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Abstract. A two-dimensional steady convective flow of a micropolar fluid past a
vertical porous flat plate in the presence of radiation with variable heat flux has been
analyzed numerically. Using Darcy-Forchheimer model the corresponding momentum,
microrotation and energy equations have been solved numerically. The local similarity
solutions for the flow, microrotation and heat transfer characteristics are illustrated
graphically for various material parameters. The effects of the pertinent parameters on the
local skin friction coefficient, plate couple stress and theheat transfer are also calculated.
It was shown that large Darcy parameter leads to decrease thevelocity while it increases
the angular velocity as well as temperature of the micropolar fluids. The rate of heat
transfer in weakly concentrated micropolar fluids is higherthan strongly concentrated
micropolar fluids.
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1 Introduction

A micropolar fluid is the fluid with internal structures in which coupling between the
spin of each particle and the macroscopic velocity field is taken into account. It is a
hydrodynamical framework suitable for granular systems which consist of particles with
macroscopic size. The dynamics of micropolar fluids, originated from the theory of
Eringen [1] has been a popular area of research. This theory may be applied to explain
the flow of colloidal suspensions (Hadimoto and Tokioka [2]), liquid crystals (Lockwood
et al. [3]), polymeric fluids, human and animal blood (Arimanet al. [4]) and many other
situations.

Ahmadi [5] presented solutions for the flow of a micropolar fluid past a semi-infinite
plate taking into account microinertia effects. Soundalgekar and Takhar [6] studied the
flow and heat transfer past a continuously moving plate in a micropolar fluid. Gorla [7]
studied mixed convection in a micropolar fluid from a vertical surface with uniform
heat flux. Rees and Pop [8] studied free convection boundary layer flow of micropolar
fluids from a vertical flat plate while Mohammadein and Gorla [9] studied the same
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flow bounded by stretching sheet with prescribed wall heat flux, viscous dissipation and
internal heat generation. Aissa and Modammadein [10] studied joule heating effects on a
micropolar fluid past a stretching sheet with variable electric conductivity. Hassanien et
al. [11] studied unsteady magnetohydrodynamic micropolarfluid flow and heat transfer
over a vertical porous plate through a porous medium in the presence of thermal and mass
diffusion with a constant heat source. Rahman and Sattar [12] studied magnetohydrody-
namic convective flow of a micropolar fluid past a vertical porous plate in the presence of
heat generation/absorption.

Markin and Mahmood [13] obtained similarity solutions for the mixed convection
flow over a vertical plate for the case of constant heat flux condition at the wall. Perdikis
and Raptis [14] studied heat transfer of a micropolar fluid inthe presence of radiation.
Later Raptis [15] studied the same fluid flow past a continuously moving plate in the
presence of radiation. Chen and Char [16] have studied the suction and injection on a
linearly moving plate subject to uniform wall temperature and heat flux. El-Arabawy [17]
studied the effect of suction/injection on a micropolar fluid past a continuously moving
plate in the presence of radiation. Ogulu [18] studied the oscillating plate-temperature
flow of a polar fluid past a vertical porous plate in the presence of couple stresses and
radiation. Recently, Rahman and Sattar [19] studied transient convective heat transfer
flow of a micropolar fluid past a continuously moving verticalporous plate with time
dependent suction in the presence of radiation.

In the present work we investigate the thermal radiation interaction of the boundary
layer flow of micropolar fluid past a heated vertical porous plate embedded in a porous
medium with variable suction as well as heat flux at the plate.The local similarity
solutions are then obtained numerically for various parameters entering into the problem
using shooting method and discussed the results from the physical point of view.

2 Mathematical formulation

Let us consider a steady two-dimensional flow of a viscous, incompressible micropolar
fluid of temperatureT∞ past a heated vertical porous flat plate immersed in a porous
medium and there is a suction velocityv0(x) at the plate. Consider a variable surface heat
flux such that the temperature at the surface of the plate is proportional toxm (xmeasures
the distance from the leading edge along the surface of the plate andm is a constant). The
flow is assumed to be in thex-direction, which is taken along the plate in the upward
direction andy-axis is normal to it. The flow configuration and the coordinate system are
shown in the Fig. 1.

