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Abstract. Two algorithms for the determination of the necessary limitof
local error for the numerical solution of ordinary differential equation (ODE)
systems describing homogeneous chemical and biochemical processes, and
for the evaluation of their stiffness are developed. The approach for finding
the necessary limit of local error of a numerical ODE solver is justified
by the proof of the corresponding theorems. The applicationof the new
algorithms implemented in version 2.1 of KinFitSim software to the simulation
of real chemical systems is considered on the example of Belousov-Zhabotinsky
reaction.
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1 Introduction

Although mathematical models of real-world problems are becoming more and

more complex, many of them can still be formulated in terms of ordinary diffe-

rential equations (ODEs). The range of processes which are described by ODEs

spans over mechanics, biology, medicine, chemistry and other areas that are of

great interest in modern science.

At present, particularly interesting and important problems are found in bio-

logy where the study of biochemical reactions continually taking place in living
∗The authors would like to acknowledge NATO for the Reintegration Grant NUKR.RIG.981488.
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organisms is crucial to understanding their role in regulating biological processes.

If all species participating in a reaction mechanism are uniformly distributed in

space the corresponding mathematical model will consist only of rate laws, i.e.

of ODEs. Biochemical processes are usually extremely complex and thus their

models are particularly demanding to the quality of numerical methods for their

solution. However, even simple chemical reactions may require the applicationof

advanced numerical methods for their simulation due to corresponding systems

of ODEs being stiff [1]. This happens when rates of chemical reactions are

very different which means that some components of the solution change much

faster than others. In this case standard numerical methods such as Runge-Kutta

methods and Adams methods [1] fail and stiff-stable methods must be used. In

addition to their enhanced stability these methods are typically more accurate

owing to their implicit nature. However, even the use of appropriate methods

cannot guarantee that a numerical solution is adequate as will be shown below.

Consider a general homogeneous chemical process involvingn species

(n ≥ 2) which consists ofm elementary reaction steps (m ≥ 1). Another

assumption that we make here is that variations of temperature and pressureduring

the observation period are insignificant and therefore rate constants ofindividual

reactions do not vary with time. Formally, such process may be representedby a

matrix stoichiometric equation [1,2]:

Y α = 0, (1)

whereα ∈ Z
n×m is the stoichiometric matrix whose columns correspond to

stoichiometric vectors of individual reactions andY ≡ {Y1, Y2, . . . , Yn} is the

vector of symbolic species names. The matrixα gives proportions of reacting

species in elementary reaction steps and can be represented as the difference

of two matricesα = π − ρ whereπ, ρ ∈ Z
n×m
+ are the product and reagent

stoichiometric matrices respectively.

The generalised mathematical model of a homogeneous chemical process has

been previously described [2] and using the notations introduced here may be

presented in the following form:

dyk

dt
=

m
∑

j=1

(πkj − ρkj)
(

k+
j

n
∏

i=1

y
ρij

i − k−
j

n
∏

i=1

y
πij

i

)

, k = 1, n, (2)
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whereyk is the concentration of speciesYk, πij andρij are the elements of the

product and reagent stoichiometric matrices respectively,k+
j , k−

j ∈ R+ are the

rate constants of the forward and reverse reactions injth elementary reaction step,

t ∈ [0, T ] whereT is the observation period length which is assumed finite.

The system of ODEs (2) is subject to the following initial conditions

y(0) = y0, (3)

wherey(t) ≡ {y1(t), y2(t), . . . , yn(t)}T is the vector of concentrations andy0 ≡
{y1(0), y2(0), . . . , yn(0)}T is the vector of initial concentrations.

