On a Nonlinear System of Reaction-Diffusion Equations

G. A. Afrouzi, S. H. Rasouli
Department of Mathematics, Faculty of Basic Sciences
Mazandaran University, Babolsar, Iran afrouzi@umz.ac.ir

Received: 08.03.2006 Revised: 19.04.2006 Published online: 18.05.2006
Abstract. The aim of this article is to study the existence of positive weak solution for a quasilinear reaction-diffusion system with Dirichlet boundary conditions,

$$
\left\{\begin{aligned}
-\operatorname{div}\left(\left|\nabla u_{1}\right|^{p_{1}-2} \nabla u_{1}\right)=\lambda u_{1}^{\alpha_{11}} u_{2}^{\alpha_{12}} \ldots u_{n}^{\alpha_{1 n}}, & x \in \Omega \\
-\operatorname{div}\left(\left|\nabla u_{2}\right|^{p_{2}-2} \nabla u_{2}\right)=\lambda u_{1}^{\alpha_{21}} u_{2}^{\alpha_{22}} \ldots u_{n}^{\alpha_{2 n}}, & x \in \Omega \\
\quad \ldots & \\
\quad \operatorname{div}\left(\left|\nabla u_{n}\right|^{p_{n}-2} \nabla u_{n}\right)=\lambda u_{1}^{\alpha_{n 1}} u_{2}^{\alpha_{n 2}} \ldots u_{n}^{\alpha_{n n}}, & x \in \Omega \\
u_{i}=0, \quad x \in \partial \Omega, \quad i=1,2, \ldots, n, &
\end{aligned}\right.
$$

where λ is a positive parameter, Ω is a bounded domain in $R^{N}(N>1)$ with smooth boundary $\partial \Omega$. In addition, we assume that $1<p_{i}<N$, for $i=1,2, \ldots, n$. For λ large by applying the method of sub-super solutions the existence of a large positive weak solution is established for the above nonlinear elliptic system.

Keywords: reaction-diffusion system, p-Laplacian, positive weak solutions.
AMS classification: 35J65.

1 Introduction

In this paper we consider the existence of positive weak solution to the system

$$
\begin{cases}-\Delta_{p_{1}} u_{1}=\lambda u_{1}^{\alpha_{11}} u_{2}^{\alpha_{12}} \ldots u_{n}^{\alpha_{1 n}}, & x \in \Omega \tag{1}\\ -\Delta_{p_{2}} u_{2}=\lambda u_{1}^{\alpha_{21}} u_{2}^{\alpha_{22}} \ldots u_{n}^{\alpha_{2 n}}, & x \in \Omega \\ \cdots & \\ -\Delta_{p_{n}} u_{n}=\lambda u_{1}^{\alpha_{n 1}} u_{2}^{\alpha_{n 2}} \ldots u_{n}^{\alpha_{n n}}, & x \in \Omega, \\ \quad u_{i}=0, & x \in \partial \Omega, \quad i=1,2, \ldots, n\end{cases}
$$

where $\lambda>0$ is a parameter, Δ_{p} denotes the p-Laplacian operator defined by $\Delta_{p} z=\operatorname{div}\left(|\nabla z|^{p-2} \nabla z\right)$, and Ω is a bounded domain in $R^{N}(N>1)$ with smooth boundary $\partial \Omega$. In addition, we assume that $1<p_{i}<N$, for $i=$ $1,2, \ldots, n$.

Problems involving the p-Laplacian arise from many branches of pure mathematics as in the theory of quasiregular and quasiconformal mapping (see [1]) as well as from various problems in mathematical physics notably the flow of nonNewtonian fluids.

The structure of positive solutions for quasilinear reaction-diffusion systems (nonlinear Newtonian filtration systems) and semilinear reaction-diffusion systems (Newtonian filtration systems) is a front topic in the study of static electric fields in dielectric media, in which the potential is described by the boundary value problem of a static non-Newtonian filtration system, called the PoissonBoltzmann problem. This kind of problems also appears in the study of the nonNewtonian or Newtonian turbulent filtration in porous media and so on, which have extensive engineering background.

