drawback is that such a transformation canonly be

used for a relatively simple geometry. Fixed-domain methods are the enthalpy

method (EM), and the variational inequality method (VI). In these methods a

new unknown is introduced, which is the integral of the primitive variable. The

free boundary is implicitly defined by this unknown. Since in our approach the

equations hold for the concentration and there are no energies involved inthe

model, the enthalpy method and phase-field method are not used. We refer to[37]

and [38] among others where the phase-field method is used to compute the

solution of the moving boundary problem. An other recent method where the

free boundary is implicitly defined is the level-set method as described by Chen

et al [39] for Stefan problems. Here the interface is identified by the zero level-set

of a marker function. The advantages of this method is that topological changes,

such as breaking up, of the dissolving or growing phases are dealt with easily. On

the other hand, since both the interfacial velocity and interfacial concentrations are

here determined by the concentration gradient, a grid grid-refinement near the free

boundary can be attractive. This implies that the grid moves anyway and hence

the benefits for the level-set method due to a fixed grid no longer apply. Though,

the level-set method remains the best candidate due to the ability of dealing with

changing topologies and because remeshing steps are not needed. TheIMM and

VI methods are only applicable when the interface is an equi-concentration line.

However, in our application where either multi-component particles or interfacial

reactions are taken into account, the interface is not an equi-concentration line.

Hence, (IMM) and (VI) methods are no suitable candidates. Thereforewe use

a front-tracking method which has the added benefit that a first order reaction at

the interface can be incorporated in the model. The moving grid method solves

one partial differential equation only. The mesh is moved using an arbitraryLa-

grangian Eulerian method. Here, the method is relatively cheap compared to the

level-set method, where also a first order hyperbolic partial differential equation

for the level set function has to be solved with a continuous extension of the

interface velocity at each time-step. However, it is sometimes necessary to change

the topology of the elements, then, the moving grid method requires a remeshing
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step, which involves an expensive two dimensional interpolation step. This is

a very expensive step in the moving grid method. Further, topological changes

of growing and dissolving (for instance the dissappearrance) phasesare hard to

implement into moving mesh methods. For these cases the level-set method

becomes more attractive. First some numerical methods for multi-component

alloys are presented. These methods are given for one spatial co-ordinate only.

Then, the moving grid method for 2D problems is presented and finally the level-

set method is described for 2D and 2D cases. We refer to [27, 40, 41] for more

details.

3.2.1 Numerical methods for multi-component alloys

In this work we only treat the case without cross-diffusion. For the numerical

treatment of cross-diffusion, we refer to [27]. We start with a discretization of

the one-dimensional multi-component model. Our main interest is to give an

accurate discretization of the boundary conditions for this Stefan problemwith

one spatial co-ordinate. Here we use the classical moving grid method of Murray

and Landis [42] to discretize the diffusion equations. In this paper we briefly

describe the method, for more details we refer to [36].

Discretization of the interior region. We use an implicit finite difference method

to solve the diffusion equation in the inner region. An explicitly treated convection

term due to grid-movement is included. Since the magnitude of the gradient

is maximal near the moving interface we use a geometrically distributed grid

such that the discretization near the interface is fine and coarse farther away from

the moving interface. Furthermore, we use a virtual grid-point near the moving

boundary. The distance between the virtual node and the interface is chosen equal

to the distance between the interface and the first grid-node. The resultingset of

linear equations is solved using a tridiagonal matrix solver.

Discrete boundary conditions at the interface for local equilibrium. We de-

fine the discrete approximation of the concentration ascji,k, wherej, i and k

respectively denote the time-step, the index of the chemical (alloying) element

and gridnode. The virtual gridnode behind the moving interface and the gridnode

at the interface respectively have indicesk = −1 andk = 0. At the moving
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interface, we obtain from discretization of (4)

Di

c
part
i − csol

i

cj+1
i,1 − cj+1

i,−1

2∆r
=

Di+1

c
part
i+1 − csol

i+1

cj+1
i+1,1 − cj+1

i+1,−1

2∆r
, for j ∈ {1, . . . , n−1}.