The ODE system (2) is non-linear and therefore cannot be resolved analyti-

cally in the general case. Hence there is a need to exploit approximate numerical

methods for its solution. There exist a number of general and specialised nume-

rical methods for the solution of systems of ODEs [1, 3–5]. The most popular

modern numerical methods for solving ODEs comprise linear multistep methods

[5] including different types of predictor-corrector schemes, explicitand implicit

Runge-Kutta methods [1, 5]. The backward differentiation formulae (BDF) of

different orders [4, 7] (also known as the Gear’s method) and implicit Runge-

Kutta methods [1,8] are widely used to treat stiff ODE systems. In computational

practice these methods usually incorporate an algorithm for adaptive time stepsize

control, which provides a more or less uniform error distribution over the course

of simulation. These algorithms determine the size of the next time step based on

the estimated value of local error at the current time step and a predefined limit

of local integration error. A typical algorithm of this sort utilises an expression of

the form

hk+1 = ωhk

( ε

rk+1

)
1

s+1
, (4)

wherehk andhk+1 are the successive time steps,ε is the limit of local error,rk+1

is the estimate of local error at(k + 1)th step,ω ≤ 1 is a safety factor against

overestimation of the step size ands is the order of a method.

Yet, such an algorithm must also take into account the stability properties

of a numerical integration method when choosing the size of the next time step.

Stiff problems pose especially harsh restrictions on the size of the integrationtime

step and consequently special methods have been developed for such problems.
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However, for some of these methods such as Gear’s method [4] or implicit Runge-

Kutta methods [1] the stability regions have not been determined or have beenes-

tablished only approximately. Hence, if during the process of numerical solution

the adaptive step selection algorithm that is unaware of the stability properties

of the pertinent numerical method selects a step size, which is outside of the

actual (but unknown) stability region, the simulation is likely to fail or lead to

a physically non-realistic solution. In particular, during numerical simulation of

a homogeneous chemical reaction mechanism some concentrations may become

negative while nevertheless satisfying the prescribed limit of local error.This can

lead to obtaining wrong results even though the resulting concentration distribu-

tions may look not unreasonable (see below).

Consider, for example, the Belousov-Zhabotinsky reaction mechanism [9]

written in symbolic form as

A + Y
k1−→ X, k1 = 4.72 l mol−1s−1,

X + Y
k2−→ P, k2 = 3 × 109 l mol−1s−1,

B + X
k3−→ 2X + Z, k3 = 1.5 × 104 l mol−1s−1, (5)

2X
k4−→ Q, k4 = 4 × 107 l mol−1s−1,

Z
k5−→ Y, k5 = 1 s−1,

with the following initial concentrations of the species:[A]0 = [B]0 = 0.066 M,

[Z]0 = 0.002 M, [P ]0=[Q]0=[X]0=[Y ]0=0 M (1 M=1mol l−1). The mathema-

tical model of the reaction scheme (5) according to the generalised model (2) is

da/dt = −k1ay,

db/dt = −k3bx,

dp/dt = k2xy,

dq/dt = k4x
2,

dx/dt = k1ay − k2xy + k3bx − 2k4x
2,

dy/dt = −k1ay − k2xy + k5z,

dz/dt = k3bx − k5z,

(6)

where concentrations of species are designated with corresponding lower-case

letters and initial conditions are as above.
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Fig. 1(a) shows the simulation results obtained using the Gear’s method with

the limit of local errorε = 10−5. Clearly the numerical solution in this case

does not exhibit rapid “jumps” that appear in the converged concentrations with a

period of approximately16 s (the converged solution was obtained also using the

Gear’s method with the limit of local errorε = 10−12; see Fig. 1(b). Instead,

non-physical oscillations with small amplitude emerge in the numerical solu-

tion around the time of appearance of the first “jump” in the converged solution

(Fig. 2). The concentrations of speciesY andZ become negative in this region

Fig. 1. Computed concentration distributions for the Belousov-Zhabotinsky
reaction: (a) numerical solution with limit of local errorε = 10−5;

(b) converged solution.

Fig. 2. Oscillations in concentrations ofY andZ computed numerically with
limit of local errorε = 10−5.
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which causes the numerical solution to converge to some steady solution instead

of that for the “oscillating” Belousov-Zhabotinsky reaction (Fig. 1(b)).This how-

ever is not obvious from Fig. 1(a) where all shown concentration distributions do

not look implausible.

This example shows that systems of ODEs of the form (2) (and especially

stiff systems) cannot be integrated properly with an arbitrarily set limit of local

error and there is a need in an algorithm for the determination of a threshold of

local error that would guarantee obtaining adequate numerical solutions.

