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Abstract. This paper deals with fixed point theory and fixed point property
in minimal spaces. We will prove that under some conditionsf : (X,M) →
(X,M) has a fixed point if and only if for eachm-open cover{Bα} for X
there is at least onex ∈ X such that bothx andf(x) belong to a commonBα.
Further, it is shown that if(X,M) has the fixed point property, then its minimal
retract subset enjoys this property.
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1 Introduction and preliminaries

Fixed point theory is a very attractive subject, which has recently drawn much

attention from the communities of physics, engineering, mathematics etc. In this

field, there have been many representative approaches method by orbits[1]. In

[2], authors used fixed point theory to find a method to estimate the optimum

neighborhood with the chosen gain matrix.

In this paper, we prove some results too stunning not be in the spotlight.

These results are typical of the most attractive aspects of the fixed point theory

in minimal spaces in that they are proved. We show any retract subset of aspace

with fixed point property would have the fixed point property.

In 1950, H. Maki, J. Umehara and T. Noiri [3] introduced the notions of

minimal structure and minimal space. They achieved many important results
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compatible by the general topology case. Some other results about minimal spaces

can be found in [4–9].

For easy understanding of the material incorporated in this paper we recall

some basic definitions. For details on the following notions we refer to [4], [3]

and [7].

Definition 1. [3] A familyM ⊆ P(X) is said to be minimal structure onX if

∅, X ∈ M. In this case(X,M) is called a minimal space. Throughout this paper

(X,M) or (Y,N ) means minimal space.

Example 1. [3] Let (X, τ) be a topological space. ThenM = τ, SO(X),

PO(X), αO(X) andβO(X) are examples of minimal structures onX.

Definition 2. [3] A setA ∈ P(X) is said to be anm-open set ifA ∈ M.

B ∈ P(X) is anm-closed set ifBc ∈ M. We set

m − Int(A) =
⋃

{U : U ⊆ A, U ∈ M},

m − Cl(A) =
⋂

{F : A ⊆ F, F c ∈ M}.

Remark 1. Choosing one of theτ, SO(X), PO(X), αO(X) andβO(X) instead

of M, then m − Int(A) would beInt(A), sInt(A), pInt(A), αInt(A) and

βInt(A) respectively. Similarly,m−Cl(A) is equal toCl(A), sCl(A), pCl(A),

αCl(A) andβCl(A) respectively.

Proposition 1. [3] For any two setsA andB,

(i) m − Int(A) ⊆ A and m − Int(A) = A if A is anm-open set;

(ii) A ⊆ m − Cl(A) and A = m − Cl(A) if A is anm-closed set;

(iii) m − Int(A) ⊆ m − Int(B) and m − Cl(A) ⊆ m − Cl(B) if A ⊆ B ;

(iv) m− Int(A∩B) = (m− Int(A))∩ (m− Int(B)) and (m− Int(A))∪

(m − Int(B)) ⊆ m − Int(A ∪ B);

(v) m − Cl(A ∪ B) = (m − Cl(A)) ∪ (m − Cl(B)) and m − Cl(A ∩ B) ⊆

(m − Cl(A)) ∩ (m − Cl(B));
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(vi) m − Int(m − Int(A)) = m − Int(A) and m − Cl(m − Cl(B)) =

m − Cl(B);

(vii) (m − Cl(A))c = m − Int(Ac) and (m − Int(A))c = m − Cl(Ac).

Definition 3. [7] A minimal space(X,M) enjoys the propertyU if the arbitrary

union ofm-open sets is anm-open set.

Proposition 2. [7] For a minimal structureM on a setX, the following are

equivalent.

(i) M has the propertyU .

(ii) If m − Int(A) = A , then A ∈ M.

(iii) If m − Cl(B) = B , then Bc ∈ M.

Definition 4. Let (X,M) and (Y,N ) be two minimal spaces. We say that a

functionf : (X,M) → (Y,N ) is a minimal continuous (brieflym-continuous) if

f−1(B) ∈ M, for anyB ∈ N .

