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Abstract. In this review, the nonlinearities in different processes such as
spin glasses, finite field models, Hamiltonian functions, learning and storing
capabilities, mean field systems and others in the area of physics related to the
artificial neural networks namely the main brain structure interpreted as Ising
spin systems are discussed. It is shown that nonlinearitiesserve as exclusive
role in the applied physics field.
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1 Introduction

Nonlinearities in the nature, especially in the biology or neuroanatomy, as well

as in artificial technical systems and even in social life play a marked role in the

behavior either small separate particles or large-scale, massive, strongly intercon-

nected systems. The neuroanatomy systems included the central nervous system

with massive interconnected neural networks of the cerebral cortex matter belong

to latter.

The neural networks approximately reflect the natural neurophysiological

system and they are used by neurophysiologists and modelers-cybernetists to study

real nature objects or construct new artificial systems more precisely copying a

natural being’s behavior.

In this review, I would like to pay attention to different nonlinearities that

influence to the processes in neural networks as the brain main structure on the

one hand and as an Ising spin system on the other hand.
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In the statistical physics as well as in the ferromagnetism or even in crystal

physics, the simplified model, which is wide used, is based on an Ising spin sys-

tem. The original work on the theory of the Ising spins related the ferromagnetism

is the paper of Nowell and Montroll published in 1953 [1]. I would like to pay

attention to applying this theory to the artificial neural systems or, in general,

to the brain science, especially underlying the role of aspects of nonlinearities

referring to the works of Little [2–4]. Though these issues are devoted tothe

specific problem related to the memory storage capacity in the brain, the Hebb rule

determines the basis of learning in the neural networks and defines the behavior

of the networks by the nonlinear laws.

The spin glass phase of neural networks as an Ising spin system with some

moments of nonlinearities in Section 2 is discussed. In Sections 3 and 4 the

finite-field nonlinear models as well as the results of the practical experiments

are considered. The Hamiltonian function as a main description of a behavior

of complex systems in Section 5 is represented. The exponential, learning, and

storing nonlinearities in Sections 6–8 are characterized. The proposed formalism

of the mean field description is analysed in Section 9. The brief discussion is

presented in the separate Section 10.

2 Spin glass nonlinearities

One of the important and difficult to forecast phases of the Ising spin system is

the spin glass phase [5–7]. The spin glass systems with macroscopic magnetic

moments according to EA (Edwards and Anderson [5] hereafter referred to as

EA) are dilute magnetic alloys CuMn or AuFe with weak magnetic concentration.

They are able to show the surprising properties, one of which is a susceptibility

having the cusp as the existence of preferred orientation of the spins at the critical

temperatureTc. This property is result of a change of the sign between magnetic

atoms due to the so-called the Rudermann-Kittel-Kasuya-Yosida (RKKY) [8–10]

interaction. According to the RKKY interaction the sign depends on the distance

between the atoms. Note that Mn challenges a slight anisotropy and it should

therefore correspond to the Heisenberg spin glasses. Under the spin-fluctuation

effects at zero temperature, the effective impurity moments are vanishing ata

lower magnetic concentration. At a high concentration (ferromagnetic or antifer-
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romagnetic), the spin glass properties are impaired.

Spin glasses have a sharp thermodynamic phase transition at temperature

T = Tsg, such that forT < Tsg the spins freeze in some random-looking

orientation. The spin glasses susceptibility is defined as

χsg = 1/N
∑

ij

[〈sisj〉
2
T ]av, (1)

wheresi, sj are the spins at sitesi andj, 〈· · · 〉T denotes a thermal average,[· · · ]av

indicates averaging over a Gaussian distribution of exchange interactions, N is the

number of spin elements.

The susceptibility has a consequent cusp, which has been found experimen-

tally [11]. The EA susceptibility (1) diverges. Since the susceptibility is nonlinear,

it can be defined by the coefficient ath3 in the expansion of the magnetizationm,

m = χ − χnlh
3 + O(h5), (2)

whereh is an external magnetic field. It is expected that the nonlinear suscep-

tibility, χnl = ∂2m
∂h2 diverges less strongly because of cancelations atTsg such

as

χ ∼ (T − Tsg)
−γ , (3)

whereγ is a critical exponent. This divergent behavior has been observed in the

experiment on the alloy withMn in Cu mentioned in [5].