In this paper, we formulate and justify two algorithms for the determination

of stiffness of the general model of a homogeneous reaction mechanism and

for the determination of the threshold of local error which guarantees obtaining

physically meaningful results.

2 A priori estimation of the stiffness of ODE systems

An ODE system is stiff if the stiffness coefficient defined by

S(t) = max
1≤i≤n

Re(−λi)
/

min
1≤i≤n

Re(−λi), (7)

whereλi, i = 1, n are eigen-values of the Jacobian of the right-hand side (r.h.s.)

of (2), is much greater than unity [1]. In general it is impossible to determine

stiffness of an ODE system prior to its solution because the stiffness coefficient is

a function of time. Therefore, even if its value evaluated att = 0 (this can be done

without solving the system) is close to unity an ODE system cannot be guaranteed

to be non-stiff since fort > 0 the value ofS(t) can exceed 1 by several orders of

magnitude.

Nevertheless, a robust criterion for the determination of stiffness of an ODE

system of the form (2) can be formulated on the basis ofa priori knowledge of the

rate constantsk+
j andk−

j , j = 1, m. Generally these rate constants have different

dimensions due to different reaction orders, the fact which prevents their direct

comparison. To avoid this difficulty we introduceequivalentrate constants in the

following way. First, we note that for each stepj in the mechanism its orders in

the forward (+) and reverse (–) directions are expressed respectively as

p+
j =

n
∑

i=1

ρij , p−j =
n
∑

i=1

πij . (8)
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Equivalentforward and reverse rate constants are then defined as

k+
j,equiv = k+

j y
p+

j −1

0,max, k−
j,equiv = k−

j y
p−j −1

0,max, (9)

respectively wherey0,max is the maximum initial concentration among reacting

species. According to the definitions (9), equivalent rate constants have units of

s−1 and thus the introduction of these definitions may be interpreted as the re-

placement of all reaction steps in the mechanism with corresponding pseudo-first

order reactions. Obviously, not all multi-component reactions may be treated as

pseudo-first order ones but this approach allows one to (approximately) compare

the relative rates of different reaction steps in the mechanism.

Since the dimensions of all equivalent rate constants (9) are equal (s−1) they

can be directly compared with each other. Thus the followinginitial stiffness

coefficient can be introduced

S0 =

max
(

max
1≤j≤m

k+
j,equiv, max

1≤j≤m
k−

j,equiv

)

min

(

min
1≤j≤m

k+
j,equiv>0

k+
j,equiv, min

1≤j≤m

k−

j,equiv>0

k−
j,equiv

) , (10)

where the numerator equals maximum among all forward and reverse equivalent

rate constants and the denominator equals minimum non-zero equivalent rate

constant. We assume that an ODE system under consideration is stiff ifS0 ≥ 100

and non-stiff otherwise.

In practice the value ofS0 calculated from (10) allows one to choose be-

tween the non-stiff (e.g. Adams-Moulton [1, 5]) and stiff (e.g. Gear [4])solvers.

Although the suggested bound (10) usually overestimates the value of the stiff-

ness coefficient (7) it promptly detects problem stiffness which allows avoiding

program breakdowns due to incorrect choice of the solution method.

Considering the above example of the Belousov-Zhabotinsky reaction one

can evaluateS0 to be6.36× 108 which clearly indicates that the ODE system (6)

describing this reaction scheme is stiff.
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3 Choosing the limit of local error

Let us rewrite the Cauchy problem (2), (3) in the following (vector) formto

simplify notations:

y′ = f(y), (11)

y(0) = y0. (12)

The autonomous ODE system (11) satisfies the conditions of the theorem of

existence and uniqueness of the solution [10] since the functionf(y) is continu-

ously differentiable in the area

G =
{

y : 0 ≤ yi(t) ≤ b, 0 ≤ t ≤ T, i = 1, n
}

, (13)

i.e. fi ∈ C1(G), i = 1, n. It also follows from continuous differentiability of

fi, i = 1, n in G that these functions and their derivatives are bounded:

∣

∣fi(y)
∣

∣ ≤ M0,
∣

∣

∣

dfi

dyj

∣

∣

∣
≤ M1, t ∈ [0, T ], i, j = 1, n. (14)

The constantb in (13) is an appropriately chosen upper boundary of the variation

of all the functionsyi(t), i = 1, n, which may be estimated as

b = M0T. (15)

The exact solution to (11), (12) (or (2), (3)) thus satisfies the followingtwo-

sided inequalities

0 ≤ yi(t) ≤ b, t ∈ [0, T ], i = 1, n, (16)

since concentrations must remain non-negative and be bounded above,which

follows from continuous differentiability of functionsyi(t), i = 1, n on a closed

set [11].