The following results are the immediate consequences of Definition 4.

Proposition 3. Suppose(X,M) and(Y,N ) are minimal spaces. Then

(i) the identity mapidX : (X,M) → (X,M) is m-continuous;

(ii) idX : (X,M) → (X,N ) is m-continuous where(X,M) and (X,N ) are

minimal spaces andN ≤ M;

(iii) any constant functionf : (X,M) → (Y,N ) is m-continuous.

Theorem 1. The composition of twom-continuous functions is anm-continuous

function.

2 Orbits and fixed point

For two setsX andY and each elementx of X we associate a nonempty subset

F (x) of Y and this correspondencex 7→ F (x) is called amulti-valued mapping

or amultifunctionfrom X into Y ; i.e.,F is a function fromX to 2Y \ {∅} and is
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denoted byF : X → 2Y . The lower inverseof a multi-valued mappingF is the

multi-valued mappingF l of Y into X defined by

F l(y) =
{

x ∈ X : y ∈ F (x)
}

,

also for any nonempty subsetB of Y we have,

F l(B) =
{

x ∈ X : F (x) ∩ B 6= ∅
}

,

finally it is understood thatF l(∅) = ∅. The set{x ∈ X : F (x) ⊆ B} is the

upper inverseof B and is denoted byF u(B). f is minimal lower semicontinuous

(m.l.s.c.), if for everyU ⊆ Y m-open,f l(U) is m-open inX.

Let f : X → 2Y andg : Y → 2Z be two multifunctions. The composition

gof : X → 2Z is defined by

gof(x) =
⋃

y∈f(x)

g(y).

Definition 5. [7] For a minimal space(X,M),

(i) a family ofm-open setsA = {Aj : j ∈ J} in X is called anm-open cover

of K if K ⊆
⋃

j Aj . Any subfamily ofA which is alsom-open cover ofK

is called a subcover ofA for K;

(ii) a subsetK of X is m-compact whenever given anym-open cover ofK has

a finite subcover;

(iii) (X,M) is said to bem−T2 space if for each distinct pointsx, y ∈ X, there

existsU, V ∈ M containingx andy respectively, such thatU ∩ V = ∅.

In the following lemma we show the equivalence of point-wisem-continuity

andm-continuity which has a key role for our result.

Lemma 1. Supposef : X → Y is a function, where(X,M) and(Y,N ) are two

minimal spaces. Thenf is point-wisem-continuous iff is m-continuous.

Proof. Assumef is point-wisem-continuous,x ∈ X, V ∈ N andf(x) ∈ V .

Thenx ∈ W = f−1(V ) ∈ M. Therefore,f(W ) ⊆ V .
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Definition 6. A minimal space(X,M) enjoys the propertyI if the finite intersec-

tion ofm-open sets is anm-open set.

Theorem 2. SupposeM is a minimal structure with propertyI onX, (X,M) is

m − T2 space andf : (X,M) → (X,M) is m-continuous. Thenf has a fixed

point if and only if for eachm-open cover{Bα : α ∈ A} of X there isx ∈ X and

α ∈ A such that bothx andf(x) lie in Bα.

Proof. One direction is straightforward. For the converse, suppose thatf has no

fixed point. Thenx 6= f(x) for eachx ∈ X. Sincef ism-continuous,X ism−T2

andM has propertyI, so there isWx andUx in M containing respectivelyx and

f(x) such thatUx∩Wx 6= ∅ andf(Wx) ⊆ Ux. Now{Wx : x ∈ X} is anm-cover

of X, so there isz ∈ X andx0 ∈ X such thatWx0
contains bothz andf(z).

Sincez ∈ Wx0
, sof(z) ∈ f(Wx0

) ⊆ Ux0
. On the other handf(z) ∈ Wx0

, so

f(z) ∈ Wx0
∩ Ux0

which is impossible.

Extending one direction of Theorem 2 is our next task.

