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Abstract. A numerical study has been made to analyze the effects of variable thermal
conductivity on the natural convection of heat generating fluids contained in a square
cavity with isothermal walls and the top and bottom perfectly insulated surfaces. The
flow is assumed to be two-dimensional. Calculations are carried out by solving governing
equations for different parameters. The flow pattern and the heat transfer characteristics
inside the cavity are presented in the form of steady-state streamlines, isotherms and
velocity profiles. The heat transfer rate is increased by an increase in the thermal
conductivity parameter.
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1 Introduction

Convective heat transfer in an enclosure is important in many engineering applications
including heat exchangers, nuclear reactors and cooling ofelectronic systems. Acharya
and Goldstein [1] numerically investigated the natural convection in a cavity containing
uniformly distributed internal energy sources. Hossain and Rees [2] studied natural con-
vection flow of water subject to density inversion in a rectangular cavity with internal heat
generation. It is found that the circulation of the flow is reversed when heat generation
parameter is sufficiently strong. Joshiet al. [3] analytically studied the natural convection
in a cavity with volumetric heat generation. They found thata lower order solution is
adequate to capture the natural convection in the cavity. Natural convection in an inclined
enclosure with internal heat generation is studied by Kandaswamy and Sivasankaran [4].
They found that the rate of heat transfer is increased when the source strength is increased.

Kim and Hyun [5] examined buoyancy induced convection with internal heat gener-
ation under time periodic thermal boundary condition. Transient natural convection with
variable fluid properties in an enclosure by integral transform technique is investigated
by Lealet al. [6]. Saravanan and Kandaswamy [8] studied the effect of variable thermal
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conductivity on natural convection driven by the combined mechanism of buoyancy and
surface tension in the presence of a uniform vertical magnetic field. They found that the
heat transfer across the cavity from hot wall to cold wall becomes poor for a decrease in
the thermal conductivity in the presence of magnetic field.

Sun and Emery [9] examined the conjugate natural convectionof air filled enclosure
containing internal heat sources and an internal baffle. They found that the average heat
flux ratio along hot wall increases monotonically in the absence of an internal energy
source. Sundaravadivelu and Kandaswamy [10] investigatedthe convection of water in
the vicinity of its density maximum temperature (277 K) in an inclined square cavity in
the presence of heat sources. They found that the multiple fluid vortices exist inside the
cavity due to temperature of maximum density and the size of these vortices is find to
vary strongly on the inclination angle and the heat source parameter. The present study
addresses the effect of variable thermal conductivity of a heat generating fluid contained
in a square cavity.

2 Mathematical formulation

The physical system under consideration is a two dimensional square cavity of sizeL
as shown in Fig. 1. The vertical side walls of the cavity are isothermal but maintained
at different temperaturesθh (hot wall) andθc (cold wall) with θh > θc. The horizontal
walls are thermally insulated. The thermal conductivity ofthe liquidk is assumed to vary
linearly with temperature ask = kc − a(θ − θc), wherea is the temperature coefficient
of thermal conductivity and the subscriptc refers to the reference state at the cold wall.u
andv are the velocity components inx andy directions respectively.

Fig. 1. Physical configuration.

The equations governing the motion of the laminar two-dimensional incompressible
flow of the heat generating fluid under consideration are,

∂u

∂x
+
∂v

∂y
= 0, (1)
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∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −

1

ρ0

∂p

∂x
+ ν∇2u− gβ(θ − θc), (2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v
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= −

1
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∂p
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+ ν∇2v, (3)
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+ u
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= α

{
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]
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∂θ

∂x

)2

+

(

∂θ

∂y

)2 ]

}

+
Q

ρ0cp
, (4)

whereg is the gravitational force,p is the pressure,t is the time,Q is the rate of heat
generation,cp is the specific heat,α is the thermal diffusivity,β is the coefficient of
thermal expansion,ρ0 is the density of the fluid atθc, θ is the temperature andν is the
kinametic viscosity.

The appropriate initial and boundary conditions are:

t = 0: u = v = 0, θ = θc; 0 ≤ x, y ≤ L,

t > 0: u = v = 0,
∂θ

∂x
= 0; x = 0, x = L,

u = v = 0, θ = θh; y = 0,

u = v = 0, θ = θc; y = L.

In order to obtain a finite-volume analogue we transform the above equations by
means of the following transformation:

X =
x

L
, Y =

y

L
, U =

u

ν/L
, V =

v

ν/L
, τ =

t

L2/ν
, Ψ =

ψ

ν
,

ζ =
ω

ν/L2
, T =

θ − θc

θh − θc

, Q =
Sνρ0cp(θh − θc)

L2
,

whereT is the non-dimensional temperature,ζ is the non-dimensional vorticity,ω is the
dimensional vorticity,Ψ is the non-dimensional stream function,ψ is the dimensional
stream function,S is the heat generation parameter andτ is the non-dimensional time.