Note that the concentration profile of each element is determined by the value

of the interfacial concentration. Above equation can be re-arranged into a zero-

point equation for all chemical elements. All interfacial concentrations satisfy the

hyperbolic relation (1). Combination of all this, gives fori ∈ {1, . . . , n− 1}

fi(c
j+1
i,0 , cji+1,0) := Di(c

j+1
i,1 − cj+1

i,−1)(c
part
i+1 − csol

i+1)

−Di+1(c
j+1
i+1,1 − cj+1

i+1,−1)(c
part
i − csol

i ) = 0,

fn(csol
1 , . . . , csol

n ) := (csol
1 )m1(csol

2 )m2(. . .)(csol
n )mn −Ksol = 0.

To approximate a root for the “vector-function”f we use Newton’s method com-

bined with discrete approximations for the non-zero entries in the firstn− 1 rows

of the Jacobian matrix. The iteration is terminated when sufficient accuracy is

reached. This procedure is explained in more detail in [36].

Adaptation of the moving boundary. The moving interface is adapted accor-

ding to equation (4). In [43] the forward (explicit) Euler and Trapezoidal time

integration methods are described and compared. It was found that the (implicit)

Trapezoidal method was superior in accuracy. Furthermore, the iterationstep to

determine the interfacial concentrations is included in each Trapezoidal step to

determine the interfacial position. Hence, the work per time-iteration remains the

same for both time-integration methods. Therefore, the Trapezoidal rule is used to

determine the interfacial position as a function of time. We terminate the iteration

when sufficient accuracy is reached, i.e. letε be the inaccuracy, then we stop the

iteration when the inequality

n
∑

i=1

∣

∣csol
i (p+ 1) − csol

i (p)
∣

∣ +

∣

∣Sj+1(p+ 1) − Sj+1(p)
∣

∣

Sj+1 −M
< ε

holds. HereSj denotes the discrete approximation of the interfacial position at

time-stepj. The integerp represents the iteration number during the determina-

tion of the interfacial concentrations and position.
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3.2.2 Moving Finite Element Method with conservative boundary displace-
ment

The mesh on which the diffusion equation is solved is adapted according to the

movement of the interface. The algorithm for an infinite rate of reaction, i.e.

the interface concentration equals the concentrationcsol, which is determined by

Thermodynamics, can be described as follows. In each time-step we solve the

ALE (Arbitrary Lagrangian Eulerian) convection-diffusion equation

Dc

Dt
− D∆c− umesh · ∇c = 0, (18)

with Dc
Dt

the so-called material derivative andumesh = x(t+∆t)−x(t)
∆t

the mesh

velocity.

After that, the boundary is updated according to

x(t+ ∆t) = x(t) + vn∆t n = x(t) +
D

cpart− csol

∂c

∂n
∆t n. (19)

The straight-forward way to update the free boundary is to compute the gradient of

the concentration in the elements connected to the free boundary (normal_velocity

method). Using an averaging procedure for the gradient as well as an averaging

procedure to compute the normals in the vertices of the boundary, equation (19)

can be evaluated.

However, in case of sharp corners this may lead to a strange behavior asis

shown in Fig. 5. In order to get rid of this phenomenon we developed an algorithm

based on the integral representation of the Stefan boundary condition. The flux

through the element (xi−1,xi) (Fig. 7) is approximately equal to:

D
∂c

∂n
(xi− 1

2

)li∆t, (20)

with li the length of the line element (xi−1,xi). Hence the amount of diffused

material through the boundary (xi− 1

2

,xi+ 1

2

) is equal to

∆t

2

(

D
∂c

∂n
(xi− 1

2

)li + D
∂c

∂n
(xi+ 1

2

)li+1

)

. (21)

The amountMs of material dissolved, is approximately equal to(cpart − csol)O,

whereO is the area defined in Fig. 7. Due to the balance of atomsMs must
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Fig. 5. Position of free boundary at first
10 time-steps using the normal velocity

method for infinite rate of reaction.

