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Abstract. The laminar natural convection boundary-layer flow of an electrically-
conducting fluid from a permeable sphere embedded in a porous mediumwith variable
porosity is considered. The non-Darcy effects including convective,boundary, inertial
and thermal dispersion effects are included in this analysis. The spheresurface is
maintained at a constant heat flux and is permeable to allow for possible fluid wall
suction or blowing. The resulting governing equations are nondimensionalized and
transformed into a nonsimilar form and then solved numerically by using thesecond-
level local non-similarity method that is used to convert the non-similar equations into a
system of ordinary differential equations. Comparisons with previouslypublished work
are performed and excellent agreement is obtained. A parametric study of the physical
parameters is conducted and a representative set of numerical results for the velocity
and temperature profiles as well as the local skin-friction coefficient and the Nusselt
number are illustrated graphically to show interesting features of Darcy number, inertia
coefficient, the magnetic parameter, dimensionless coordinate, dispersion parameter, the
Prantdl number and suction/blowing parameter.

Keywords: porous medium, natural convection, non-Darcy, Forchheimer number,
thermal dispersion, sphere.

1 Introduction

Convective heat transfer from fixed or rotating bodies in a porous media represents a
problem that can be related to numerous engineering applications. This occurs both
naturally in the geophysical environment through the flow ofwater in porous rocks and
in many engineering and technological systems. Such problems are of great practical
interest, for example, in the geothermal recovery of heatedwater, prevention of sub-
soil water pollution, insulation systems, heat exchangers, building thermal insulation,
enhanced oil recovery, nuclear waste disposal, metal casting, grain storage, and heat
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transfer in electronic equipment, among many others. The problem of mixed, forced,
and free convection about a solid sphere in a viscous incompressible fluid has received
relatively little attention. To the best knowledge of the authors, the only such studies
which have been reported are the experimental work of Yuge [1] and Klaychko [2], and
the analytical work of Hieber and Gebhart [3]. These studies, both experimental and
analytical, were conducted under the action of very small Reynolds and Grashof numbers.
Chen and Mucoglu [4,5] have later studied mixed convection over a sphere with uniform
surface temperature and uniform surface heat flux. Chiang etal. [6] reported an exact
analysis of laminar free convection over a sphere for the cases of uniform wall temperature
and uniform heat flux. Huang and Chen [7] solved the laminar free-convection flow
about a sphere with surface blowing and suction effects, while Lien et al. [8] considered
mixed and free convection over a rotating sphere with wall suction and blowing. Yih [9]
investigated the viscous dissipation, Joule heating and heat source/sink effects on non-
Darcy MHD natural convection flow over an isoflux permeable sphere in uniform porous
media. Chamkha and Al-Mudhaf [10] formulated the coupled heat and mass transfer by
natural convection from a permeable sphere in the presence of an external magnetic field
and thermal radiation effects.

All the above studies neglect thermal dispersion effects. Plumb [11] pointed out that
when the inertial effects are prevalent; the thermal dispersion effects in a porous medium
become very important. Hong et al. [12] studied natural convection from a non-isothermal
vertical wall in a non-uniform porous medium, and thermal dispersion effects are included
in the energy equation. The thermal dispersion effect on non-Darcy convection over
horizontal and vertical walls has been studied by Lai and Kulacki [13, 14]. Amiri and
Vafai [15] confirmed in their study on forced convection flow and heat transfer that the
axial dispersion effect may be neglected when compared withthe radial dispersion effect.
An analysis of thermal dispersion effect on vertical plate natural convection in porous
media is presented by Hong and Tien [16]. Effect of thermal dispersion on non-Darcy
natural convection over a vertical flat plate and also isothermal vertical cone in a fluid
saturated porous medium were studied by Murthy and Singh [17,18].

Motivated by the investigations mentioned above, the purpose of the present work is
to investigate the thermal dispersion effect on non-Darcy MHD natural convection flow
over a permeable sphere maintained at uniform heat flux in a variable porosity porous
medium.