In recent years, many authors have investigated the following initial boundary value problem of a class of quasilinear reaction-diffusion system

$$
\left\{\begin{array}{l}
u_{t}=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+u^{\alpha_{1}} v^{\beta_{1}}, \tag{2}\\
v_{t}=\operatorname{div}\left(|\nabla v|^{q-2} \nabla v\right)+u^{\alpha_{2}} v^{\beta_{2}}, \quad(x, t) \in \Omega \times(0, T),
\end{array}\right.
$$

where Ω is as above, $p, q>1$ (see e.g. [2]). For $p=q=2$, (2) is the classical reaction-diffusion system of Fujita type. If $p \neq 2, q \neq 2$, (2) appears in the theory of non-Newtonian fluids [3] and in nonlinear filtration theory [4]. In the nonNewtonian fluids theory, the pair (p, q) is a characteristic quantity of the medium. Media with $(p, q)>(2,2)$ are called dilatant fluids and those with $(p, q)<(2,2)$ are called pseudoplastics. If $(p, q)=(2,2)$, they are Newtonian fluids.

Yang and $\mathrm{Lu}[2]$ studied the nonexistence of positive solutions to the system (2). We refer to [5-7] for additional results on elliptic systems. In this paper, we shall prove that if $\sum_{j=1}^{n} \alpha_{1 j}<p_{1}-1, \sum_{j=1}^{n} \alpha_{2 j}<p_{2}-1, \ldots, \sum_{j=1}^{n} \alpha_{n j}<$ $p_{n}-1,(1)$ admits a positive weak solution for each $\lambda>0$. Our approach is based on the method of sub- and supersolutions, see [8].

2 Existence results

Let $W_{0}^{1, s}=W_{0}^{1, s}(\Omega), s>1$, denote the usual Sobolev space. We first give the definition of weak solution of (1).

Definition 1. A pair of nonnegative functions $\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n}\right),\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ in $W_{0}^{1, p_{1}} \times W_{0}^{1, p_{2}} \times \ldots \times W_{0}^{1, p_{n}}$ are called a weak subsolution and supersolution of (1) if they satisfy $\psi_{i}(x) \leq z_{i}(x)$ in Ω for $i=1,2, \ldots, n$, and

$$
\int_{\Omega}\left|\nabla \psi_{i}\right|^{p_{i}-2} \nabla \psi_{i} \nabla w_{i} d x \leq \lambda \int_{\Omega} \prod_{j=1}^{n} \psi_{j}^{\alpha_{i j}} w_{i} d x
$$

for $i=1,2, \ldots, n$ and

$$
\int_{\Omega}\left|\nabla z_{i}\right|^{p_{i}-2} \nabla z_{i} \nabla w_{i} d x \geq \lambda \int_{\Omega} \prod_{j=1}^{n} z_{j}^{\alpha_{i j}} w_{i} d x
$$

for $i=1,2, \ldots, n$ and for all $w_{i}(x) \in W_{0}^{1, p_{i}}$, with $w_{i} \geq 0$.
We shall obtain the existence of positive weak solution to system (1) by constructing a positive weak subsolution $\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n}\right)$ and supersolution $\left(z_{1}, z_{2}, \ldots, z_{n}\right)$.

Our main result is formulated in the following theorem.
Theorem 1. Suppose that $\alpha_{i i} \geq 0, \alpha_{i j}>0(i \neq j)$, and $\sum_{j=1}^{n} \alpha_{1 j}<p_{1}-1$, $\sum_{j=1}^{n} \alpha_{2 j}<p_{2}-1, \ldots, \sum_{j=1}^{n} \alpha_{n j}<p_{n}-1$. Then system (1) has a positive weak solution for each $\lambda>0$.