Fig. 6. Position of free boundary at first
10 time-steps using the Stefan method for

infinite rate of reaction.

i+1

x xi-1 i

x

Fig. 7. Area occupied by the region defined by the displacement of the vertex.

be equal to the amount of diffused material given in equation (21). Consider

two adjacent line elements(xi−1,xi), and (xi,xi+1), with length li and li+1

respectively (Fig. 7). The mid-side points of these elements are denoted byxi− 1

2

and xi+ 1

2

. Let the from formula (19) computed displacement in the mid-side

points, be equal toδxi− 1

2

andδxi+ 1

2

. The new position of vertexxi is denoted

by x̂i. The vector̂xi − xi is parallel to the average of the normal vectors on the

line elements(xi−1,xi) and(xi,xi+1). The length of the displacement given by

∆xi = ‖x̂i − xi‖ is such thatMs = (cpart − csol)O. Once the displacement in

the vertices is computed, also the displacements in the mid-side points change.

In order to get both a local and global equilibrium in the amount of dissolved

277



F. J. Vermolen, C. Vuik, E. Javierre, S. van der Zwaag

material, it is necessary, that the new area is equal toMs/(c
part− csol). The area

O depends on∆xi, ∆xi− 1

2

and∆xi+ 1

2

, where∆xi− 1

2

is the adapted length of

the displacement inxi− 1

2

. Since∆xi− 1

2

and∆xi+ 1

2

depend on∆xi−1, ∆xi and

∆xi+1 the relation is non-linear.

To solve this non-linear system we had to use an under-relaxation parameter.

Choosing this parameter equal to 0.5 gives a fast convergence. The results of the

Stefan algorithm are shown in Fig. 6. The results in Fig. 6 are more reliable than

those in Fig. 5 since from physical point of view we expect a large diffusion of the

atoms at the angular free boundary point. This gives locally larger free boundary

velocities. For more details we refer to [40]. For the implementation of a finite

rate of the interface reactions, more details can be found in [44].

3.2.3 Level-Set method for Stefan problem

In this section we summarize the main principles of the Level-Set method for the

dissolution or growth of particles applied to the problem in the previous section.

The method was introduced by Osher and Sethian [45] and the method has a

wide applicability in problems with moving interfaces, see Sethian [46]. Some of

these problems, among others, are bubbly flows [47], phase transformations [39]

and particle dissolution [18]. A recent book on the topic is due to Osher and

Fedkiw [48].

The main principle is that the Level-Set method captures the zero level of a

continuous functionφ = φ(x, t), which is initialized as a signed distance function.

This function, commonly referred to as the Level-Set function, is chosen tobe

positive in the diffusive phase and negative in the particle domain:

φ(x, y, 0) =











+dist
(

x, S(0)
)

, if x ∈ Ω(0),

0, if x ∈ S(0),

+dist
(

x, S(0)
)

, if x /∈ Ω(0) ∪ S(0).

(22)

The movement of the interface is represented by using the Level-Set function by

means of
∂φ

∂t
+ vn‖∇φ‖ = 0. (23)

Herevn denotes the normal velocity at the interface, which is computed by the

use of the Stefan condition. This equation is valid at the interface only. The
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above equation is extended over the entire domain of computation if the interface

velocity is also extended continuously, to obtain

∂φ

∂t
+ v · ∇φ = 0, (24)

In general after advecting the interface using equation (24), the Level-Set function

is no longer a distance function, which may lead to very small or large gradients

of φ. This is not desirable for the computation of the curvature given byκ =

∇·n needed for the incorporation of the Gibbs-Thomson effect. Furthermore, the

Level-Set function needs to be a continuous function since it is used to track the

interface. Therefore, the Level-Set function is re-initialized by solving

∂ψ

∂τ
= Sign

(

φ(x, t)
)(

1 − ‖∇ψ‖
)