We can now formulate the following theorem about the properties of the exact

solution to the Cauchy problem (2), (3):

Theorem 1. For everyτ such that0 < τ < T the exact solution to(2), (3) on the

interval [τ, T ] satisfies the two-sided inequalities

0 < yi(t) < b, i = 1, n, (17)

whereb is defined in(15).
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Proof. Functionsfi(y), i = 1, n are not identical zeros by construction. From

this fact and inequalities (16) it follows that for the componentsyk(t) of the

concentration vector with zero initial conditions (y0
k = 0) the corresponding

r.h.s. functionsfk(y) must be strictly positive in the vicinity oft = 0. Therefore

for sufficiently smallτ > 0 all components ofy will be strictly positive att = τ ,

i.e. yi(τ) > 0, i = 1, n.

Let us now consider functionsyi(t), i = 1, n on the interval[τ, T ] and prove

by contradiction that they do not vanish there. Suppose that one component of

the concentration vector,yk(t), vanishes att = t0, t0 ∈ [τ, T ]. yk(t) cannot

vanish at more than a finite number of points of[τ, T ] since otherwise the iden-

tity yk(t) ≡ 0 would hold true, which contradicts equation (2). Additionally,

yk(t) ≥ 0 according to inequality (16). Thereforet = t0 is a minimum point of

yk(t). Then the derivative,dyk/dt, at this point must also equal zero and change

its sign from negative to positive when passingt = t0 from left to right together

with the r.h.s. functionfk(y).

Consider now the function

fk(y) =

m
∑

j=1

(πkj − ρkj)
[

k+
j

n
∏

i=1

y
ρij

i − k−
j

n
∏

i=1

y
πij

i

]

(18)

at t = t0. The number of terms in the sum on the r.h.s. of (18) can be reduced

since the terms describing elementary reaction steps in which speciesYk does not

take part are identical zeros. Denotemρ
k the number of elementary reactions in

which Yk is a reactant and
{

js(k)
}mρ

k

s=1
is a subset of indexesj = 1, n corres-

ponding to such reactions. Similarly,mπ
k is the number of elementary reactions

in which speciesYk is a product and
{

ls(k)
}mπ

k

s=1
is a subset of reaction indexes

corresponding to such reactions.

Next we note that ifYk is a reactant injth reaction then att = t0 the first

term in square brackets in (18) is equal to zero due to a zero multipliery
ρkj

k (t0).

Likewise, if Yk is a product ofjth reaction then att = t0 the second term in

square brackets in (18) equals zero. Thus the expression forfk(y) at t = t0 can
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be rewritten as

fk

(

y(t0)
)

=

mρ
k

∑

j=1

ρkjs(k)k
−
js(k)

∏

i=1,n
i6=k

y
πijs(i)

i (t0)

+

mπ
k

∑

j=1

πkls(k)k
+
ls(k)

∏

i=1,n
i6=k

y
ρils(i)

i (t0).

(19)

Clearly this expression is strictly positive att = t0 because all concentrations but

yk(t0) are non-zero, constantsρkls(k) andπkjs(k) are positive and rate constants

k−
js(k) andk+

ls(k) are non-negative. Moreover, there exists at least one non-zero

rate constant since otherwise speciesYk does not participate in any reaction step

and should be mapped out.

Whence the r.h.s. of (19) is strictly positive which contradicts our supposition

thatyk(t) vanishes att = t0 and has a minimum at this point, i.e.fk(y(t0)) = 0.

On the other hand,yk(t) cannot reachb according to the definition of the latter in

equation (15) which completes the proof.