Proof. Let $\lambda_{1}^{(i)}(i=1,2, \ldots, n)$ be the first eigenvalue of the problems, respectively,

$$
\begin{cases}-\Delta_{p_{i}} \phi_{1}^{(i)}=\lambda_{1}^{(i)}\left|\phi_{1}^{(i)}\right|^{p_{i}-2} \phi_{1}^{(i)}, & x \in \Omega, \\ \phi_{1}^{(i)}=0, & x \in \partial \Omega, \quad i=1,2, \ldots, n,\end{cases}
$$

where $\phi_{1}^{(i)}$, denote the corresponding eigenfunctions, respectively, satisfying $\phi_{1}^{(i)}(x)>0$ in $\Omega,\left|\nabla \phi_{1}^{(i)}\right|>0$ on $\partial \Omega$ (this is possible since by the Maximum
principle $\partial \phi_{1}^{(i)} / \partial n<0$ for $x \in \partial \Omega$ where n denotes the outward normal, see [9]), and $\left\|\phi_{1}^{(i)}\right\|_{\infty}=1$ for $i=1,2, \ldots, n$. We shall verify that

$$
\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n}\right)=\left(k\left(\frac{\left(p_{1}-1\right)}{p_{1}}\right)\left(\phi_{1}^{(1)}\right)^{\frac{p_{1}}{p_{1}-1}}, \ldots, k\left(\frac{\left(p_{n}-1\right)}{p_{n}}\right)\left(\phi_{1}^{(n)}\right)^{\frac{p_{n}}{p_{n}-1}}\right)
$$

is a subsolution of (1), where $k>0$ is small and specified later. Let $w_{i} \in W_{0}^{1, p_{i}}$ with $w_{i} \geq 0(i=1,2, \ldots, n)$. A calculation shows that

$$
\begin{aligned}
& \int_{\Omega}\left|\nabla \psi_{i}\right|^{p_{i}-2} \nabla \psi_{i} \nabla w_{i} d x \\
& \quad=k^{p_{i}-1} \int_{\Omega} \phi_{1}^{(i)}\left|\nabla \phi_{1}^{(i)}\right|^{p_{i}-2} \nabla \phi_{1}^{(i)} \nabla w_{i} d x \\
& \quad=k^{p_{i}-1}\left\{\int_{\Omega}\left|\nabla \phi_{1}^{(i)}\right|^{p_{i}-2} \nabla \phi_{1}^{(i)} \nabla\left(\phi_{1}^{(i)} w_{i}\right) d x-\int_{\Omega}\left|\nabla \phi_{1}^{(i)}\right|^{p_{i}} w_{i} d x\right\} \\
& \quad=k^{p_{i}-1} \int_{\Omega}\left(\lambda_{1}^{(i)}\left(\phi_{1}^{(i)}\right)^{p_{i}}-\left|\nabla \phi_{1}^{(i)}\right|^{p_{i}}\right) w_{i} d x
\end{aligned}
$$

for $i=1,2, \ldots, n$. Since $\phi_{1}^{(i)}=0$ and $\left|\nabla \phi_{1}^{(i)}\right|>0$ on $\partial \Omega$, for $i=1,2, \ldots, n$, there is $\delta>0$ such that for $i=1,2, \ldots, n$, we have

$$
\lambda_{1}^{(i)}\left(\phi_{1}^{(i)}\right)^{p_{i}}-\left|\nabla \phi_{1}^{(i)}\right|^{p_{i}} \leq 0, \quad x \in \bar{\Omega}_{\delta}
$$

with $\bar{\Omega}_{\delta}=\{x \in \Omega \mid d(x, \partial \Omega) \leq \delta\}$. Now on $\bar{\Omega}_{\delta}$ we have

$$
k^{p_{i}-1}\left(\lambda_{1}^{(i)}\left(\phi_{1}^{(i)}\right)^{p_{i}}-\left|\nabla \phi_{1}^{(i)}\right|^{p_{i}}\right) \leq 0 \leq \lambda \prod_{j=1}^{n} \psi_{j}^{\alpha_{i j}} \quad(i=1,2, \ldots, n)
$$