The vorticity-stream function formulation of the problem (1)–(4) after nondimen-
sionalization can be written as,

∂ζ

∂τ
−
∂Ψ

∂Y

∂ζ

∂X
+
∂Ψ

∂X

∂ζ

∂Y
= ∇2ζ +Gr

∂T

∂Y
, (5)

∇2Ψ = −ζ, (6)
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+ S, (7)

U = −
∂Ψ

∂Y
, V =

∂Ψ

∂X
and ζ =

∂U

∂Y
−
∂V

∂X
. (8)

The initial and boundary conditions in the dimensionless form are

τ = 0; Ψ = 0; T = 0; 0 ≤ X ≤ 1; 0 ≤ Y ≤ 1,

τ > 0; Ψ =
∂Ψ

∂Y
= 0;

∂T

∂X
= 0; X = 0 & 1; 0 ≤ Y ≤ 1,

Ψ =
∂Ψ

∂X
= 0; T = 1; Y = 0; 0 ≤ X ≤ 1,

Ψ =
∂Ψ

∂X
= 0; T = 0; Y = 1; 0 ≤ X ≤ 1.

The non-dimensional parameters that appear in the equations are

Gr = gβ(θh−θc)L
3

ν2 , the Grashof numbers,Pr = ν
α
, the Prandtl number andη = a(θh−θc)

kc

,
the thermal conductivity parameter. The local Nusselt number is defined byNu =
∂T
∂Y Y =0, resulting in the average Nusslet number asNu =

∫ 1

0
NudX.

3 The method of solution

The governing equations (5)–(8) were discretized using thefinite volume formulation,
with power law scheme, Patankar [7]. At each time step the vorticity and temperature
distributions were obtained from equations (5) and (7) respectively. The resulting set
of discretized equations for each variable were solved by Gauss Seidal method. The
stream function distribution was obtained from equation (6) by using Successive Over
Relaxation method. The dimensionless time step which yielded convergence was taken to
beτ = 10−4. We fixed the relaxation parameter to be1.5. The velocity components are
then found using central difference approximations. Afterfinding all the values at a par-
ticular level, the values at the higher levels were similarly computed. This computational
cycle was repeated for each of the next levels and steady state solution was obtained
when the convergent criteria|Φi,j,n − Φi,j,n+1| < 10−5 for temperature, vorticity and
stream function had been met. The overall Nusselt number wasalso used to develop an
understanding of what grid fineness is necessary for accurate numerical simulations. The
numerical solution were done for different grid system from21× 21 to 101× 101. After
41 × 41 grids, there is no considerable change in average Nusselt number. So41 × 41
grid is used to find solutions for different parameters.
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4 Results and discussions

The effect of thermal conductivity variation on natural convection induced by internal heat
generation is investigated numerically. The computationshave been done for the various
values of the heat source parameterS, the thermal conductivity parameterη, that is,
S = 1, 10 and25, η = 0, 0.001, 0.005, 0.01 and0.05 and the Grashof numbers from103

to 106. The isotherms forS = 25 and various values ofη are displayed in Figs. 2(a)–(e).
Whenη = 0.001, the isotherms are more attracted to the cold wall. It is clearly seen from
the Fig. 2(b), that the temperature inside the cavity is slightly increased than the boundary
temperature due to internal heat generation. The isothermsare attracted towards the hot
wall and form the thermal boundary layer for the caseη = 0.05. Whenη = 0.05, the
isotherms are almost parallel straight lines near the vertical walls. But, for low values ofη,
no sharp boundary layer can be seen. We notice that the isotherms near the hot wall begin
to crowd and start forming a thermal boundary layer asη increases. The corresponding
streamlines are depicted in the Figs. 3(a)–(e). When a squarecavity containing a mass
of incompressible fluid is heated through the hot wall, the fluid starts moving along the
hot wall. This motion induces a circulation of the fluid within the cavity and reaches the
steady state over time. Whenη = 0 andS = 25, there exists a bicellular flow pattern with

(a) (b) (c)

(d) (e)

Fig. 2. Isotherms forS = 25, Gr = 20000, P r = 0.732 and differentη:
(a)η = 0; (b) η = 0.001; (c) η = 0.005; (d) η = 0.01; (e)η = 0.05.
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a large vortex near the cold wall and a small vortex near the top corner of the hot wall,
Fig. 3. Asη is increased further, the vortex along the hot wall, Fig. 3(b), is suppressed
in its size and finally a single vortex arises. Then a unicellular flow behaviuor results and
occupies the entire cavity.