Let us now apply the Euler’s method [3,5,6] to obtain an approximate solution

of the Cauchy problem (11), (12). The main iterative formula of the method is

yi+1 = yi + hif(yi) + ηi, (20)

wherehi is the ith integration step length andηi is the vector of discretisation

error atith step whose components can be estimated as

max
1≤j≤n

|ηi
j | ≤ c0h

2
i , (21)

wherec0 is a constant independent oft andy. Using these notations we formulate

the following theorem:

Theorem 2. If fj ∈ C1(G), j = 1, n and there exists a solutiony(t) to the

Cauchy problem(11), (12) in the closed interval[0, T ] satisfying the assumptions

of Theorem1 then there exists such a limit of local errorε0 of the Euler’s method

that for any limit of local errorε < ε0 the inequalities

c̄h < min
i

yi
j < max

i
yi

j < b − c̄h, (22)
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whereh = max
i

hi and

c̄ =
c0 + 0.5nM0M1√

nM1
(enTM1 − 1), j = 1, n (23)

will hold true for an approximate solution computed using the Euler’s method

(20)with adaptive step-size control, eq.(4), with the local error limit set atε.

Proof. Consider the vector of local errors in numerical solution of (11), (12)

obtained according to equation (20) onith integration step,

εi = y(ti) − yi. (24)

Its value can be estimated by expanding the exact solution to the Cauchy problem

(11), (12) into a Taylor series aroundti and eliminating the terms of the order

higher than one:

y(ti+1) = y(ti) + hi
dy

dt

∣

∣

∣

t=ti
+

h2
i

2

d2y

dt2

∣

∣

∣

t=ξ

= y(ti) + hif
(

y(ti)
)

+
h2

i

2

df

dt

∣

∣

∣

t=ξ

= y(ti) + hif
(

y(ti)
)

+
h2

i

2

(∂f

∂y

dy

dt

)∣

∣

∣

t=ξ
,

where the remainder is written in Lagrange’s form withξ ∈ [ti, ti+1] and∂f/∂y

is the Jacobian of the r.h.s. of (11). The local error on the time step(i + 1) can

then be written as

εi+1 = εi + hi

(

f
(

y(ti)
)

− f(yi)
)

+
h2

i

2

(∂f

∂y

dy

dt

)∣

∣

∣

t=ξ
− ηi

= εi + hi
∂f

∂y

∣

∣

∣

y=θ
εi +

h2
i

2

∂f

∂y

∣

∣

∣

t=ξ
f
(

y(ξ)
)

− ηi,

where we applied the mean-value theorem of the differential calculus and vectorθ

lies betweeny(ti) andyi. The norm of the vector of local errors can be estimated

as

‖εi+1‖ = ‖εi‖ + hi

∥

∥

∥

∂f

∂y

∣

∣

∣

y=θ

∥

∥

∥
‖εi‖ +

h2
i

2

∥

∥

∥

∂f

∂y

∣

∣

∣

t=ξ

∥

∥

∥

∥

∥f
(

y(ξ)
)
∥

∥+ ‖ηi‖

≤ (1 + nhM1)‖εi‖ + h2M,

257



O.V. Klymenko, I. B. Svir

whereM = c0
√

n + n3/2M0M1/2. The latter can be rewritten in the form

‖εi+1‖ ≤ h
M

nM1
(e(i+1)nhM1 − 1).

Hence, the maximum error due to discretisation according to the Euler’s

method allows the following upper estimate to be devised:

‖εi‖ ≤ ε = h
M

nM1
(enTM1 − 1), ∀i. (25)

The same estimate holds also for the components of the vectorεi since|εi
j | ≤

‖εi‖, j = 1, n.

Using the estimate (25) and the definition of local error (24) we can write
∣

∣yj(ti) − yi
j

∣

∣ ≤ ε, j = 1, n.