The fluid is considered to be gray; absorbing-emitting radiation but non-scattering
medium and the Rosseland approximation is used to describe the radiative heat flux in
the energy equation. The radiative heat flux in thex-direction is considered negligible in
comparison to they-direction.

Within the framework of the above-noted assumptions, we assume that the Boussi-
nesq and boundary layer approximations hold and using the Darcy-Forchheimer model,
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Fig. 1. Flow configuration and coordinate system.

the governing equations relevant to the problem in the presence of radiation are given by:
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whereu, v are the velocity components alongx, y co-ordinates respectively,νa = µ+S
ρ

is the apparent kinematic viscosity,µ is the coefficient of dynamic viscosity,S is the
microrotation coupling coefficient (also known as the coefficient of gyro-viscosity or as
the vortex viscosity),ρ is the mass density of the fluid,σ is the microrotation component
normal to thexy-plane,b is the empirical constant,K ′ is the Darcy permeability,νs =
(µ + S

2 )j (see Rees and Bassom [20]) is the microrotation viscosity orspin-gradient
viscosity,j is the micro-inertia density,T is the temperature of the fluid in the boundary
layer,T∞ is the temperature of the fluid outside the boundary layer,U∞ is the velocity of
the fluid far away from the plate,cp is the specific heat of the fluid at constant pressure,
k is the thermal conductivity,qr is the radiative heat flux,g0 is the acceleration due to
gravity,β is the volumetric coefficient of thermal expansion.

By using Rosseland approximation (see Raptis [15]),qr takes the form

qr = −
4σ1

3k1

∂T 4

∂y
, (5)

whereσ1, the Stefan-Boltzmann constant andk1 is the mean absorption coefficient.
We assume that the temperature differences within the flow are sufficiently small

such thatT 4 may be expressed as a linear function of temperature. This isaccomplished
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by expandingT 4 in a Taylor’s series aboutT∞ and neglecting higher-order terms, thus

T 4 ∼= T 4
∞

+ (T − T∞) · 4T 3
∞

= 4T 3
∞
T − 3T 4

∞
. (6)

By using (5) and (6) equation (4) gives

u
∂T

∂x
+ v

∂T

∂y
=

k

ρcp

∂2T

∂y2
+

16σ1T
3
∞

3ρcpκ1

∂2T

∂y2
. (7)

The corresponding boundary conditions for the above problem are given by,

u = 0, v = v0(x), σ = −n
∂u

∂y
, −κ

(

∂T

∂y

)

= qw(x) = b0x
m at y = 0,

u = U∞, σ = 0, T = T∞ as y → ∞.

(8)

Positive and negative values forv0 indicate blowing and suction respectively, while
v0 = 0 corresponds to an impermeable plate. When microrotation parametern = 0 we
obtainσ = 0 which represents no-spin condition i.e. the microelementsin a concentrated
particle flow-close to the wall are not able to rotate as stated by Jena and Mathur [21].
The casen = 0.5 represents vanishing of the anti-symmetric part of the stress tensor
and represents weak concentration. For this case Ahmadi [5]suggested that in a fine
particle suspension the particle spin is equal to the fluid velocity at the wall. The case
corresponding ton = 1 be representative of turbulent boundary layer flows (see Peddison
and McNitt [22]). In equation (8), the last condition represents non-uniform heat flux at
the surface of the plate.

3 Transformations of the model

In order to obtain local similarity solution of the problem we adopted the following non-
dimensional variables which have been used by many authors in the literature (see for
example [12,15,17]):

η = y
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2νaU∞x f(η), σ = y

√

U3
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whereψ is the stream function. Sinceu = ∂ψ
∂y

andv = −
∂ψ
∂x

we have from equation (9)
that
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Heref is non-dimensional stream function and prime denotes differentiation with respect
to η.