(25)

in pseudo-timeτ with initial conditionψ(x, 0) = φ(x, t). This procedure was

introduced by Sussmanet al [49]. After this re-initialization step the normal

vector is given byn = ∇φ. The front velocity is extended continuously so that

equation (24) can be solved over the entire domain of computation. The extension

of v is done in pseudo-timeτ so that for each spatial co-ordinate,q ∈ {x, y, z},

we have














∂vq

∂τ
+ Sign

(

φ
∂φ

∂q

)∂vq

∂q
= 0,

vq(x, 0) =
D

cpart− csol

∂c

∂q
, x ∈ S(t),

for q ∈ {x, y, z}. (26)

The diffusion equation for the concentration is presently solved by the useof

Finite Elements in [41] and the Level-Set equation is solved by a finite difference

method. The re-initialization step is done by the Godunov’s scheme, use of a

Runge-Kutta time integration and a WENO scheme for the spatial derivatives.

The combination of these methods gives a TVD scheme. Details on the numerical

solution of these equations can be found in, among others, [39] (fully FiniteDif-

ferences) and [41] (combined Finite Differences and Finite Elements). Itturns out

that the Level-Set method handles three dimensional geometries and topologically
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changing geometries more easily than the moving grid method does. Furthermore,

the additional conservation argument that was necessary for the 2D moving finite

element method (see the previous section and [40]), is no longer needed for the

Level-Set method (see [41]). By Javierreet al [41] some 2D and 3D test-cases are

shown with a dissolving radially perturbed cylinder, which breaks up into several

rounded particles dissolving at different paces due the presence of each other.

4 Applications

4.1 Particle dissolution in multi-component alloys

In this section we consider particle dissolution in a multi-component alloy mod-

elled with a one-dimensional model. First, we show a comparison between a full

multi-component model and the quasi-binary model (see equation (15)). Subse-

quently, we compute dissolution of a particle in competition with a segregation at

a grain boundary under a temperature-time profile. The latter case comes from an

industrial application. All examples given here are hypothetic.

4.1.1 Comparison between multi-component computation and the quasi-
binary solution for a planar case

The one-dimensional model of Section 2 is applied here for the dissolution ofa

particle in a multi-component alloy. The example concerns a planar geometry

with three alloying elements withcpart
i = 100, c0i = 0 andDi = i · 10−13 for i ∈

{1, 2, 3}. Further, the solubility productKsol = 1 and initial interfacial position

S(0) = 0.1 · 10−6. Fig. 8 shows the interface position as a function of time.

The curves have been obtained using the analytical approach (see the top curve

of the analytical approaches in Fig. 8). From Fig. 8 it is clear that the analytical

(multi-component and quasi-binary) approaches co-incide well at all times. At the

early stages the analytical approaches co-incide well with the numerical solution.

As time proceeds the numerical solution starts to deviate due to the finite size

of the cell in which the particle dissolves (soft-impingement). For the same set

of parameters we show concentration profiles of the three alloying elements in

Fig. 9. The profiles were obtained using the numerical method from Section 3.
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Fig. 8. The interface position as a function of time during the dissolution of
a planar phase. The top curve represents the solution obtained by the Finite
Difference method with an finite volume of the cell. The othercurves represent
the analytical approaches for the infinite volume of the cell, where the lowest
curve represents the quasi-binary approach and the other curve represents the
full multi-component “analytical” solution where a zero-point method is used.
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Fig. 9. Concentration profiles of the alloying elements at timet = 50.

281



F. J. Vermolen, C. Vuik, E. Javierre, S. van der Zwaag

4.1.2 Comparison between multi-component computation and the quasi-
binary solution for a spherical case

Finally we show the dissolution of a spherical particle in a multi-component alloy

with three alloying elements. The initial particle sizeS0 and cell sizeM are10−6

m and10−5 respectively. The other input-data are listed in Table 1.