The dynamics in the spin glasses at low temperature belowTsg is never in-

complete equilibrium because the energy function landscape is very complicated.

It has many valleys separated by barriers. The values of free energyof the valleys

can be similar while the spin configurations rather different. Since the brain

systems are large-scale, spin glass energy excitation becomes low.

3 Practical experiments of susceptibility

A spin-glass transition was studied on the basis of practical experiments and

Monte-Carlo simulation with alloys forCuGa2O4 [12]. The magnetic suscep-

tibility, magnetization measurements in the fields up to 50 kOe, specific heat and

muon-spin relaxation (µSR) measurements were carried out in the cubic spins of
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CuGa2O4. Transition undergoing from the paramagnetic to the spin glass phase

was established atTf = 25 K. As a result of experiments the phenomena of

nonlinearities in results of experiments are preferred everywhere.

The magnetization dependence ofCuGa2O4 as a single crystal versus tem-

perature is nonlinear and even the curves diverge below the bifurcationpoint. The

bifurcation point tends nonlinearly to a lower temperature by increasing a bias

field.

The ac susceptibility dependence on temperature in the absence of a bias

field (H = 0 kOe) is strongly nonlinear, while with an increase in the bias field

(H = 5 KOe, H = 10 kOe), the dependence becomes almost linearly decrea-

sing versus temperature. The nonlinearities disappear because the magnetic field

suppresses the cusp of susceptibility. It has been also shown that the character of

nonlinearities of susceptibility does not change dependent on differentfrequen-

cies, only the cusp moves to higher temperatures. Specific heat and muon-spin

relaxation curves do not distinguish in mere nonlinearities.

Analogous results of studying the spin-glass behavior have been obtained

for an ordered transition of metal alloyFeAl2 [13]. The ac susceptibility (at

the ac field amplitude of1 Oe and frequency of125 Hz) versus temperature is

represented by the curve with a cusp at lower temperatures. The inversecurve

follows the Curie-Weiss lawχ = C/(T − Θ), whereΘ is the Weiss temperature,

C is a constant defined by the nonlinear part and the straight-line.

4 Finite field nonlinear models

Nonlinearities play an important role in the main characteristics used for evalu-

ating the behavior of spin glass states and the transition line called an Almeida-

Thouless (AT) line [14] in the infinite-range (mean field) Sherrington-Kirkpatrick

model [15] and in finite field models (as more realistic one) with short range

interactions. In the latter, it is confirmed that the SOPT is valid for infinite range

interactions as well as for finite-range ones, though the latter has not proved.

The proves of an existence of the SOPT line for finite-range interactions were

performed in [14]. The Almeida-Thouless (AT) line separates the paramagnetic

phase from the spin glass phase (Fig. 1(a)).

About existence AT line in finite range there is a controversial point of view.
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Fig. 1. (a) SOPT according to RSB scenarios (SG means spin glass, PM means
paramagnetic phase), (b) SOPT according to droplet picture, a SG achieves

only for H = 0 (pictures from [16] modified).

The RSB approach presented by Parisi [17, 18], and others postulates that the

AT line occurs at infinite – range (SK) interaction as well as at finite-rangeones

(Fig. 1(a)), while the droplet picture approach followers Fischer [19], Moore [20]

claim that for finite size scaling AT line occurs only at the zero field (Fig. 1(b)).

The AT line, which divides the spin glass domain from the paramagnetic

phase or the ferromagnetic one, is nonlinear as a complicated phase transition

limit. The line existence and form the mostly depends on the strength of the

external field, for example, even in small fields there is no AT line in one- or

three-dimensional spin glasses [16, 21]. In short range interaction studies, the

couplingsJij are given by

Jij = c(σ)
eij

r2
ij

, (4)

where eij are the random values and are chosen, as a rule, according to the

Gaussian distribution with zero mean and the standard deviation unity,rij =

(L/π)sin[(π|i − j|)/L] and represents the geometric distance between the spins

on the ring of lengthL, c(σ) ∼ L−(1−2σ)/2, for the largeL, whereσ is the expo-

nent which the range of changes defines whole list of different models [21]. All

these values distinguish themselves by strong nonlinearities determined different

complex spin glass laws.

