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Abstract. The viscoelastic boundary layer flow and mixed convection heat transfer near
a vertical isothermal surface have been examined in this paper. The governing equations
are formulated and solved numerically using an explicit finite difference technique. The
velocity and temperature profiles, boundary layer thicknesses, Nusselt numbers and
the local skin friction coefficients are shown graphically for different values of the
viscoelsatic parameter. In general, it is found that the velocity decreases inside the
boundary layer as the viscoelsatic parameter is increased and consequently, the local
Nusselt number decreases. This is due to higher tensile stresses between viscoelsatic fluid
layers which has a retardation effects on the motion of theselayers and consequently, on
the heat transfer rates for the mixed convection heat transfer problem under investigation.
A Comparison with available published results on special cases of the problem shows
excellent agreement.

Keywords: viscoelastic fluids, transient, mixed convection.

Nomenclature

A1, A2 first two Rivlin-Ericksen tensor h heat transfer coefficient
Cf local coefficient of friction k thermal conductivity
Cp specific heat of the fluid at constant k0 elastic parameter

pressure k∗

l dimensionless viscoelsatic
g magnitude of acceleration due to parameter,(k0/L2)Gr1/2

gravity L characteristic length of plate
Gr Grashof number, M∗ mixed convection parameter,

gβ(Tw − T∞)L3/ν2 ν2/[gβ(Tw − T∞)L3]1/2
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Nux local Nusselt number Tw wall temperature
PI spherical stress T∞ ambient fluid temperature
Pr Prandtl number,ν/α u, v dimensionless velocity components
τ dimensionless time alongx- andy-axes respectively
T temperature x, y dimensionless coordinates

Greek symbols

α thermal diffusivity µ dynamic viscosity
α1, α2, α3 material moduli ν kinematic viscosity
β coefficient in the density ρ fluid density
Θ non-dimensional temperature Γ Cauchy stress tensor

Subscripts Supercripts

w wall surface ∗ dimensional variables
∞ free stream condition

1 Introduction

Numerous applications of viscoelsatic fluids in several manufacturing processes have led
to renewed interest among researchers to investigate viscoelsatic boundary layer flow
over a stretching plastic sheet, Rajagopal et al. [1, 2], Dandapat and Gupta [3], Rollins
and Vajravelu [4], Anderson [5], Lawrence and Rao [6], Char [7] and Rao [8]. Some
of the physical applications of such study are polymer sheetextrusion from a dye, glass
fiber and paper production, drawing of plastic film etc. The viscoelastic fluid model
used by Hassanien was a simplified version of the so-called second-grade fluid [9]. Like
Sakiadis [10], Hassanien relied on boundary layer approximation [11] for simplifying
the governing equations. The final equation was in the form ofa forth-order non-linear
ordinary differential equation that can not be solved analytically, or even numerically,
due to the lack of sufficient boundary conditions. To circumvent this problem, Hassanien
utilized perturbation technique [12] to reduce the governing equation into a system of
two third-order differential equations which could be solved with the available boundary
conditions. Hassanien reported results for elasticity or Deboch numbers up to 0.2 and
concluded that the wall skin friction coefficient is increased whenever a fluid exhibits
elasticity, a prediction which is undesirable from an industrial standpoint because it trans-
lates into a larger driving force or torque to withdraw the surface.

There is no doubt that Hassanien work is of fundamental importance for it relies on
boundary layer theory and thus can be regarded as a step forward towards answering the
still unresolved issue of what would be the effects of fluids elasticity on the characteristics
of its boundary layer [13–15]. In spite of its relevance, however, Hassanien work has
certain drawbacks. One of the major drawbacks of his work is in the use of perturbation
theory to solve the governing equation. That is, due to the inherent limitation of this
theory, results could be obtained only for small values of Deborah numbers whereas in
most processes of practical interest this number is of orderone or even larger. That is to

170



Transient Mixed Convection Flow of a Second-Grade Visco-Elastic Fluid over a Vertical Surface

say the range of applicability of Hassanien work is quite limited. Another shortcoming of
Hassanien work is in the use of the second grade model to represent viscoelsatic fluids.
That is, a second grade fluid is the first deviation from a Newtonian behavior and can not
be expected to render meaningful results for highly elasticfluids such as polymer melts
and solutions, even for fluids of low elasticity, the use of this model is not recommended
in rapid flows.