The thermal boundary conditions depend on the type of heating process being con-
sidered, that is the prescribed heat flux. Define the temperature distribution as follows
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D
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(

x

L

)2

θ(η), (11)
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whereD is a constant andL is some characteristic length.
Now substituting equations (9)–(11) into equations (2), (3) and (7) we obtain the

following non-dimensional ordinary differential equations which are locally similar as
some of the parameters depend on the local coordinatex,
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− 1)2 = 0, (12)

G2g
′′
− 2G1

(

2g + f ′′
)

+ f ′g + g′f = 0, (13)

θ′′ + Pnfθ′ − 5Pnf ′θ = 0, (14)

whereK = S
ρνa

is the coupling parameter,γ = (
2Gr2

x

Rex

)
1

2 is the local buoyancy parameter,

Grx = g0βb0x
4

κU2
∞

is the modified Grashof number,Rex = U∞x
νa

is the local Reynolds

number,λ = 1
Da

is the Darcy parameter,Da = K′U∞

νax
is the modified Darcy number,

Fs = bx
K′

is the modified Forchheimer number,G1 = Sx
ρjU∞

is the vortex viscosity
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is the spin gradient viscosity parameter,Pn = 3NPr
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is the radiation parameter,Pr =
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k
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Prandtl number.
The transformed thermal boundary conditions may be writtenas

θ′(0) = −
b0

D
L2xm−2, θ′(∞) = 0. (15)

But asθ′(0) must be equal to−1, this implies (as could be concluded from equation (15))
thatm = 2 andb0 should satisfy the relationb0 = D

L2 .
Then the corresponding boundary conditions (8) become,

f = V0, f ′ = 0, g = −nf ′′, θ′ = −1 at η = 0,

f ′ = 1, g = 0, θ = 0 as η → ∞,
(16)

whereV0 = −v0

√

2x
νaU∞

is the suction velocity at the plate forV0 > 0.

4 Skin friction coefficient, plate couple stress and Nusseltnumber

The quantities of chief physical interest are the skin friction coefficient, plate couple stress
and the Nusselt number (rate of heat transfer). The equationdefining the wall shear stress
is

τw = (µ+ S)

(
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)
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The local skin friction coefficient is defined as
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Thus from equation (18) we see that the local values of the skin friction coefficientCf is
proportional tof ′′(0).

The equation defining the plate couple stress is

Mw = νs

(

∂σ

∂y

)

y=0

. (19)

The dimensionless couple stress is defined by

Mx =
Mw

1
2ρνaU∞

=
G2K

G1
g′(0). (20)

Thus the local couple stress in the boundary layer is proportional tog′(0).
We may define a non-dimensional coefficient of heat transfer,which is known as

Nusselt number as follows:
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k
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4
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transferred through unit area. Now the rate of heat transfer, in terms of the dimensionless
Nusselt number, given by

Nux = (2−1Rex)
1

2
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1 +
4

3N

)

1

θ(0)
. (22)

Thus from equation (22) we see that the local Nusselt numberNux is reciprocal to
θ(0). Hence the numerical values proportional toCf , Mx andNux are calculated from
equations (18), (20) and (22) are shown in Figs. 10–12.

5 Numerical solution

The set of nonlinear ordinary differential equations (12)–(14) with boundary conditions
(16) have been solved by using sixth order Runge-Kutta method along with Nachtsheim-
Swigert [23] shooting iteration technique withV0, γ,K, λ, Fs,G1, G2, Pn andn as pre-
scribed parameters. A step size of∆η = 0.001 was selected to be satisfactory for a
convergence criterion of10−6 in all cases. The value ofη∞ was found to each iteration
loop by the statementη∞ = η∞ + ∆η. The maximum value ofη∞, to each group
of parametersV0, γ,K, λ, Fs,G1, G2, Pn andn is determined when the value of the
unknown boundary conditions atη = 0 not change to successful loop with error less than
10−6.