Rearranging the latter we obtain the following two-sided inequality for the numer-

ical solution

yj(ti) − ε ≤ yi
j ≤ yj(ti) + ε, j = 1, n. (26)

Sinceyj(t) is continuous on the closed interval[0, T ] it attains its minimum

and maximum values on this interval according to the extreme-value theorem for

continuous functions [11]. We denote those values asyj,min andyj,max respec-

tively. We know from Theorem 1 that the exact solutiony(t) to the Cauchy

problem (11), (12) satisfies (17) for allt > 0. Therefore,yj,min > 0. Then

there exists such steph1,j that for allh < h1,j the value of local errorε estimated

by (25) will be less thanε1,j = yj,min/2 and the inequality

yi
j ≥ yj(t) − ε > ε (27)

will be satisfied. Analogously, there exists such steph2,j that for allh < h2,j the

value of local errorε will be less thanε2,j = (b − yj,max)/2 and the following

inequality will hold:

yi
j ≤ yj(t) + ε > b − ε. (28)

Hence, selecting the limit of local error as

ε0 = min
1≤j≤n

min(ε1,j , ε2,j) (29)
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and combining inequalities (25)–(28) we obtain that forh = h0 = ε0/c̄ where

c̄ = M
nM1

(

enTM1−1
)

the numerical solution to the Cauchy problem (11), (12) will

satisfy the two-sided inequality (22). The inequality (22) will also be satisfiedfor

anyh < h0. Thus definingε = hc̄ < h0c̄ = ε0 we obtain the desired result.

It follows from Theorem 2 that there always exists a limit of local error for

which the numerical solution obtained by the Euler’s method will lie inG and

therefore remain strictly positive for allt > 0. This result remains valid for

other numerical methods for ODEs which differ from the Euler’s method by a

higher order of approximation, i.e. whenmax
1≤j≤n

|ηi
j | ≤ c̃hp wherec̃ is a constant

independent oft andy andp is the order of a method.

We can now devise a criterion for the determination of the threshold of local

error necessary for the solution to lie in the physical domain thus eliminating

non-physical oscillations:numerically computed concentrations in the Cauchy

problem(2), (3) must remain non-negative

yi
j ≥ 0, j = 1, n (30)

for any step numberi = 1, 2, . . ..

In practice the above criterion is applied as follows. The numerical solution

starts with an initial limit of local error (say,ε = 10−5). Then if condition (30)

is violated during calculations the numerical solution process restarts with the

limit of local error ε := ε/10. If necessary, this algorithm is repeated several

times until the numerical solution satisfies (30) at all integration steps. Theorem 2

ensures that such a threshold of local error can be found for any Cauchy problem

of the form (2), (3). However, in computational practice it is reasonableto restrict

the decrease of the local error limitε by the machine precision of a computer,

which is used for calculations.

Turning back to the Belousov-Zhabotinsky reaction [9] and applying to it

the above algorithm implemented in software package KinFitSim [2, 12–14] for

kinetic simulation and fitting experimental data we find that the maximum limit

(threshold) of local error which allows obtaining an adequate numerical solution

is ε = 10−8. Setting the Gear’s method tolerance to a value less than or equal

to 10−8 results in a numerical solution which is free of non-physical oscillations

and follows the fully converged solution (see Fig. 1(b)). This exemplifies the fact
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that even if the required accuracy of the numerical solution is lower thanε0 a

physically meaningful solution cannot be obtained with the limit of local errorε

set at values greater thanε0.

4 Conclusions

The algorithms devised and justified in this work allow one to determine the

necessary accuracy of the numerical solution of ODE systems, which represent

mathematical models of homogeneous chemical and biochemical processes, and

to assess their stiffness. The application of these algorithms ensures that an

appropriate method is applied for the numerical solution and that the result lies

within the permissible region.

The methods developed here have been implemented in the latest version

of KinFitSim package (version 2.1) [13] in the form of an automatic numerical

integration procedure. Thus the user’s intervention into the solution process is

eliminated such that both the solution method and its parameters are selected by

the program based on the analysis of the mathematical model to be solved. Hence,

the user is only required to enter a reaction mechanism and correspondinginitial

parameter values (initial concentrations and rate constants) prior to simulation.

This automatic simulation procedure has been tested of numerous kinetic reaction

mechanisms including both stiff and non-stiff in the course of numerical simula-

tion.
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