Next, we note that $\phi_{1}^{(i)}(x) \geq \eta>0$ in $\Omega_{0}=\Omega \backslash \bar{\Omega}_{\delta}$ for some $\eta>0$, and $i=1,2, \ldots, n$. Since for $i=1,2, \ldots, n$ we have $\sum_{j=1}^{n} \alpha_{i j}<p_{i}-1$, then there is $k_{0}>0$ such that if $k \in\left(0, k_{0}\right)$ we have

$$
\begin{aligned}
& k^{p_{i}-1} \lambda_{1}^{(i)}\left(\phi_{1}^{(i)}\right)^{p_{i}-\alpha_{i i} p_{i} /\left(p_{i}-1\right)} \\
& \quad \leq \lambda k^{\sum_{j=1}^{n} \alpha_{i j}}\left(\prod_{j=1}^{n}\left(\frac{p_{j}-1}{p_{j}}\right)^{\alpha_{i j}}\right)\left(\eta^{\sum_{j=2}^{n} \frac{\left(\alpha_{i j}\right) p_{j}}{p_{j}-1}}\right) \\
& \quad \leq \lambda\left(\prod_{j=1}^{n}\left(\frac{p_{j}-1}{p_{j}}\right)^{\alpha_{i j}}\right)\left(\prod_{j=2}^{n}\left(\phi_{1}^{(i)}\right)^{\frac{\left(\alpha_{i j}\right) p_{j}}{p_{j}-1}}\right), \quad x \in \Omega_{0}
\end{aligned}
$$

for $i=1,2, \ldots, n$. Then in Ω_{0}

$$
k^{p_{i}-1}\left(\lambda_{1}^{(i)}\left(\phi_{1}^{(i)}\right)^{p_{i}}-\left|\nabla \phi_{1}^{(i)}\right|^{p_{i}}\right) \leq \lambda \prod_{j=1}^{n} \psi_{j}^{\alpha_{i j}},
$$

for $i=1,2, \ldots, n$. Hence

$$
\begin{aligned}
& \int_{\Omega}\left|\nabla \psi_{i}\right|^{p_{i}-2} \nabla \psi_{i} \nabla w_{i} d x \\
& \quad=\int_{\bar{\Omega}_{\delta}}\left|\nabla \psi_{i}\right|^{p_{i}-2} \nabla \psi_{i} \nabla w_{i} d x+\int_{\Omega_{0}}\left|\nabla \psi_{i}\right|^{p_{i}-2} \nabla \psi_{i} \nabla w_{i} d x \\
& = \\
& \quad k^{p_{i}-1} \int_{\bar{\Omega}_{\delta}}\left(\lambda_{1}^{(i)}\left(\phi_{1}^{(i)}\right)^{p_{i}}-\left|\nabla \phi_{1}^{(i)}\right|^{p_{i}}\right) w_{i} d x \\
& \quad+k^{p_{i}-1} \int_{\Omega_{0}}\left(\lambda_{1}^{(i)}\left(\phi_{1}^{(i)}\right)^{p_{i}}-\left|\nabla \phi_{1}^{(i)}\right|^{p_{i}}\right) w_{i} d x \\
& \quad \leq \lambda \int_{\Omega_{\delta}} \prod_{j=1}^{n} \psi_{j}^{\alpha_{i j}} w_{i} d x+\lambda \int_{\Omega_{0}} \prod_{j=1}^{n} \psi_{j}^{\alpha_{i j}} w_{i} d x \\
& = \\
& \quad \lambda \int_{\Omega} \prod_{j=1}^{n} \psi_{j}^{\alpha_{i j}} w_{i} d x,
\end{aligned}
$$

for $i=1,2, \ldots, n$, i.e. $\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n}\right)$ is a subsolution of (1).
Next, let $\zeta_{i}(x)(i=1,2, \ldots, n)$ be the positive solution of

$$
\left\{\begin{array}{cl}
-\Delta_{p_{i}} \zeta_{i}=1, & x \in \Omega, \\
\zeta_{i}=0, & x \in \partial \Omega, \quad i=1,2, \ldots, n .
\end{array}\right.
$$