In order to verify the effects of the step size∆η we ran the code for our model with
three different step sizes as∆η = 0.01, ∆η = 0.001, and∆η = 0.005 and in each
case we found excellent agreement among them. Fig. 2(a)–(c), respectively, shows the
velocity, microrotation and temperature profiles for different step sizes.
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(a) (b)

(c)

Fig. 2. (a) Velocity profiles for different∆η; (b) microrotation profiles for different∆η;
(c) temperature profiles for different∆η.

To assess the accuracy of our code, we reproduced the values of f ′′(0), g′(0) and
−θ′(0) which are proportional respectively to the local skin friction coefficient, plate
couple stress and the rate of heat transfer coefficient considering the model of El-Arabawy
[17]. Tables 1–3 show the comparison of the data produced by our code and that of El-
Arabawy. In fact the results show a close agreement, hence anencouragement for the use
of the present code for our model.

Table 1. Comparison off ′′(0) for Pr = 0.733, N = 5.0

v0 Code Present code
El-Arabawy [17]

−0.7 −0.278827 −0.278390
−0.2 −0.504059 −0.503800

0.0 −0.616542 −0.616237
0.2 −0.741521 −0.741131
0.7 −1.099430 −1.098857
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Table 2. Comparison ofg′(0) for Pr = 0.733, N = 5.0

v0 Code Present code
El-Arabawy [17]

−0.7 0.236917 0.236511
−0.2 0.321165 0.320745

0.0 0.355330 0.355138
0.2 0.389278 0.389055
0.7 0.468923 0.468660

Table 3. Comparison of−θ′(0) for Pr = 0.733, N = 5.0

v0 Code Present code
El-Arabawy [17]

−0.7 0.247513 0.242280
−0.2 0.370236 0.367887

0.0 0.427013 0.429061
0.2 0.492675 0.496532
0.7 0.686869 0.689726

6 Results and discussion

The present work generalized the problem of heating effectson a boundary layer of a mi-
cropolar fluid over the porous plate with variable heat flux inthe presence of radiation. For
the purpose of discussing the results, the numerical calculations are presented in the form
of non-dimensional velocity, microrotation and temperature profiles. In the calculations
the values of the local buoyancy parameterγ, coupling parameterK, suction parameter
V0, radiative Prandtl numberPn, Darcy parameterλ, Forchheimer numberFs, vortex
viscosity parameterG1, and spin-gradient viscosity parameterG2 are chosen arbitrarily
to carryout the parameter survey. The caseγ ≫ 1 corresponds to free convection,γ = 1
corresponds to mixed convection andγ ≪ 1 corresponds to forced convection. The
existence of the free convection current is due to the difference in temperature of the plate
Tw and the temperature in the uniform flow, viz.Tw − T∞. Hence the difference may be
positive, zero or negative depending uponTw > T∞. Then the values ofγ will assume
positive, zero or negative values. Physicallyγ < 0 corresponds to as externally heated
plate as the free convection currents are carried towards the plate andγ > 0 corresponds
to an externally cooled plate whileγ = 0 corresponds to the absence of free convection
currents. Since we are considering cooling problem, only positive values ofγ are chosen.

Fig. 3(a) shows the velocity profiles for different values ofsuction parameterV0

for a cooling plate. It can be seen that for cooling of the plate the velocity profiles
decrease monotonically with the increase of suction parameter indicating the usual fact
that suction stabilizes the boundary layer growth. The freeconvection effect is also
apparent in this figure. For a fixed suction velocityV0, velocity is found to increase
and reaches a maximum value in a region close to the plate, then gradually decreases
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to one. Fig. 3(b) shows the microrotation (angular velocity) profiles for different values
of suction parameter. The angular velocityg remains negative and decreases with the
increase ofV0 close to the plate where viscosity is dominant. After a shortdistance
from the plate (η ≈ 0.2) these profiles overlap and then increase with the increase of
V0. Within the boundary layer region these profiles increase from−

1
2f

′′(0) to zero asη
increases from zero to infinity. Fig. 3(c) indicates the temperature profiles showing the
effect of suction parameterV0. It can be seen that temperature decreases with the increase
of suction. Decelerated fluid particles close to the heated wall absorb more heat from the
plate as a consequence the temperature of the fluid within theboundary layer increases.
But when these decelerated fluid particles are sucked through the porous plate there is
decease to the temperature profile.