2 Governing equations

Consider the steady natural convection two-dimensional laminar non-Darcy magneto-
hydrodynamic natural convection flow over a permeable sphere embedded in a fluid-
saturated porous medium having a variable porosity distribution with thermal dispersion
effect. A uniform magnetic field is applied in the direction normal to the surface. The
surface of the sphere, subject to mass transfer, is maintained at a uniform heat fluxqw.
Constant suction or injection is imposed at the surface of the sphere. The schematics
of the problem under consideration and the coordinate system are shown in Fig. 1. The
fluid is assumed to Newtonian, incompressible, viscous and electric-conducting. Fluid
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Fig. 1. Flow model and coordinate system.

properties are assumed to be constant except the density variation in the buoyancy force
term. A magnetic field of constant strength is applied in the negative y direction at all
times. Its interaction with the electrically conducting working fluid produces a resistive
force in the negativex direction. This force is called the Lorentz force. The magnetic
Reynolds number is assumed to be small so that the induced magnetic field is neglected.
In addition, no electric field exists and the Hall effect, themagnetic or Joule heating, and
viscous dissipation are all neglected. Upon treating the fluid-saturated porous medium
as a continuum (see, Vafai and Tien [19]), including the non-Darcian boundary, inertia
and variable porosity effects, and assuming that the Boussinesq approximation is valid,
the boundary-layer form of the governing equations can be written as (see, Vafai and
Tien [19] and Gebhart et al. [20]),
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The boundary conditions for this problem are defined as follows:

y = 0: u = 0, v = Vw, qw = −ke

(

∂T

∂y

)

.

y → ∞ : u = 0, T = T∞.
(4)

Wherex is measured along the surface of sphere from the lower stagnation point andy is
measured normal to the surface, respectively,r is the radial distance from symmetric axis
to surface.r = a sin(x/a), wherea is the radius of the sphere.u andv are the velocities
in thex-andy-directions.g, β, µ, ρ andT are the gravitational acceleration, the thermal
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expansion coefficient, the fluid dynamic viscosity, the fluiddensity and the temperature,
respectively.σ andB0 are the electrical conductivity and the externally imposedmagnetic
field in they-direction, respectively.K(y) andF (y) are the porous medium permeability
and geometric function depends on porosity only, respectively. αy is the effective thermal
diffusivity in y-direction, whereke is the effective thermal conductivity of the porous
medium which is the sum of the molecular conductivityk and the dispersion thermal
conductivitykd. Vw is the uniform surface suction (< 0) or blowing (> 0) velocity.

The variable porosity model to be supplemented with equations (1) through (3) is
the one employed by Poulikakos and Renken [21] in their work on forced convection in
porous medium channels and pipes. Furthermore, permeability K(y) and the geometric
functionF (y) are expressed as [15,22]

K(y) =
ε3d2

150(1 − ε)2
, (5)

F (y) =
1.75√

150 ε3/2
, (6)

and variable porosity can be expressed as [15,22]

ε(y) = ε∞

[

1 + b exp

(

− cy

d

)]

, (7)

whered is the particle diameter,ε is the porosity of the porous medium,ε∞ is the porosity
near the ambient conditions, andb and c are empirical constants that depend on the
ratio of the porous bed to particle diameter (Vafai et al. [23]). As mentioned before,
the exponential relation between the porosity and the normal distance from the boundary
surface is an approximate representation of the experimental data reported by Benenati
and Brosilow [24] for their study on void fraction distribution in packed beds. The values
of ε∞, b, andc employed in the present work are0.5, 0.98, and1, respectively. These
values were found to give a good approximation to the data reported by Benenati and
Brosilow [24] for a particle diameter of4 mm.

Following Murthy and Singh [17, 18], the quantityαy is variable and is defined
asαy = α + αd, whereα, αd = γd|u| are the molecular thermal diffusivity, dispersion
thermal diffusivity, whereγ is the mechanical dispersion coefficient whose value depends
on the experiments andd is the particle diameter. This model for thermal dispersionhas
been used extensively by researchers like Plumb [11], Hong and Tien [12] and Lai and
Kulacki [13] in studies of convective heat transfer in non-Darcy porous media.

It is convenient to transform equations (1)–(4) by using thefollowing nonsimilarity
transformations reported earlier by Yih [9] and Chamkha andAl-Mudhaf [10]:

ξ =
x

a
, η =

y

a
(Gr)1/5, ψ = νξ(Gr)1/5f(ξ, η),

θ(ξ, η) =
k(Gr)1/2(T − T∞)

aqw
, Gr =

gβqwa
4

ν2k
, ν = µ/ρ,

(8)

whereGr is the Grashof number,ν is the kinematic viscosity, andψ is the stream function
defined asru = ∂(ru)/∂y andrv = −∂(rv)/∂x, therefore the continuity equation is
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identically satisfied. In addition the velocities components are

u =
ν(Gr)2/5

a
ξf ′, v = −ν(Gr)