The next important nonlinear function in this area of investigation is corre-

lation length divided by the system sizeζ/L. It satisfies the finite-size scaling
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form

ζ/L = x
(
L1/γT − Tc(h)

)
, (5)

wherex is a scaling function,Tc(h) is the critical (transition) temperature for

the external field strengthh, andγ is the correlation length exponent [16]. The

presence of nonlinearities in (5) leads to the simplified method of defining the

critical point of the second order transition depending on temperature, where the

changing data of different sizeL causes intersection of the functionsζ/L(T ).

The two quantities are mostly connected with overlap in the finite size scaling

spin glass systems. The AT line existence and form the mostly depends on the

strength of the external field, for example, even in small fields there is no ATline

in one- or three-dimensional spin glasses [16,21].

The next important nonlinear function in this area of investigation is corre-

lation length divided by the system size. It satisfies the finite-size scaling form,

where the critical (transition) temperature for the external field strength is the

correlation length exponent [16, 21]. The presence of nonlinearities here leads

to the simplified method of defining the critical point of the second order transi-

tion depending on temperature, where the changing data of different sizecauses

intersection of the correlation functions (Fig. 2).

Fig. 2. Relative correlation length depends on temperaturefor Hr = 0 and
exponent parameterσ = 0.65 at different sizesL (from Katzgraber and Young

[21] modified).
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The same authors [4] present the modeling results for 1D finite-range inter-

action which shows that it also possible the crossing of the correlation lengths

for the magnetic fieldHr = 0.1 in mean field case. The marginal behavior is

achieved for power-law exponentσ = 0.65. It is necessary to underly, that short

range models are more realistic than the infinite range one.

Fig. 3. Relative correlation length depends on temperaturefor Hr = 0.1 and
exponent parameterσ = 0.55 at different sizesL (from Katzgraber and Young

[21] modified).

The overlapping,q, defined by the formula

q =
1

N

N∑

i=1

S
(1)
i S

(2)
i , (6)

whereN is the number of spins, “(1)” and “(2)” refer to two replicas of the system

with the state valueSi for the same spini, and the link overlapping,ql, defined as

ql =
1

M

N∑

i,j

S
(1)
i S

(1)
j S

(2)
i S

(2)
j , (7)

whereM is the number of bonds and the sum ofi and j connected by bonds.

These nonlinear quantities characterize the following:q links with the volume of

the cluster,qL characterizes the surface of the cluster [22].
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5 Nonlinear Hamiltonian function

The next source of nonlinearities is the Hamiltonian function or the energy func-

tion, as usual, or the effective energy function for the system of Ising spins

H = −
1

2

N∑

i6=j

JijSiSj +
N∑

i=1

hiSi (8)

and the effective energy function which characterizes the growth of theenergy

Ĥ = −
1

β

N∑

i

ln
[
2 cosh

(
β

N∑

j

JijSj

)]
. (9)

If to interpret the Ising system as the neural one, the states,Si, Sj = ±1, represent

two levels of activity of thei, j-th neurons, the couplingsJij are the synaptic

efficiencies of pairs of the neurons,hi is the external field on thei site,N is the

number of neurons, andβ is the inverse parameter of temperature.

The surface of the Hamiltonian, under an influence of nonlinearities ofJij

and the productSiSj of vectors of states, is very complicated. There are very

many valleys, barriers, complex boundary conditions, and other hyperplane phe-

nomena.