(a) (b) (c)

(d) (e)

Fig. 3. Streamlines forS = 25, Gr = 20000, P r = 0.732 and differentη:
(a) |Ψmax| = 9.8 η = 0; (b) |Ψmax| = 10.4, η = 0.001; (c) |Ψmax| = 10.9,

η = 0.005; (d) |Ψmax| = 9.8, η = 0.01; (e) |Ψmax| = 5.2, η = 0.05.

Figs. 4(a)–(c) show the isotherms forη = 0, Gr = 20000, P r = 0.732 and in-
creasingS. Increasing the source parameterS increases the internal energy of the fluid.
The corresponding streamlines are depicted in the Figs. 5(a)–(c). The eddy in Fig. 5(a)
circulates in the counterclockwise direction and occupiesthe whole cavity, that is, the
movement of the eddy is downward along the hot wall and upwardalong the cold wall.
There exists a small clockwise rotating cell near the hot wall top corner for increasingS.
On further increasingS the hot cell grows in its size and strengthens. Figs. 6(a)–(d) show
the isotherms for different Grashof numbers. WhenGr = 103, the isotherms indicate that
convection mode of heat transfer is started. On further increasing the Grashof numbers
convection is dominated. The isotherms are attracted towards both hot and cold walls
for higher values of Grashof number. Figs. 7(a)–(d) show theflow pattern for different
Grashof numbers. There exists a unicellular flow pattern occupying the whole cavity for
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all values of Grashof numbers. The circulation rate of the eddy is increased by increasing
the Grashof number. This is clearly seen from the|Ψ|max values indicated in the Figures.

(a) (b) (c)

Fig. 4. Isotherms forη = 0, Gr = 20000, P r = 0.732 and differentS: (a) S = 1;
(b) S = 10; (c) S = 25.

(a) (b) (c)

Fig. 5. Streamlines forη=0, Gr=20000, P r=0.732 and differentS: (a)Ψmax =10,
S = 1; (b) Ψmax = 9.3, S = 10; (c) Ψmax = 9.8, S = 25.

0.1
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0
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0
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0
.9

(a) (b) (c) (d)

Fig. 6. Isotherms forη = 0.001, S = 1.0, P r = 0.732 and different Grashof numbers:
(a)Gr = 10

3; (b) Gr = 10
4; (c) Gr = 10

5; (d) Gr = 10
6.
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The rate of heat transfer is calculated in terms of the average heat transfer coefficient
Nu at the hot wall of the cavity. TheNu serves as a measure for the heat transfer rate.
The time history ofNu for different values ofη are displayed in Fig. 8. As time evolves
the particles near the hot wall have higher temperature and so the heat transfer rate starts
decreasing thus resulting in a sudden fall in the graph. Finally the steady state is reached
and theNu is seen to become constant. It is found to increase with the increase in the
variable thermal conductivity parameterη. Average Nusselt number for various values of
η andS are depicted in Figs. 9 and 10. Heat transfer rate increases when the variable
thermal conductivity parameter is increased. It is found that the heat transfer rate is
reduced in the presence of heat sources. Fig. 11 shows the average Nusselt number for
different Grashof numbers. It is found that the heat transfer rate is increased with increase
in the Grashof number. The velocity profiles forS = 1 andGr = 2× 104 are depicted in
the Fig. 12. Fig. 13 shows the mid-height velocity profiles for different Grashof numbers.
The velocity of the fluid particles inside the cavity is increased for increased Grashof
numbers.

-20.2

-16.8-13.5

-10.1
-6.7-3.4

0.
0

(a) (b) (c) (d)

Fig. 7. Streamlines forη = 0.001, S = 1.0, P r = 0.732 and different Grashof
numbers: (a)Ψmax = 1.4, Gr = 10

3; (b) Ψmax = 7.4, Gr = 10
4; (c) Ψmax = 14.9,

Gr = 10
5; (d) Ψmax = 21.9, Gr = 10

6.

Fig. 8. Time history of Average Nusselt
number for variousη.

Fig. 9. Average Nusselt number for
variousη.
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Fig. 10. Average Nusselt number for
variousS.

Fig. 11. Average Nusselt numberV s

Grashof numbers.

Fig. 12. Mid-height velocity profiles
for variousη.

Fig. 13. Mid-height velocity profile for
different Grashof numbers.

5 Conclusions

The natural convection of heat generating fluids contained in a square cavity with variable
thermal conductivity is studied numerically. The heat transfer is mainly due to convec-
tion and the rate of heat transfer increases with the increase in the thermal conductivity
parameter. Heat transfer rate is reduced in the presence of heat sources.
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