Fig. 4(a) shows the velocity profiles for different values ofcoupling parameterK.
From this figure we see that for cooling plate velocity increases with the increase of the
coupling parameterK. Fig. 4(b) shows the effect of coupling parameter in the microro-
tation profiles. From this figure we observe that microrotation decreases monotonically
as the increase ofK. Fig. 4(c) shows the decreasing effect of coupling parameter on the
temperature profiles.

The effect of modified Forchheimer numberFs on the velocity field is shown in
Fig. 5(a). From this figure we see that velocity decreases with the increase ofFs. Fig. 5(b)
shows the effect of in the microrotation profiles. From this figure we observe thatFs has
increasing effect on the microrotation profiles. Forchheimer number has also increasing
effect on the temperature profiles which is shown in the Fig. 5(c).

The effect of the local Darcy parameterλ on the velocity field is shown in the
Fig. 6(a). From this figure we observe that velocity profiles decrease with the increase
of λ. Darcy number is the measurement of the porosity of the medium, as the porosity of
the medium increases, the value ofDa increases and henceλ decreases. For large porosity
of the medium fluid gets more space to flow, consequently fluid velocity increases. The
caseλ = 0 corresponds to a pure fluid, rather than a porous medium. Fig.6(b) shows
that microrotation increases with the increase of Darcy parameterλ. The effect ofλ on
the temperature profiles is shown in Fig. 6(c). From here we see that temperature profiles
increase with the increase of Darcy parameter.

Fig. 7(a) shows the effect of vortex viscosity parameterG1 on the velocity profiles
for cooling plate. From here we see minor decreasing effect of G1 on the velocity profiles.
Fig. 7(b) shows the effect ofG1 on the microrotation profiles. From this figure we
see that microrotation increases very rapidly with the increase of the vortex viscosity
parameterG1. It is also understood that as the vortex viscosity increases the rotation of
the micropolar constituents gets induced in most part of theboundary layer except very
close to the wall where kinematic viscosity dominates the flow. From Fig. 7(c) we found
no effect ofG1 on temperature profiles.

In Fig. 8(a)–(c), respectively, we have varied the spin-gradient viscosity parameter
G2 keeping all other parameters value fixed. From Fig. 8(a) we see that velocity profiles
increase slowly with the increase of spin-gradient viscosity parameterG2. The effect of
G2 is significant on the microrotation profiles. From Fig. 8(b) we see that microrotation
decreases very rapidly with the increase of the spin-gradient viscosity parameter.
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(a)

(b)

(c)

Fig. 3. Variations of non-dimensional
(a) velocity, (b) microrotation and (c) tem-
perature profiles for different values ofVo.

(a)

(b)

(c)

Fig. 4. Variations of non-dimensional
(a) velocity, (b) microrotation and (c) tem-
perature profiles for different values ofK.
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(a)

(b)

(c)

Fig. 5. Variations of non-dimensional
(a) velocity, (b) microrotation and (c) tem-
perature profiles for different values ofFs.

(a)

(b)

(c)

Fig. 6. Variations of non-dimensional
(a) velocity, (b) microrotation and (c) tem-
perature profiles for different values ofλ.
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(a)

(b)

(c)

Fig. 7. Variations of non-dimensional
(a) velocity, (b) microrotation and (c) tem-
perature profiles for different values ofG1.

(a)

(b)

(c)

Fig. 8. Variations of non-dimensional
(a) velocity, (b) microrotation and (c) tem-
perature profiles for different values ofG2.
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(a)

(b)

(c)

Fig. 9. Variations of non-dimensional
(a) velocity, (b) microrotation and (c) tem-
perature profiles for different values ofn.