Since in reality most of the fluids considered in industrial applications are more non-
Newtonian in nature, especially of viscoelsatic type than viscous type, we extend the
mixed convection heat transfer work to viscoelsatic fluids flow and heat transfer. The
governing equations for this investigation are written in dimensionless form using a set
of dimensionless variables and solved numerically using the MackCormak’s technique.
Numerical results for the velocity, and temperature profiles as well as the local coeffi-
cient of friction and local Nusselt number under the effect of viscoelsatic parameter, are
presented.

2 Problem formulation

The viscoelastic fluid model used in this work is the so-called second-order, or more
commonly second-grade model. This rheological model was first introduced by Rivlin
and Ericksen [16] and is generally regarded as one of the simplest viscoelastic fluid
models available. For an incompressible homogenous fluid ofa second-grade type, the
Cauchy stress,Γ is related to the deformation field through:

Γ = −PI + α1A1 + α2A2 + α3A3, (1)

where−PI is the isotropic part of the stress tensor,α1, α2 andα3 are the material moduli,
andA1, A2 andA3 are kinematical tensors defined by [17,18]:

A1 = (∇V ) + (∇v)T , (2)

A2 =
DA1

Dt
+ A1(∇V ) + (∇V )T A1, (3)

A3 = A2
1, (4)

where∇V denotes the velocity gradient tensor, andD/Dt is the familiar time derivative.
Based on the response of a second-grade fluid to steady shear flow, α1 is in fact the same
as the coefficient of viscosity,µ. Similarly,α2 andα3 can be related to the first and second
normal stress differences,N1 andN2, respectively. Experimental data available for a large
number of viscoelastic fluids suggest thatN1 is positive. On the other hand,N2 is often
found to be either positive or negative or zero. Also whenN2 is measured to be non-zero,
it is usually found to be much smaller thanN1. This means that for a second-grade fluid to
comply with experimental observations, one should haveα2 > 0 andα3 ≤ 0. Having this
in mind, it should be mentioned that there are some controversies around this rheological
model, particularly about the sign ofα2 and the size ofα3. Fosdick and Rajagopal [19]
argue that for a second-grade rheological model to be thermodynamically compatible, the
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Clasius-Duhem inequality should hold together with the Helmoltz free energy being at its
minimum whenever the fluid is locally at rest. These thermo dynamical constraints put
some severe restrictions on the sign and magnitude of the material moduli:

α1 ≥ 0, α2 ≥ 0; and α2 + α3 = 0. (5)

The sign proposed above forα2 is tantamount to saying thatN1 is negative. If this sign
is accepted forα2 then based on equation (5) should be positive. Both signs arein direct
contradiction with experimental data available for viscoelastic fluids. The last relationship
in equation (5) also suggests the absolute values ofN1 andN2 are equal to each other
which simply cannot confirmed experimentally. Obviously, there certain important issues
still unresolved about this controversial rheological model, for a critical review of the
second grade model the reader is referred to Dunn [20]. In this work we have decided
to takeα2 < 0 and to letα2 + α3 6= 0 in our second grade fluid. We still go one step
further and in accordance with the so-called Weissenberg hypothesis [22], assume that the
second normal stress difference is zero for our fluids; i.e.,we setα3 = 0 in our model.
With the above arguments in mind, we use the deformation ratetensor, 2d, in place of the
kinematical tensorA1 and write the deviatoric part of the stress tensor,τij as Beard and
Walters [23]:

τij = 2α1dij + α2
δ

δt
dij = 2α1

(

dij +
α2

2α1

δ

δt
dij

)