Table 1. Input data

Physical quantity Value Si-Unit
D1 10−13 m2/s
D2 2 · 10−13 m2/s
Ksol 1 –
cpart
1

33 –
cpart
2

33 –
c0
i

0 –
m1 1 –
m2 2 –

In [29] we developed a quasi-binary approach for spherical geometries. The

results for the quasi-binary approach, as derived in [29], are compared to the

“exact” full multi-component solution, which has also been derived there.We

distinguish various cases wherecpart
3 andD3 are varied and all other parameters

are fixed as in Table 1. The following cases are shown in Fig. 10:

• c
part
3 = 33 = c

part
1 = c

part
2 ,D3 = 0.1 · 10−13 � D1, D2 (curve I);

• c
part
3 = 3 � c

part
1 , c

part
2 ,D3 = 0.1 · 10−13 � D1, D2 (curve II);

• c
part
3 = 33 = c

part
1 = c

part
2 ,D3 = 10 · 10−13 � D1, D2 (curve III);

• c
part
3 = 3 � c

part
1 = c

part
2 ,D3 = 10 · 10−13 � D1, D2 (curve IV).

From Fig. 10 it is clear that the quasi-binary approach co-incides well withthe full

multi-component approach, especially when the third alloying element diffuses

fast. So the quasi-binary approach is a handy tool to give a fast estimate for the

order of magnitude of the dissolution time.
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Fig. 10. The interfacial position as a function of time. All curves correspond
to the configuration as listed in Table 1. The bold and ordinary curves
respectively reflect the quasi-binary and full multi-component solution. Curves
I corresponds tocpart

3
= 33 andD3 = 0.1 · 10−13. Curve II reflects the case

thatcpart
3

= 3 andD3 = 0.1 · 10−13. Curve III displays the situation in which
cpart
3

= 33 andD3 = 10 · 10−13, whereas curve IV shows the configuration
cpart
3

= 3 andD3 = 10 · 10−13.

4.1.3 A simultaneously dissolving particle at the center and a segregation at
the grain boundary

We consider a hypothetical industrial application where simultaneous dissolution

of a Si-particle and Mg2Si-segregation at the grain boundary is modelled under a

temperature that depends on time. The initial temperature is set at 300 K, heat-

up rate 0.05 K/s and the homogenization temperature is set at 833 K. Further,

the initial concentrations arec0Mg = 0.04, c0Si = 0 with particle concentrations

c
part
Si = 35, cpart

Mg = 65 in the segregation at the grain boundary. The geometry

is shown in Fig 11. The size of the Si-particle and Mg2Si-segregation is shown

in Fig. 12. In the example the dimensions were chosen such that the Mg2Si-

segregation dissolves completely and the Si-particle only partly due to Si-accu-

mulation in the matrix.
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Fig. 11. The geometry of a grain with a Si-particle in the center and a Mg2Si-
segregation at the grain boundary.
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Fig. 12. The evolution of the particle and size of the segregation during the
homogenization process.
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4.2 Numerical experiments with the interface reaction for two di-
mensions

An algorithm has been developed to investigate the dissolution kinetics for a two-

dimensional case with a first order reaction at the interface. This algorithmhas

been implemented in our finite element code SEPRAN [50]. As an example we

consider the dissolution of a needle shaped particle in a bar. Due to the symmetry

of this two-dimensional problem, we restrict the simulation to one quarter of

the real geometry. First we investigate the influence of the rate of the interface

reaction (Kint) on the shape of the dissolving particle. Thereafter we compare the

influence of the extra terms used in (10) and (11). In all our examples we have

chosen the following parameters:

diffusion coefficient D = 0.04858,
concentration in the particle cpart = 54,
initial concentration c0 = 0.0011.

4.2.1 The influence of the interface reaction

We consider a square dissolving in a square for various choices ofKint. The

Figs. 13, 14 contain the results forKint = 1000, and 0.1. ForKint large we

expect that the solution converges to the solution of the Dirichlet problem. When

the grid is refined we observe that the Dirichlet solution converges to the solution

Fig. 13. Free boundary of a bar dis-
solving in a bar withKint = 1000 and

csol = 3.88.