The Hamiltonian function is even more complicated under the influence a

random-anisotropy of the mixed-spin Ising model [23]. According to [23], the

mixed-spin Ising model is represented by a two-sublattice system with variables

σ = ±1 andS = 0,±1 on sublattices A and B, respectively. The most general

spin Hamiltonian in the spin configuration space is described as

H0 = −J
∑

i∈A, j∈B

σiSj + D
∑

j∈B

S2
j , (10)

whereJ is a parameter of ferromagnetic exchange, the second member of (10)

characterizes the crystal field with the parameterD > 0, A and B are the sets of

sublattices.

The competition between ferromagnetic exchange and anisotropy leads to the

appearance of critical lines and a tricritical point (as a point at which three phases

simultaneously become identical) location.
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Nonlinear transition lines for the Curie-Weiss version of the mixed-spin Ising

model are given as a division of the ferro- and paramagnetic fields on behalf of

the phase diagrams [23].

An analogous study of the tricritical points for the spin-3/2 Ising model was

performed applying the ternary fluid mixtures by the authors in [24]. Here the

strong nonlinearities challenge a nonsymmetrical model and Landau expansion

from the fourth order to the eighth order which allows us to study the tricritical

points and behavior of the multicomponent fluid mixtures.

6 Exponential nonlinearities

Most ideas of the statistical mechanics, as mentioned above, apply to the neural

dynamics with quenched random couplings and typical exponential nonlinearities.

The long-time behavior of the dynamic models is governed by infinite-range Ising

spin glasses and monotonically decreases the value ofH (9), (10) with a decrease

of temperatureT , and leads eventually to the stationary state which is the local

minimum of H. If we take into account the random couplings and states with

noise, the distribution of states will converges to the Gibbs distribution

P (S) ∝ exp
(
− βH[S]

)
(11)

with H in (9) or (10).

It is interesting to investigate these models not only in the context of memory

images, but also in the context of nonlinear disordered statistical mechanicsor

magnetic systems.

To solve such tasks, as usual, the Boltzmann distribution

P
(
{J}, {S}

)
=

1

Z
(
{J}

)e−βH({J},{S}), (12)

where the normalization constant is the partition function

Z
(
{J}

)
=

∑

{S}

e−βH({J},{S}), (13)

is used as well as Boltzmann machine algorithm.

The typical choice of theJij for P ({J}, {S}) is a Gaussian distribution with

zero mean and the standard deviation unity, and of theSij for P ({S}) is the
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uniform or Gaussian distribution, if we consider them separately. It is easy to show

that thermodynamic quantities, like the free energyf({J}) = − 1
β lnZ({J}), are

selfaveraging. It means that the free energy densityf({J})/N reaches the limit

for largeN . As usual, the solutions are found by partial differential equations in

searching for the saddle point values. The nondeterministic nature of the statistical

systems can be replaced by a large system of deterministic systems and solvedby

a system of determined nonlinear algebraic equations [25].

Some of authors [5, 6] represent the Boltzmann law equations as linearized

ones in order to build analytic expressions and to investigate stability problems.

Here one may put a question to what extent the analysis of the linearized model

is relevant to the full nonlinear problem, which is much more complicated than

the 3D Ising problem. On the other hand, certain computer simulations indicate

a loose link between the behavior of the full nonlinear model. However, these

arguments are insufficient to prove that behavior of the linear model with theN2

transitions has a set ofN2 classes of transitions for the general nonlinear model.

7 Learning nonlinearities

Another area of the nonlinearities is displayed in the field of learning mechanisms

of massive connectionistic neural networks in the brain by interpreting themas a

physical Ising model modification. The main sub-system of the cerebral cortex

matter is the synapse-dendrite-soma-axon chain. Experiments demonstrate that

all components of the chain are characterized by nonlinearities, some of which

are strongly nonlinear as neuron cells, others as synaptic excitatory receptors or

inhibitory ones are weakly nonlinear. At first let us characterize the synaptic

nonlinearities. Note that synapses are not randomly distributed on the dendrites

surface. Second, the synapses both excitatory and inhibitory typically operate

by changing the conductance of postsynaptic membrane opening ion channels.