For existence results of positive solutions for above boundary value problems see [9]. Let

$$
\left(z_{1}, z_{2}, \ldots, z_{n}\right)=\left(C_{1} \zeta_{1}(x), C_{2} \zeta_{2}(x), \ldots, C_{n} \zeta_{n}(x)\right),
$$

where $C_{i}>0$ are large numbers to be chosen later. We shall verify that $\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ is a supersolution of (1). To this end, let $w_{i}(x) \in W_{0}^{1, p_{i}}$, with
$w_{i} \geq 0$, for $i=1,2, \ldots, n$. Then we have

$$
\begin{aligned}
\int_{\Omega}\left|\nabla z_{i}\right|^{p_{i}-2} \nabla z_{i} \nabla w_{i} d x & =C_{i}^{p_{i}-1} \int_{\Omega}\left|\nabla \zeta_{i}\right|^{p_{i}-2} \nabla \zeta_{i} \nabla w_{i} d x \\
& =C_{i}^{p_{i}-1} \int_{\Omega} w_{i} d x
\end{aligned}
$$

for $i=1,2, \ldots, n$. Let $l_{i}=\left\|\zeta_{i}\right\|_{\infty}, i=1,2, \ldots, n$. It is easy to prove that there exist positive large constants $C_{1}, C_{2}, \ldots, C_{n}$ such that

$$
\begin{aligned}
C_{1}^{p_{1}-1-\alpha_{11}} & \geq \lambda\left(\prod_{j=2}^{n} C_{j}^{\alpha_{1 j}}\right)\left(\prod_{j=1}^{n} l_{j}^{\alpha_{1 j}}\right) \\
& \ldots \\
C_{n}^{p_{n}-1-\alpha_{n n}} & \geq \lambda\left(\prod_{j=1}^{n-1} C_{j}^{\alpha_{n j}}\right)\left(\prod_{j=1}^{n} l_{j}^{\alpha_{n j}}\right) .
\end{aligned}
$$

Then for $i=1,2, \ldots, n$ we have

$$
C_{i}^{p_{i}-1} \geq \lambda\left(\prod_{j=1}^{n}\left(C_{j} l_{j}\right)^{\alpha_{i j}}\right) \geq \lambda\left(\prod_{j=1}^{n}\left(C_{j} \zeta_{j}\right)^{\alpha_{i j}}\right)=\lambda\left(\prod_{j=1}^{n} z_{j}^{\alpha_{i j}}\right)
$$

and therefore

$$
\int_{\Omega}\left|\nabla z_{i}\right|^{p_{i}-2} \nabla z_{i} \nabla w_{i} d x \geq \lambda \int_{\Omega} \prod_{j=1}^{n} z_{j}^{\alpha_{i j}} w_{i} d x
$$

for $i=1,2, \ldots, n$, i.e. $\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ is a supersolution of (1) with $z_{i} \geq \psi_{i}$ in Ω for large $C_{i}, i=1,2, \ldots, n$. Thus, by the comparison principle, there exists a solution $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ of (1) with $\psi_{i} \leq u_{i} \leq z_{i}$, for $i=1,2, \ldots, n$. This completes the proof of Theorem 1.

References

1. P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Diff. Eqns., 51, pp. 126-150, 1984.
2. Z. Yang, Q. Lu, Non-existence of positive solution to a quasilinear elliptic system and blow-up estimates for a reaction-diffusion system, Communications in Nonlinear Science and Numerical Simulation., 6(4), pp. 222-226, 2001.
3. G. Astarita, G. Marrucci, Principles of non-Newtonian fluid mechanics, McGrawHill, 1974.
4. J.R. Esteban, J.L. Vazquez, On the equationof turbulent filteration in onedimensional porous media, Nonl. Anal., 10, pp. 1303-1325, 1986.
5. L. Boccardo, D. G. Figueiredo, Some remarks on a system of quasilinear elliptic equations, Nonl. Diff. Eqns. Appl., 9, pp. 231-240, 2002.
6. A. Djellit, S. Tas, On some nonlinear elliptic systems, Nonl. Anal., 59, pp. 695-706, 2004.
7. D. D. Hai, On a class of semilinear elliptic problems, J. Math. Anal. Appl., 285, pp. 477-486, 2003.
8. P. Drabek, J. Hernandez, Existence and uniqueness of positive solutions for some quasilinear elliptic problem, Nonl. Anal., 44, pp. 189-204, 2001.
9. P. Drabek, P. Kerjci, P. Takac, Nonlinear Differential Equations, Chapman and Hall/CRC, 1999.