Theorem 3. SupposeF : X → 2X is a multifunction such that:

(i) for eachm-open cover{Wα : α ∈ A} for X there arez ∈ X andα0 ∈ A

for whichWα0
contain bothz andF (z) (i.e.,z ∈ Wα0

andF (z) ⊆ Wα0
);

(ii) if z /∈ F (z) then there areWz andUz ofM with {z} ⊆ Wz andf(z) ⊆ Uz

such thatUz ∩ Wz = ∅.

ThenF has a fixed point.

Proof. On the contrary, ifz /∈ F (z) for eachz ∈ X then from (ii) there are

Wz andUz with mentioned properties. Then{Wz : z ∈ X} is anm-open cover

for X so from (i) there are two elementsx0, z0 ∈ X such that both{x0} and

F (x0) are contained inWz0
. On the other hand,x0 ∈ Wz0

implies thatF (x0) ⊆

f(Wz0
) ⊆ Uz0

. SinceF (x0) ⊆ Wz0
, soF (x0) ⊆ Uz0

∩ Wz0
= ∅ which is a

contradiction.

Definition 7. A family{Aj : j ∈ J} in P(X) has the finite intersection property

if any its finite subfamily has nonempty intersection.
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Our next result indicates the relation of fixed point and orbits of a multifunc-

tion.

Proposition 4. SupposeF : X → 2X is a multi-valued map and there is

x0 ∈ X such thatO(x0) has finite intersection property. ThenF has a fixed

point if O(F 2(x)) ⊆ F (x) for all x ∈ X.

Proof. It is easy to see thatF (O(x0)) ⊆ O(x0), so

K =
{

A ⊆ O(x0) : A 6= ∅, F (A) ⊆ A
}

is a nonempty set. Partially orderedK by inclusion. SinceO(x0) has finite

intersection property, so from Zorn’s lemmaK has minimal element, sayC.

F (C) ⊆ C andF (F (C)) ⊆ F (C) imply thatF (C) = C. Now, if u /∈ F (u)

for eachu ∈ C, thenu /∈ O(F 2(u)). F (u) ⊆ F (C) = C follows from the fact

thatu ∈ C, thereforeF k(u) ⊆ C for any nonnegative integerk. O(F 2(u)) = C

can be derived from minimality ofC. Consequently,u ∈ O(F 2(u)) which is a

contradiction.

We are ready to extend a result due to Ciric [10].

Definition 8. Suppose(X,M) is a minimal space. A subsetA of X is said to be

have minimal closure finite intersection property if the intersection of elements of

any familyA = {m − Cl(Aα) ⊆ A : α ∈ I} is nonempty, where any its finite

intersection of elements ofA is nonempty.

Theorem 4. Suppose(X,M) is a minimal space,F : X → 2X is a multifunction

and

(i) there is x0 ∈ X such thatm − Cl(O(x0)) has minimal closure finite

intersection property,

(ii) m − Cl(O(F 2(x))) ⊆ F (x) for all x ∈ X,

(iii) F (m − Cl(O(x0))) ⊆ m − Cl(O(x0)).

ThenF has fixed point.
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Proof. SetK = {m − Cl(A) : A ⊆ O(x0), F (m − Cl(A)) ⊆ m − Cl(A)}

which is a nonempty set by (iii).K is a partially ordered set by inclusion. Then

K has a maximal element by Zorn’s lemma. We denote this maximal element

by m − Cl(B). Consequently,F (m − Cl(B)) ⊆ m − Cl(B) and soF (m −

Cl(B)) = m−Cl(B). Now if x /∈ F (x) for all x ∈ B, then (ii) implies thatx /∈

m − Cl(O(F 2(x))). But x ∈ B, soO(F 2(x)) ⊆ B, thusm − Cl(O(F 2(x))) ⊆

m − Cl(B). Then

F
(

m − Cl
(

O
(

F 2(x)
)))

⊆ F 2(x) ⊆ m − Cl
(

O
(

F 2(x)
))

.