The time course of synaptic conductance changes and, as a consequence, the

electrical current changes are different and depend on the type of synapses. Fast

excitatory (non-NMDA) and inhibitory (GABAa) synapses operate within 1ms

and peak conductance on the other of 1nS. The conductance is up to10 times

higher than slow excitatory (NMDA) and inhibitory (GABAb) within a time scale

of 10–100 ms. There is a domain where the slope is of negative conductance.
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The learning processes in neural networks are connected with the modifica-

tion of synapses, as a rule, of the type introduced by D. Hebb [26]. Here is the

Hebb’s neurophysiological postulate: “When an axon of cell A is near enough

to excitate a cell B and repeatedly or persistently takes part in firing it, some

growth process of metabolic change takes place in one or both cells such that A’s

efficiency as one of the cells firing B is enhanced”.

It is known that, when the input potential of the neuron achieves the threshold,

a series of impulses is generated by the output (axon) with some firing rate. Thus,

the firing rate of each output neuron is forced to the value determined by theinput.

This means that, for any neuroni,

Si = f(ei), (14)

which indicates that the firing rate is a function of the dendrite activationei. This

function is as a sigmoidal one, i.e., strongly nonlinear with saturated areas and its

precise form is irrelevant at least during the learning phase. The function (14) is

frequently approximated by the discrete function like the Ising spin withSi = ±1.

The Hebb rule can be then represented as follows

∆Wij = kSiSj , (15)

where∆Wij is the change of the synaptic weightWij which depends on the

conjunctive presence of the presynaptic firingSj and the postsynaptic oneSi,

andk is the learning rate which characterize how many the synapses alter on any

pairing. The Hebb rule is expressed in the product (nonlinear) form to reflect the

Hebb postulate above.

In the Ising spin system with energy function (8), the bondsJij are the

synaptic efficiency of the pair(ij) of neurons for the neural networks. Now the

Hebb learning rule is represented as the accumulated effect of learning [27], which

after a some changes is as follows

Tij =
1

p

p∑

µ

ζµ
i ζµ

j , (16)

wherep is the number of patterns{ζi}, {ζj} as the embedded memories, besides

the patterns are random with equal probability forζµ
i = ±1. Then, according to
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the work [27], the networks defined by the Hamiltonian (8) are characterized with

the nonlinear modified synapses

Jij = cf(Tij) + νij , (17)

wheref(Tij) is a nonlinear function,νij is a possible noise, andc is a constant.

It should be noted that ionic current of synapses is also nonlinear versus potential

as shown in the works [25,28].

If we compare the nonlinear function with the linearized one, the first on

is preferred in the sense that it provides a narrower range of exchange Jij and

so is more reasonable because the Hamiltonian surface, in this case, has more

expressed local minima. According to [27], when the number of patterns is not

large, nonlinear learning rules can be used to increase the computation capabilities

of neural networks as the area of Ising spins applied physics.

8 Storing nonlinearities

The capacity of memory in a neural network as an Ising spin system depends

on the number of synapses rather than on increasing the number of neurons with

the same percentage [3]. It is important to show, that apart from increasing the

number of synapses or neurons, the synapse nonlinearities influence the capability

of memory because of much more expressed local minima of the Hamiltonian

function. According to the work [29] the percentage of retrieval errors decreases

nonlinearly and very rapidly to zero with decreasing of the relation betweenim-

plemented patterns and the number of neurons,α = p/N . The similar law was

noticed in [29] for the average of number of errors.

In the paper [25], I have tried to include a nonlinear synaptic function anda

strong nonlinear current-voltage relation of the neuron soma and have done some

computational experiments. The modeling results have shown that the nonlinear

synapse strength provides a smaller number of errors than the linearized one, and

the nonlinear synapse strengths crucially decrease the number of errors in the

retrieval processes of the neural network systems.
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9 Mean field nonlinearities

