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Keywords: nonlinear evolution equation, integrable systems, KdV equation,
supersymmetry, nonlocality.

1 Introduction

The nonlinear Korteweg-de Vries (KdV) equationφt + φφx − αφxxx = 0 is a

universal model to describe one-dimensional nonlinear waves in dispersion media

without dissipation, in which the law of dispersion for nonlinear waves has the

form ω = a1k + a3k
3. The KdV equation is a basis for modelling magneto-

acoustic and ion-sound waves in plasma, acoustic waves in crystals, surface and

internal waves of a moderate amplitude in oceans [1]. The KdV equation is

integrated by the inverse scattering method [2] and has anN = 1 supersymmetric

extension [3].

In a few papers [4–9] the following nonlocal generalizations of the KdV as

examples of the first group were proposed.

However, these generalizations result in destruction of integrability, and the

conserved values disappear. It would be of interest to find integrable generaliza-

tions of the KdV equation that could preserve both the properties of nonlocality

and the conservation laws.
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The present work offers a weakly nonlocal generalization of the evolutiona-

ry KdV and super-KdV (sKdV), which possesses also an unlimited numberof

conservation laws and exact solutions.

2 The nonlocal supersymmetric KdV equation

Let the superfield [10]χ = θaD
1−p
x φ+ψ unite two fields with different properties:

the “bosonic” fieldφ(x, t) ∈ C1(Ω) ⊂ R
2, Ω = (x, t) : x ∈ R

1, t > 0 and

its spinorial superpartnerψ(x, t) ∈ C1(Ω) ⊂ R
2; θ is the Grassmann variable

(constant Majorana spinor),aD
p
xf(x) is the fractional derivative in the sense of

Riemann-Liouville [11]:

aD
p
xφ(x, t) =

1

Γ(1 − p)

d

dx

x
∫

a

φ(ξ, t)

(x− ξ)p dξ, (1)

in which0 < p < 1, anda is the parameter of nonlocality.

The transformations of the fieldsφ, ψ, because of the fractional derivatives

aD
p
xf(x), are nonlocal:

{

δηψ = η aD
1−p
x φ,

δη aD
1−p
x φ = ηψx.

(2)

However, the commutator of the two transformations (2) is a spatial translation:

[δη, δξ] = 2ξη∂x. (3)

The supersymmetric equation

χt =
(

χxx +
1

2
χDχ

)

x
, (4)

(hereD = θ∂x + ∂θ is a supersymmetric derivative) is a system of two evolutio-

nary equations,











ψt = ψxxx +
1

2
(aD

1−p
x φ · ψ)x,

φt = φxxx +
1

2
aD

p
x

[

(aD
1−p
x φ)2 − ψψx

]

,
(5)
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which is invariant in respect of the supertransformations (2). In the general case,

the system (5) is a system of two nonlinear nonlocal evolution equations, which

becomes local when

p = 0











ψt = ψxxx +
1

2
(φxψ)x,

φt = φxxx +
1

2
(φ2

x − ψψx);
(6)

p = 1











ψt = ψxxx +
1

2
(φψ)x,

φt = φxxx +
1

2
(φ2 − ψψx)x.

(7)

The supersymmetric equation (4) and the corresponding system of equations

(5) unites two fields of different nature, and only one of them is nonlocal.

At the parameter of fractional derivativep = 1 the supersymmetric equation

(4) turns into the ordinary supersymmetric KdV equation (7), which allows usto

designate equation (4) as a nonlocal supersymmetric KdV equation (nsKdV).

The analytical solutions of the classical KdV and the KdV with quadratic

nonlinearity are well known. The nKdV relations with these equations allow us

to express the solutions of nKdV through classical solutions of the corresponding

equations. In particular,

φ(x, t) = −u
2 aD

p
x ch−2

[1

2

√
u(ξ − ξ0)

]

(8)

is the nonlocal generalization of the classical soliton solution.

3 Integrability and conservation laws

The supersymmetry of nsKdV does not mean its integrability. The most direct

proof of the integrability of supersymmetriclocal KdV equation (4) is that it has a

Lax representation. Let apply supersymmetric Lax representation in ournonlocal

case:

Lt = [−4L3/2
+ ,L], L = ∂2 − φD, (9)

and the conservation laws are obtained as follows:

H2n+1 =

∫

sResL(2n+1)/2 dxdθ. (10)
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For the super pseudodifferential operatorP =
∑n

i=−∞
αiDi

P+ =
n

∑

i=0

αiDi, sResP = α
−1, (11)

where definite integration takes place over setR
1×Ξ: x ∈ R

1, θ ∈ Ξ.

The first conservation law is the difference of asymptotic states:

∫

[

Dχ(x, θ)
]

dxdθ =

∫

(θψx + aD
1−p
x φ) dxdθ

=

∫

ψx dx = ψ(+∞) − ψ(−∞) = 0.

(12)

The second conservation law is

H3 =

∫

dxdθ(χDχ) =

∫

dx
[

(aD
1−p
x φ)2 − ψψx

]

. (13)

This list of conserved quantities could be continued according to the general

expression (10).

The physical meaning of the corresponding conservation laws becomes clearer

in the pure “bosonic” case. In the case of the nsKdV (4) without supersymmetry

φt +
1

2aD
p
x(aD

1−p
x φ)2 − αφxxx = 0, (14)

for x ∈ R, ∀ t > 0, aD
3−p
x φ(±∞, t) = aD

1−p
x φ(±∞, t) = 0, we deal with a

conservation value:

I(p) =

+∞
∫

−∞

aD
1−p
x φdx = inv, (15)

as

dI(p)

dt
=

+∞
∫

−∞

[

α aD
3−p
x φ− 1

2
(aD

1−p
x φ)2

]

x
dx

=
[

α aD
3−p
x φ− 1

2
(aD

1−p
x φ)2

]∣

∣

∣

+∞

−∞

= 0.

(16)
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This conservation value shows that the difference in asymptotic values forany

time moment remains unchanged. In the applications, atp = 1 this conserva-

tion law is called the “mass” conservation law, becauseφ(x, t) can be a one-

dimensional density or gradient of any physical, chemical or biological magni-

tude.

Even this simple example highlights two important properties of the nonlocal

conservation law (15): it interrelates the conservation values of two different

dynamic systems, which can be of different mathematical nature (e.g., in our case

these values are integral and discrete).

As follows from the integrable hierarchy (9) or by a direct verification like

above in the bosonic case, the momentum conservation law is

P =
1

2

+∞
∫

−∞

(aD
1−p
x φ)2 dx = inv. (17)

The energy conservation law is

E =

+∞
∫

−∞

[

(aD
1−p
x φ)3 − 1

2
(aD

2−p
x φ)2

]

dx = inv. (18)

These conservation laws at thep = 1 turn into the momentum and energy conser-

vation laws of the classical KdV evolution equation.

4 Conclusions

Thus, we see that it is possible to construct a supersymmetric weakly nonlocal

generalization of the evolutionary KdV equation. The nonlocal term is similar to

the same one in the Burgers evolutionary equation [12] which could be applied

for solving the problem of cold dust matter distribution [13].

We use deliberately the nonlocal termaD
p
x(aD

1−p
x φ)2/2 and the supertrans-

formation[δη, δξ] = 2ξη∂x (3) for the construction of the nsKdV, nevertheless we

suppose that it is possible to construct a nsKdV for the case of supersymmetric

transformation of the form

[δη, δξ] = 2ξη aD
p
x. (19)
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Considering the specific nature of the fractional differential operator,it would be

extremely interesting to find such representation.
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