= 2µ

(

dij − λ
δ

δt
dij

)

, (6)

whereµ is the viscosity, and−λ has been used in the place of the ratioα2/2α1. Since this
ratio is a negative number with dimension of time,λ is positive and can be interpreted as
the relaxation time of the fluid. The time derivativeδ/δt appearing in the above equation
is the so-called “upper convective term derivative”. This time derivative when applied to
the deformation rate tensor reads as Larson [24]:

δ

δt
dij =

D

Dt
dij + Lkidkj + Lkjdik, (7)

whereLij are the components of the velocity gradient tensor∇V or ∂ui/∂xj . Now,
assuming the fluid to be incompressible and the flow to be laminar and two-dimensional,
thex∗- andy∗- momentum equations are written as:

ρ

(

∂u∗

∂t
+ u∗

∂u∗

∂x∗
+ v∗

∂u∗

∂y∗

)

= −
∂p

∂x∗
+

∂τx∗x∗

∂x∗
+

∂τx∗y∗

∂y∗
,

ρ

(

∂v∗

∂t
+ u∗

∂v∗

∂x∗
+ v∗

∂v∗

∂y∗

)

= −
∂p

∂y∗
+

∂τy∗x∗

∂x∗
+

∂τy∗y∗

∂y∗
.

(8)

The boundary layer approximations can now be invoked; i.ex∗ = O(1), u∗ = O(1),
v∗ = O(δ). With these orders of magnitudes, they∗ momentum equation reduces to
∂p/∂y∗ = 0. Consider laminar mixed convection boundary layer flow of a viscoelsatic
fluid over an isothermal vertical flat plate which is heated inan unsteady manner. The
problem is described in a rectangular coordinate system attached to the plate such that the
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x∗-axis lies along the plate surface and they-axis is normal to the plate. It is assumed that
at timet ≤ 0, the temperatures of the plate and the viscoelsatic fluid aremaintained at the
constant temperatureT∞, and at timet > 0, the temperature of the plate is impulsively
increased to the constant valueTw such thatTw > T∞. The continuity, momentum and
energy equations under the boundary layer and Boussinesq approximations can be written
as Cortell [25]:

∂u∗

∂x∗
+

∂v∗

∂y∗
= 0, (9)

∂u∗

∂t
+ u∗

∂u∗

∂x∗
+ v∗

∂u∗

∂y∗
= γ

∂2u∗

∂y∗2
− k0

(

u∗ ∂3u∗

∂x∗∂y∗2 + v∗ ∂3u∗

∂y∗3

−∂u∗

∂y∗
∂2u∗

∂x∗∂y∗ + ∂u∗

∂y∗
∂2u∗

∂y∗2

)

+ gβ(T − T∞), (10)

∂T

∂t
+ u∗

∂T

∂x∗
+ v∗

∂T

∂y∗
= α

∂2T

∂y∗2
. (11)

Hereu∗ andv∗ are the velocity components inx∗ andy∗ directions respectively,ν is the
kinematic coefficient of viscosity,k0 = −α1/ρ is the elastic parameter. Hence in the case
of a second order fluidk0 takes positive values asα1, whereα = k/ρcp is the thermal
diffusivity and other quantities have their usual meanings.

y*

g

x*

Tw

¥
T

¥u

8

8

Fig. 1. The transient free convection model for a viscoelastic fluid near a vertical wall.