1/5

a

[
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+

(

1 +
ξ cos ξ

sin ξ

)

f

]

. (9)

Substituting equations (9) into equations (1)–(4) (takingequation (8) into account) yields
the following nonsimilar equations and boundary conditions:
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1

Pr
θ′′ +Ds(f ′θ′)′ +

(

1 +
ξ cos ξ

sin ξ

)

fθ′ = ξ

(

f ′
∂θ

∂ξ
− θ′

∂f

∂ξ

)

. (11)

The boundary conditions are defined as follows:

η = 0: f ′ = 0, ξ
∂f
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+

(

1 +
ξ cos ξ

sin ξ

)

f = fw, θ′ = −1,

η → ∞ : f ′ = 0, θ = 0,

(12)
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0
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,

(13)

are the square of the Hartmann number, the Darcy number, the Forchheimer number, dis-
persion parameter, the Prandtl number and the suction/injection parameter, respectively.
fw < 0 for Vw > 0 (the case of injection), andfw > 0 for Vw < 0 (the case of suction).
The transformed form of the variable porosity function becomes

ε(η) = ε∞
(

1 + b exp(−cη/Da)
)

(14)

At x = 0, the following similarity equations and boundary conditions are obtained:

1

ε
f ′′′ +

1

ε2
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1

Pr
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2
, θ′ = −1,

η → ∞ : f ′ = 0, θ = 0.
(17)
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The physical quantities of interests are the skin-frictioncoefficient (wall shear stress) and
the Nusselt number, which can be expressed as:

Cfx =
τw

ρ(ν/a)2(Gr)3/5
= ξf ′′(ξ, 0), (18)

Nu =
ha

ke
= (Gr)1/5

1

θ(ξ, 0)
, or Nu(Gr)−1/5 =

1

θ(ξ, 0)
. (19)

3 Numerical method

We now discuss the local nonsimilarity method to solve equations (10) and (11). Since
it was already seen in papers of Minkowycz and Sparrow [25,26] that for the problem of
coupled local nonsimilarity equations, consideration of equation up to the second level of
truncation gives almost accurate results comparable with the solutions from other methods
such as finite difference method, we will consider here the local nonsimilar equations (10)
and (11) only up to the second level of truncation. To do this,we introduce the following
new functions:G = ∂f/∂ξ andϕ = ∂θ/∂ξ. Introducing these functions into (10)–(12)
we get
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Differentiating the above equations with respect toξ one may easily find by neglecting
the terms involving the derivative functions ofG andϕ with respect toξ as follows:
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The appropriate boundary conditions to be satisfied by the above equations are

η = 0: f ′ = G′ = ϕ′ = 0, θ′ = −1, ξG+

(

1 +
ξ cos ξ

sin ξ

)

f = fw,
(

2 +
ξ(sin ξ + cos ξ)

sin ξ

)

G+

(

cos ξ

sin ξ
− ξ

sin2 ξ

)

f = 0,

η → ∞ : f ′ = G′ = 0, θ = ϕ = 0.

(24)

4 Results and discussions

The numerical results for the dimensionless velocity and temperature, as well as the
local skin friction coefficient and the Nusselt number are obtained for representative
values of the dimensionless coordinateξ, the Forchheimer numberΓ , the Hartmann
numberHa, the Darcy numberDa, the Prandtl numberPr, dispersion parameterDs
and the suction/injection parameterfw. The system of the governing equations (10)–(11)
together with the boundary conditions (12) is nonlinear partial differential equations are
integrated by the local nonsimilarity method for flow with a variable porosity media.
The present results are validated with previously published work. We have compared
our numerical results those of Huang and Chen [7], Chiang et al. [6], Lien et al. [8],
and Yih [9] in the absence of magnetic field, porosity, Darcy number, inertia resistance
and thermal dispersion effects. The comparisons are found to in good agreement, as
shown in Tables 1, 2. Theη values were chosen so that the outer boundaryηe = 10,
which is sufficiently large, and they are such that the grid issufficiently dense in the
vicinity of the boundary to ensure accuracy; this is important because the boundary layer
thins substantially asξ increases. It should be noted that, the differences inθ(ξ, 0) and
f ′′(ξ, 0) at someξ appear in Tables 1, 2 is due to using smallη than those mentioned
with numerical results of the above references such thatf ′(ξ, η) andθ(ξ, η) profiles go
asymptotically to zero.