Therefore,O(F 2(x)) = B concludes from maximality ofB, sox ∈ O(F 2(x))

which is a contradiction.

An immediate consequence of Theorem 4 can be state in the following.

Corollary 1. Suppose(X, τ) is a topological space,F : X → 2X is a set valued

map and

(i) there isx0 ∈ X such thatO(x0) is compact,

(ii) O(F 2(x)) ⊆ F (x) for all x ∈ X,

(iii) F (O(x0))) ⊆ O(x0).

ThenF has fixed point.

Proof. It should be noticed that in topological space minimal closure finite inter-

section property is equivalent to the compactness. Applying Theorem 4 completes

the proof.

Definition 9. A functionf : X → X is called strongly non-periodic if for every

x ∈ X, x 6= f(x) impliesx /∈ Ō(f2(x)). A functionf is said to be orbitally

continuous if for eachx, y ∈ X, y = limi f
ni(x) impliesf(y) = limi f

ni+1(x).

Corollary 2. [10] Let X be a topological space andf : X → X be a strongly

non-periodic and orbitally continuous mapping. If for somex0 ∈ X the setŌ(x0)

is compact, then there exist a cluster pointx ∈ O(x0) such thatf(x) = x.

Furthermore, if for every(x, y) ∈ X × X, x 6= y implies(fx, fy) 6= (x, y), then

x is a unique fixed point off in X.

Proof. Apply Corollary 1 but for single valued mapf .
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3 Fixed point property

Definition 10. (X,M) and(Y,N ) are calledm-homeomorphic if there exists a

bijective functionf : X → Y for whichf andf−1 arem-continuous. In this case,

f is called anm-homeomorphism andX andY are said to bem-homeomorphic.

Definition 11. (X,M) is said to have the fixed point property if everym-conti-

nuous functionf : X → X has a fixed point.

Example 2. SupposeX = {x1, x2, x3} and M = {∅, {x1}, {x2}, X} is a

minimal structure onX. In order to show thatX has the fixed point property

it is enough to show that any functionf : (X,M) → (X,M) which has not

fixed point is notm-continuous. Iff has not fixed point, thenf(x3) 6= x3

and thenf(x3) = x1 or f(x3) = x2. Therefore,x3 ∈ f−1({x1}) and since

f−1({x1}) /∈ M so f−1({x1}) does not lie inM or x3 ∈ f−1({x2}) /∈ M

which implies thatf : (X,M) → (X,M) is notm-continuous.

Next result shows that fixed point property is invariant underm-homeomor-

phisms.

Proposition 5. SupposeX is m-homeomorphic toY . ThenY has the fixed point

property ifX has this property too.

Proof. Supposeh : X → Y is anm-homeomorphism andg : Y → Y is anm-

continuous function. Sinceh−1ogoh : X → X is m-continuous, applying Theo-

rem 1 and fixed point property ofX, there existsx0 ∈ X in whichh−1ogoh(x0) =

x0. Sety0 = h(x0), thenh−1og(y0) = x0. Therefore,g(y0) = h(x0) = y0 which

is required.

Definition 12. A subsetA of a minimal space(X,M) is a minimal retract ofX

if there is anm-continuous functionr : X → A by r(a) = a for all a ∈ A. In

this case,r is called minimal retraction.

In following we prove the fixed point property for some subset of a set with

this property.

Proposition 6. Suppose(X,M) has the fixed point property andA is a minimal

retract ofX. ThenA has the fixed point property too.
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Proof. Supposef : A → A is anm-continuous function andr : X → A is a

minimal retraction. Consider the following compositions,

X
r
→ A

f
→ A

i
→ X,

wherei is the inclusion map. From Proposition 3,i is anm-continuous func-

tion. SinceX has the fixed point property, there existsx0 ∈ X such that

iofor(x0) = x0 and sofor(x0) = x0. Puta = r(x0) ∈ A, thenf(a) = x0.

Consequently,r(f(a)) = r(x0) which implies thatf(a) = a.
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