(a)

(b)

(c)

Fig. 10. Variations of (a) local skin
friction coefficient, (b) rate of coupling and
(c) Nusselt number for different values ofγ

andV0.
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(a)

(b)

(c)

Fig. 11. Variations of (a) local skin
friction coefficient, (b) rate of coupling and
(c) Nusselt number for different values ofλ

andK.

(a)

(b)

(c)

Fig. 12. Variations of (a) local skin
friction coefficient, (b) rate of coupling and
(c) Nusselt number for different values of

n andG1.
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From Fig. 8(c) we see that the values ofG2 introduce no effect on the temperature
profiles.

The above-mentioned calculations have been done for a weakly concentrated mi-
cropolar fluid i.e. for the microrotation parametern = 0.5. Here we have varied the
microrotation parametern, keeping all other parameters value fixed. Fig. 9(a) reveals
that asn increases the concentration of the fluid decreases hence fluid velocity increases.
Fig. 9(b) shows the microrotation profiles for different values ofn. Microrotation de-
creases significantly with the increase ofn. We observe thatg increases from−nf ′′(0)
to zero asη increases from zero to infinity. From Fig. 9(c) we observe that temperature
decreases as we go from strong concentration fluid to weak concentration fluid.

In Fig. 10(a)–(c), respectively, we have presented the physical parameters skin fric-
tion coefficients, plate couple stress and the rate of heat transfer for different values of
the local buoyancy parameterγ and suction parameterV0. From these figures we see that
skin frictionCf , plate couple stressMx and Nusselt numberNux increases rapidly with
the increase ofγ as well as withV0.

Fig. 11(a)–(c), respectively, show the skin friction coefficients, plate couple stress
and the rate of heat transfer for different values of coupling parameterK and Darcy
parameterλ. Here we found skin friction, plate couple stress and Nusselt number increase
with the increase ofK and decrease with the increase ofλ.

The effect of microrotation parametern and vortex viscosity parameterG1 on the
skin friction, plate couple stress and the rate of heat transfer are shown in Fig. 12(a)–(c),
respectively. In these figures we found that skin friction, plate couple stress and Nusselt
number increases with the increase ofn for a fixed value ofG1. From these figures it is
also clear thatCf , Mx andNux increases with the increase ofG1 except for the case
n = 0. Forn = 0, Cf andMx decreases whileNux oscillates with the increase ofG1.

7 Conclusions

In this paper, we have investigated numerically the radiative heat transfer flow of mi-
cropolar fluid past a vertical permeable flat plat embedded ina porous medium varying
surface heat flux. Using usual similarity transformations the governing equations have
been transformed into non-linear ordinary differential equations and were solved for
similar solutions by using Nachtsheim-Swigert shooting iteration technique. Effects of
the various parameters such as the local buoyancy parameterγ, coupling parameterK,
suction parameterV0, local Darcy parameterλ, local Forchheimer numberFs, local
vortex viscosity parameterG1, and spin-gradient viscosity parameterG2 on the flow,
microrotation, and temperature profiles are examined. The following conclusions can be
drawn as a result of the numerical computations:

1. Skin friction coefficient increases with the increase of suction parameter, buoyancy
parameter, coupling parameter, non-zero microrotation parameter and spin gradient
viscosity parameter except for no spin condition,n = 0. This coefficient decreases
with the increase of the Darcy parameter.
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2. Plate couple stress increases with the increase of suction parameter, buoyancy pa-
rameter, coupling parameter, and non-zero microrotation parameter.

3. The rate of heat transfer increases with the increase of the suction parameter, buoy-
ancy parameter, coupling parameter and non-zero microrotation parameter.

4. Large Darcy parameter leads to the decrease of the velocity profiles and increase of
the microrotation as well as temperature profiles.

5. Radiation has significant decreasing effect on the velocity and temperature field
while it has increasing effect on the angular velocity.
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