Table 1. Comparison off ′′(ξ, 0) for various values ofPr with uniform porosity (i.e.,
b = 0, ε∞ = 1.0), Da = ∞, Ha = 0, Ds = 0.0, Γ = 0.0 andfw = 0.0

Huang and Chamkha and Present
Pr ξ Chen [7] Yih [9] Al-Mudhaf [10] results
0.7 0◦ 1.2276 1.2278 1.2273 1.2278

30◦ 1.2031 1.2032 1.2023 1.1985
60◦ 1.1296 1.1297 1.1288 1.1038
90◦ 1.0071 1.0072 1.0065 0.9204

7.0 0◦ 0.5165 0.5159 0.5157 0.5160
30◦ 0.5065 0.5059 0.5058 0.5040
60◦ 0.4768 0.4762 0.4761 0.4644
90◦ 0.4276 0.4271 0.4271 0.3848
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Table 2. Comparison ofθ(ξ, 0) for various values ofPr with uniform porosity (i.e.,
b = 0, ε∞ = 1.0), Da = ∞, Ha = 0, Ds = 0.0, Γ = 0.0 andfw = 0.0

Chiang Lien Huang and Chamkha and Present
Pr ξ et al. [6] et al. [8] Chen [7] Yil [7] Al-Mudhaf [10] results
0.7 0◦ 1.8691 1.8700 1.8700 1.8689 1.8683 1.8691

30◦ 1.8913 1.8931 1.8927 1.8917 1.8902 1.8867
60◦ 1.9582 1.9653 1.9648 1.9638 1.9628 1.9336
90◦ 2.0696 2.1026 2.1018 2.1004 2.0989 1.9811

7.0 0◦ — — 1.0350 1.0354 1.0341 1.0348
30◦ — — 1.0477 1.0481 1.0471 1.0448
60◦ — — 1.0879 1.0884 1.0872 1.0714
90◦ — — 1.1642 1.1649 1.1636 1.0999

Fig. 2 illustrates the effects of imposing a magnetic field and Darcy number and
increasing its strength on the velocity and temperature profiles at ξ = 30◦, respec-
tively. The reference parametric conditions for which these and all subsequent figures
are obtained correspond to two electrically conducting fluids, metal ammonia suspen-
sions (Pr = 0.78) and mercury (Pr = 0.027) polluted in a variable porosity porous
medium around the sphere in the presence of a magnetic field, permeability, the inertia
and thermal dispersion effects. The imposition of a magnetic field normal to the flow
direction produces a resistive force that decelerates the motion of the fluid in the porous
medium and around the sphere with a resultant increase in thefluid temperature. These
behaviors are depicted in Fig. 2 the influence of the magneticHartmann numberHa
on the velocityf ′(ξ, η) and temperatureθ(ξ, η) profiles, respectively. Application of a
transverse magnetic field normal to the flow direction gives rise to the magnetic Lorentz
force that acts in the opposite direction of flow causing its velocity to decrease and its
temperature to increase. In addition, the thermal boundarylayer tends to increase asHa
increases. Also, Fig. 2 depicted the influence of the Darcy numberDa on the velocity and
the temperature profiles, respectively. It is obvious that an increasing ofDa increases the
velocity distributions while decreases the temperature distribution. This means that the
presence of porous medium causes higher restriction to the fluid, which reduces both the
velocity and enhanced the temperature. In addition, slightincreases in the boundary-layer
thickness and decreases in the thermal boundary-layer thickness are observed as a result
of increasingDa.

The variation of the skin friction coefficientCfx and the local Nusselt number
Nu(Gr)−1/5 with for various values of the Hatrmann numberHa and Darcy number
Da is shown in Fig. 3. It can be seen that an increase of the Hatrmann numberHa,
decreasing the Darcy numberDa leads to decrease in the skin friction coefficient and
the local Nusselt number. This may be attributed to the fact that represent additional
resistance to flow, thus, slowing the fluid flow.

The effect of varying the effectives Prandtl numberPr corresponding to metal am-
monia suspensions (Pr = 0.78) and mercury (Pr = 0.027), respectively and the suction
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(a) (b)

Fig. 2. Effects ofHa andDa on velocity profiles (a); on temperature profiles (b).