I will demonstrate the last episode of nonlinearities in the context of the statistical

mechanics of disordered magnetic systems. The Hamiltonian defined by (8) is

a case of infinite spin glasses, where each coupling of spins is connectedvia

quenched randomJij and the external field is not included for simplicity. I will

follow the work [29], however, the couplingJij will be changed to more realistic

and closer to the main idea of the Hebb’s postulate above, i.e.,

Jij =
1

p

p∑

µ=1

ζµ
i ζµ

j , (18)

which is as that of (16) only with the new indication of couplings. Then, after

substituting (18) into (8) without the second member, the Hamiltonian becomes

H = −
1

2p

N∑

i6=j

[ p∑

µ=1

ζµ
i ζµ

j

]
SiSj , (19)

whereζµ
i ζµ

j are independent random variables with zero mean. The system will

be considered in the thermodynamic limitN → ∞ and finitep. The free energy

function is defined by the partition function, for a given realization ofζµ
i ζµ

j , as

follows

Z = Trs exp(−βH) = Trs exp
( β

2p

∑

i6=j

[ p∑

µ=1

ζµ
i ζµ

j

]
SiSj

)
. (20)

Using the identity

p∑

µ=1

[ N∑

ij

ζµ
i ζµ

j SiSj

]
=

1

2

[ p∑

µ=1

N∑

i=1

Siζ
µ
i

]2
−

Np

2
, (21)

the equation (20) becomes as follows:

Z =exp
(
−

βN

4

)
Trs exp

( β

2p

p∑

µ

[ N∑

i

Siζ
µ
i

]2)

=(βN)1/2e
−βN

4

∫
Πµ

dmµ

(2π)1/2
exp

[
−

βN2

2p
~m2+

N∑

i

ln 2 cosh(β ~m~ζi)
]
.

(22)
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Regarding to

f = −
lnZ

Nβ
= lim

N→∞

[
N−1

〈〈
lnTrs exp(−βH)

〉〉]
(23)

and substituting (22) into (23), the free energy density becomes the mean field

equation as follows

f =
N

2p
~m2 −

1

Nβ

∑

i

ln 2 cosh(β ~m~ζi). (24)

The order parameter vector~m is defined by the saddle point equations for

each of componentsmµ

∂f

∂mµ
= 0. (25)

After finding partial derivatives, the vector

~m =
p

N2

[
~ζi

∑

i

tanh(β ~m~ζi)
]

(26)

or

~m =
p

N
~ζi

〈〈
tanh(β ~m~ζi)

〉〉
, (27)

where〈〈· · · 〉〉 is the average over{ζi}.

Equations (26), (27) have been obtained in the such a form first, and they

include the fractionp/N which is the parameterα. On the other hand, equation

(26) is strong nonlinear.

Thus, the phenomena of nonlinearities in the field of the artificial brain func-

tions, interpreted as an extension of the Ising spin physics, play an exclusive role

in thermodynamic investigations.

10 Discussion

It needs to remark, that the progress in understanding and qualifying thespin glass

problem has used an artificial replica theory. Indeed, the physical macroscopic

measurements on equivalent random systems are dominated by their mean values

(23). For finite-range interactions the effective Hamiltonian expression (9) with
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replicas cannot be evaluated exactly. By analogy with the magnetism, it is better

to consider first a mean field approximation in which an iteraction problem is

replaced by the effective non-interacting systems with the self-consistentlydeter-

mined solutions. For infinite-range systems with scaling ofJ0, J with the numbers

of spinsN such a consideration can be performed exactly. The infinite-range

models are usually proved by the procedure of mapping to macroscopic variables

with dominated generating functionals.

As concerns phenomenon of nonlinearities that is great interesting phenom-

ena in the technical systems, physics, biophysics, neurobiology, ecology, medicine

and other scientific fields. This phenomenon frequently arises even chaotic pro-

cesses influences to the attractor structures and behavior of the dynamic system

states, self-organized topological structures as the dissipative ordered ones. Many

physical as well as biophysical systems are characterized by nonlinearities. They

frequently have a control parameter dependent on its value in evolution ofstates,

the systems must be stable or unstable.

Many questions connected with phenomenona of nonlinearities and their in-

fluence in the different areas of the applied Ising physics have been considered

in the review, however, the topic of nonlinearities in the technical, physical, and

other systems is rather wide and, of course, cannot consider in one article. We

hope that this review though partially fills the insufficient discussed scientificarea

of the nonlinear applied physics.
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