3 Boundary conditions on velocity

A critical review on the boundary conditions and the existence and uniqueness of the
solution has been given by Rajagopal et al. [1]. Most of available literature on boundary
layer flow of a viscoelsatic over linearly stretching sheetsdeal with the three boundary
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conditions on velocity, which are one less than the number required to solve the problem
uniquely, Rollins and Vajravelu [26], Anderson [5], Cortell [25] and Mahapatra and Gupta
[27]. Troy et al. [28] derived a unique solution of the problem containing exponential
terms of similarity variables. In view of the above discussions on boundary conditions the
physical initial and boundary conditions for this problem are given by:

t ≤ 0, u∗ = 0, v∗ = 0, T = T∞ for all x∗ ≥ 0, y∗ ≥ 0,

t > 0,











u∗ = 0, v∗ = 0, T = T∞ for x∗ = 0, y∗ ≥ 0,

u∗ = 0, v∗ = 0, T = Tw for y∗ = 0, x∗ ≥ 0,

u∗ = u∞, ∂u∗/∂y∗ = 0, T = T∞ for y∗ → ∞,

(12)

where(∂u∗/∂y∗)y∗→∞ = 0 is taken as a boundary layer condition in order to determine
boundary layer thicknesses. Defining the non-dimensional variables such that

τ = Gr1/2(ν/L2)t, x = x∗/L, y = Gr1/4(y∗/L), (13)

u = Gr−1/2(ν/L)u∗, v = Gr−1/4(ν/L)v∗, Θ = T − T∞/Tw − T∞, (14)

whereL is the characteristic length of the plate andGr = gβ(Tw − T∞)L3/ν2 is the
Grashof number and then substituting equations (13) and (14) into equations (9)–(11)
yields the following dimensionless equations:

∂u

∂x
+

∂v

∂y
= 0, (15)

∂u

∂τ
+u

∂u

∂x
+v

∂u

∂y
=

∂2u

∂y2
− k∗

l

(

u
∂3u

∂x∂2y
+v

∂3u

∂3y
+

∂u

∂x

∂2u

∂2y
−

∂u

∂y

∂2u

∂x∂y

)

+Θ, (16)

∂Θ

∂t
+u

∂Θ

∂x
+v

∂Θ

∂y
=

1

Pr

∂2Θ

∂y2
, (17)

wherek∗

l = (k0/L2)Gr1/2 is the modified viscoelsatic parameter andPr = µcp/k is
the Prandtl number. It is noted that for the special case ofk∗

l = 0 the fluid is again a
Newtonian fluid. The corresponding dimensionless initial and boundary conditions can
be written as

t ≤ 0, u = 0, v = 0, Θ = 1 for all x ≥ 0, y ≥ 0,

t > 0,











u = 0, v = 0, Θ = 1 for x = 0, y ≥ 0,

u = 0, v = 0, Θ = 1 for y = 0, x ≥ 0,

u = M∗, ∂u/∂y = 0, Θ = 0 for y → ∞,

(18)

whereM∗ = ν2/[gβ(Tw − T∞)L3]1/2 is the mixed convection parameter. The di-
mensionless skin friction coefficient of frictionCf and local Nusselt numberNux are
important physical parameters for this type of flow and heat transfer situation Khan and
Sajayanad [29] and Sadeghy and Sharifi [30]. They can be defined in dimensionless form
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as:

CfGr3/4 = (∂u/∂y)(x,0,t) − 2k∗

l (∂u/∂y)(x,0,t)(∂v/∂y)(x,0,t), (19)

NuxGr−1/4 = −(∂Θ/∂y)(x,0,t). (20)

4 Results and discussion

The transient boundary layer equations represented by equations (15)–(17) are solved
subject to the initial and boundary conditions given by Equation (18) using the MacCor-
mack’s method which is an explicit finite-difference technique of second-order accuracy
in space and time. The details of this method of solution are clearly explained by An-
derson [31]. The employed numerical solution is a time marching technique giving the
downstream velocity, micro-rotation and temperature profiles using the known upstream
profiles. In the present work, the above quantities have beencalculated by obtaining
explicitly the flow field variables at grid point(i, j) at timet + ∆T from the known flow
field variables at grid points(i, j), (i + 1, j), (i − 1, j), (i, j − 1), and(i, j + 1), at time
t. The flow field variables at all other grid points at time are obtained in like fashion.
Once the velocity and temperature fields are obtained at a given time, then the local
coefficient of friction and local Nusselt number are calculated from equations (19) and
(20). In order to verify the accuracy of the present method, comparison of results with the
similarity solutions obtained by Oosthuizen and Naylor [32] for the steady laminar free
convection over a vertical isothermal impermeable plate ofNewtonian fluids is performed
and is shown in Table 1. As is clear from Table 1, the results are found to be in excellent
agreement. This favorable comparison lends confidence in the numerical results to be
reported in the next section.