(a) (b)

Fig. 3. Effects ofHa and Da on the skin friction coefficient (a); on local Nusselt
number (b).

or injection parameterfw on the on the velocity and temperature profiles is shown in
Fig. 4. Increases in the values ofPr have a tendency to decrease both the fluid tempe-
rature and the thermal boundary-layer thickness. This causes a decrease in the thermal
buoyancy effect which is causing the fluid flow. Therefore, both the fluid velocity and
the hydrodynamic boundary-layer thickness decrease asPr increases. Also, it can be
seen, an imposition of wall fluid suction (fw > 0) tends to decelerate the flow around the
sphere, with reduced temperature, whereas an imposition offluid injection or blowing at
the sphere surface (fw < 0) produces the opposite behavior, namely, an increase in the
flow velocity and increases in the temperature.

In Fig. 5, the effects offw andPr on the skin friction coefficientCPfx and the local
Nusselt numberNu(Gr)−1/5 are presented, respectively. In this figure, it is observed
that, asPr = 0.027, the skin friction coefficientCfx increases, whereas the local Nusselt
numberNu(Gr)−1/5 decreases as the suction/injection parameterfw increases. But,
asPr = 0.78, bothCfx, Nu(Gr)−1/5 increases asfw increases, that is because from
Fig. 5(a), where it is clearly seen that forPr = 0.027, the wall slopes of the velocity pro-
files become steep and slightly increased asfw increases, while they are clearly reduced
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(a) (b)

Fig. 4. Effects offw andPr on velocity profiles (a); on temperature profiles (b).

for Pr = 0.78. The effect of enhancing the value ofPr is observed to decrease the values
of Cfx and to increase the values ofNu(Gr)−1/5.

(a) (b)

Fig. 5. Effects offw andPr on velocity profiles (a); on temperature profiles (b).

Fig. 6 shows the influences of both the dispersion parameterDs and Forchheimer
numberΓ on the both the velocity and temperature profiles. An observation of equation
(8) shows that Forchheimer numberΓ acts as the porous medium inertia effect which
represents additional resistive force. Thus, increasing its value represents an increase in
the resistance to the flow around the sphere. Thus, the fluid velocity decreases while its
temperature increases as Forchheimer numberΓ increases. But, the opposite behavior, as
dispersion parameterDs increases.

Finally, Fig. 7 depicts the variations in the skin friction coefficientCfx and the
local Nusselt numberNu(Gr)−1/5 that are brought about by simultaneous changes in
the values of both the dispersion parameterDs and Forchheimer numberΓ , respectively.
It is clear that, an increase of the dispersion values ofDs, decreases the skin friction
coefficient, whereas, increases the Nusselt number. On other hand, increases in the values
of Γ result in decreases in both the skin friction coefficient andNusselt number. The
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(a) (b)

Fig. 6. Effects ofΓ andDs on velocity profiles (a); on temperature profiles (b).

decrease in the Nusselt number results from the increases inthe temperature attained in
the flow adjacent to the sphere surface, moreover, the resistance mechanism introduced by
the inertia effects of the porous medium overcomes all othereffects including the thermal
buoyancy effect.

(a) (b)

Fig. 7. Effects ofΓ andDs on the skin friction coefficient (a); on local Nusselt number (b).

5 Conclusions

The effect of thermal dispersion with the natural convection laminar boundary layer flow
of an electric conducting fluid over a permeable sphere embedded in a variable porosity
porous medium using the Brinkman-Forchheimer-Darcy extended model. The surface
of sphere was maintained at uniform heat flux and permeable soas to allow for fluid
wall suction or injection. Local nonsimilarity scheme has been used to solve numerically
the transformed governing equations. Calculations were carried out for a wide range of
values of the pertinent parameters to examine the results from this method. Graphical
results for the velocity and temperature profiles as well as the skin friction coefficient

355



S. M. M. EL-Kabeir, M. A. El-Hakiem, A. M. Rashad

and Nusselt number are presented and discussed for various parametric conditions. It
has been found that the skin friction coefficient reduced dueto increases in either the
Forchheimer number, the Hartmann number, Prandtl number, the dispersion parame-
ter and the suction/injection parameter for metal ammonia case, whereas the opposite
behavior was predicted as the Darcy number and the suction/injection parameter for
mercury case. Also, increasing in the values of the Darcy number, the Prandtl number,
the dispersion parameter or the suction/injection parameter produced enhances in the local
Nusselt number, and it was reduced due to increase in either the Forchheimer number or
Hartmann number.
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