Fig. 14. Free boundary of a bar dis-
solving in a bar withKint = 0.1 and

csol = 3.88.
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as given in Fig 13.

For small values ofKint the evolution of the position of the interface is

completely determined by the rate of the interface reaction. Therefore one expects

that the particle remains square-like. This is in accordance with the results as

given in Fig. 14. For more details and experiments, we refer to [44]. Also the

velocity of the interface decreases whenKint decreases.

4.2.2 The influence of the termcSvn

In the derivation of the model we have already noted that in some references the

termcSvn is deleted from equation (11). For the problem as considered in Section

4.2.1 we have compared the solution with and without this term and it appears

that its influence is negligible. On the other hand whencsol is closer tocpart the

differences may be large. Therefore we consider an academic problemwhere

csol is 10 times as large (see Fig. 15, 16). The results of the correct boundary

conditions are given in Fig. 15. Sincecsol is much larger the velocity of the

Fig. 15. Free boundary of a bar dis-
solving in a bar withK = 0.1 and

csol = 38.8

Fig. 16. Free boundary of a bar dis-
solving in a bar withK = 0.1 and
csol = 38.8 without the termcSvn

interface is much higher. Therefore the time-steps used in these problems are

equal to the time-steps of the previous problem divided by 10. The results given

in Fig. 16 are obtained when the termcSvn is deleted from equation (11). There

are considerable differences between both results. NeglectingcSvn leads to an

overestimate of the position of the free boundary.
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4.3 3D topological changes by the Level-Set method

To illustrate the power of the Level-Set method for three spatial dimensions, we

consider a hypothetic dissolving particle that was dumbbell-shaped initially (see

Fig. 17). The dumbbell is placed in a cubic domain of [-5,5]3 with 33 gridpoints

in each spatial direction. The interface concentration is given bycsol = 0.35,

particle concentrationcpart = 0.53 and initial concentrationc0 = 0.3. The

diffusivity is takenD = 1. These numbers are fully hypothetic and can be scaled

in micrometers, which is the physical size of the problem that we consider here. In

the early stages the topology does not change (see Fig. 18). As time proceeds, the

dumbbell splits up into two parts (see Fig. 19), which will dissolve entirely in this

configuration. If the moving mesh method were used, then, the computer code

should contain various if-statements to deal with the splitting into two particles

and with dissolving of either of the particles. The Level-Set method handles this

in a more natural way.

Fig. 17. Initial dumbbell shape of a
hypothetic dissolving particle.

Fig. 18. Dumbbell shape of a hypothetic
dissolving particle after some short

time.

Fig. 19. Dissolving particles resulting
due to splitting of the dumbbell at a later

stage.
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5 Conclusion and current work

Summarized, recently the following improvements have been achieved in model-

ing particle dissolution in alloys:

• Mathematical insight into the qualitative behavior of solutions of moving

boundary problems associated with particle dissolution has been obtained.

This insight provides quick analytical solutions and solution bounds, which

are motivated by rigorous mathematical arguments. Further, approximate

solutions have been obtained for modeling dissolution of particles in multi-

component alloys.

• Numerical solution techniques to accomplish particle dissolution in multi-

component alloys have been obtained.

• Further, a two-dimensional Finite Element method, based on a moving grid

method, has been developed where the Stefan condition is discretized such

that mass is conserved.

• Recently, the one-dimensional multi-component model has been extended to

include effects from cross-diffusion. Metallurgical implications have been

described in [29]. A mathematically rigorous analysis has been given in

[26–28].

• Recently, the Level-Set method is successfully applied to the dissolution

problem with 2 and 3 spatial dimensions. The Level-Set method enables

us to deal with splitting of dissolving phases. This method will be extended

to multi-component alloys, i.e. vector-valued Stefan problems.
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