Table 1. Values of steady state heat transfer coefficienth(∞, x, 0) along stream-wise
direction

(∂u/∂y)(∞,x,0)

k∗

l = 0, P r = 7.0, t =∞

x Present Results Oosthuizen and
Naylor [32]

0.1 1.09978 1.10400
0.2 0.98760 0.92310
0.4 0.87653 0.84325
0.6 0.82341 0.80214
0.8 0.789234 0.79023
1.0 0.700231 0.72145

The viscoelastic fluid effects on this problem are found to beproportional to di-
mensionless viscoelastic parameter. The dimensionless viscoelastic parameterk∗

l =
(k0/L2)Gr1/2 is found to be directly proportional to the elasticity of thefluid and Grashof

175



R. A. Damseh, A. S. Shatnawi, A. J. Chamkha, H. M. Duwairi

number. It is noted that the influence of the viscoelastic parameter increases as the value of
Gr or the buoyancy effect increases for the transient free convection heat transfer problem
under consideration.

Figs. 2 and 3 show the transient velocityu(x, y, τ) and temperature profilesΘ(x, y, τ)
against dimensionless timeτ = 0.5, 1, 2, 4, 6,∞ for selected values ofPr = 7.0, k∗

l =
0.1 until steady state solution are obtained. Note the momentumand energy storage
inside boundary layers until steady state solutions are obtained. The steady state velocity
profilesu(0.5, y,∞) and temperatures profilesu(0.5, y,∞) at a distance midway of the
plate against viscoelsatic parameterk∗

l = 0, 0.4, 0.8, 1.2 and for selectedPr = 70 are
shown in Figs. 4 and 5. Increasing the viscoelsatic parameter decreases the velocity inside
boundary layer and broadens the temperature distribution.This is due to the fact that
a higher viscoelastic parameter means a higher tensile stress between fluid layers and
consequently, higher resistance to motion which broadens the temperature distribution.
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The transient coefficient of frictionCfGr3/4 and local Nusselt numbersNuGr−1/4

are drawn in Fig. 6 for different values of the viscoelsatic parameterk∗

l = 0, 0.4. It
is found that the increasing of the viscoelsatic parameter decreases the local coefficient
of friction due to lower velocities of fluid layers and consequently, decreases the local
Nusselt numbers. This figure also shows the progress of transient local coefficient of
friction and local Nusselt numbers until steady state conditions are reached.

Fig. 7 shows the representative values of the local coefficient of frictionCfGr3/4 and
the local Nusselt numbersNuGr−1/4 for different values of the viscoelsatic parameter
k∗

l = 0, 0.4 where both values are decreased as the viscoelsatic parameter is increased.
This is due to higher tensile stresses between fluid layers which retard motion and conse-
quently, decreases heat transfer rates.
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Fig. 6. Transient local coefficient of
friction and local Nusselt numbers for

different viscoelastic parameters.
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different viscoelastic parameters.

5 Conclusions

The transient laminar mixed convection heat transfer from avertical surface for a vis-
coelastic fluid were studied. The governing equations were written in dimensionless
form using a set of variables and then solved using an explicit finite-difference technique.
Comparisons with previously published work were performedand found to be in excellent
agreement. It was found that as the viscoelastic parameter increased, the local coefficient
of friction and local Nusselt numbers at any specific time decreased. On the other hand,
as the velocities are decreased and temperatures are increased due to favorable tensile
stresses between fluid layers which had lowered coefficient of heat transfer.
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