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Abstract. We study the effects of thermal radiation and porous drag forces on the
natural convection heat and mass transfer of a viscous, incompressible, gray, absorbing-
emmitting fluid flowing past an impulsively started moving vertical plate adjacent to a
non-Darcian porous regime. The governing boundary-layer equations are formulated in
an(X∗, Y ∗, t∗) coordinate system with appropriate boundary conditions. The Rosseland
diffusion approximation is employed to analyze the radiative heat flux and is appropriate
for non-scattering media. The model is non-dimensionalized and solved with the network
simulation model. We study the influence of Prandtl number, radiation-conduction
parameter, thermal Grashof number, species Grashof number, Schmidt number, Darcy
number and Forchheimer number on the dimensionless velocity, temperature and
species function distributions. Additionally we compute the variation of the local skin
friction, Nusselt number and Sherwood number for selected thermophysical parameters.
Increasing Darcy number is seen to accelerate the flow; the converse is apparent for an
increase in Forchheimer number. Thermal radiation is seen to reduce both velocity and
temperature in the boundary layer. The interactive effectsof second order porous drag
and thermal radiation are also considered. The model finds applications in solar energy
collection systems, porous combustors, transport in fires in porous media (forest fires)
and also the design of high temperature chemical process systems.

Keywords: thermal radiative heat transfer, Rosseland model, convection, mass transfer,
non-Darcian regime, network numerical simulation, energysystems, Nusselt and
Sherwood number.
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1 Introduction

Many high temperature processes in industrial design and combustion and fire science
involve thermal radiation heat transfer in combination with conduction, convection and
also mass transfer. For example radiative-convective heattransfer flows arise in industrial
furnace systems [1], astrophysical flows [2], forest fire dynamics [3], fire spread in buil-
dings [4] etc. Considerable research has therefore appeared studying radiative-convective
flows in a variety of geometrical configurations with numerical and mathematical models.
Bratis and Novotny [5] reported on the effects of thermal radiation in the convection
boundary layer-regime of an enclosure. Chang et al. [6] useda radiative flux diffusion
approximation to model the interaction of convective and radiative heat transfer in two-
dimensional complex enclosure. Hossain et al. [7] studied the effects of thermal radiation
heat transfer on combined forced and free convection boundary layer flow past a hori-
zontal cylinder. Chamkha [8] studied numerically the combined influence of radiative
flux, gravity field and heat absorption on convection heat transfer in a two-phase flow.
Hossain and Vafai [9] reported on the natural convection boundary layer heat transfer
with variable viscosity, suction and radiation effects. Chamkha et al. [10] studied com-
putationally the influence of mass transfer and radiation flux on natural convection flows.
More recently Pop et al. [11] considered the radiative-convective stagnation flow over a
stretching surface. These analyses were however confined toregimes where there is only a
fluid present. Extensive applications exist however where the medium is porous medium.
For example in environmental and geothermal energy systems, convection and radiation
heat transfer take place in porous geomaterials. Forest firespread also constitutes an
important application of radiative-convective heat transfer, as described by Meroney [12].
More recently Chitrphiromsri and Kuznetsov [13] have studied the influence of high-
intensity radiation in unsteady thermofluid transport in porous wet fabrics as a model
of firefighter protective clothing under intensive flash fires. Their computational study
showed that moisture in the fabric begins to vaporize initially from the outer surface of the
fabric to the inner surface during heating, with a componentof the moisture recondensing
in the interior during cooldown. Temperature distributions in the fabric layers were shown
to be strongly affected by moisture content and thermal radiation flux. Generally for low
velocity hydromechanics of porous media, a Darcian model isused which relates the bulk
matrix impedance in the regime to the pressure drop. This approach is generally accurate
for situations where Reynolds number is less than approximately 10. Beyond this value
inertial effects become significant and must be incorporated in mathematical models.
Both Darcian and Darcy-Forchheimer (inertial) models havebeen employed extensively
in radiative-convection flows in porous media. Chamkha [14]studied the influence of
solar radiation on free convection in an isotropic, homogenous porous medium using
a computational method. Mohammadein et al. [15] employed a regular two-parameter
perturbation analysis in studying the radiative flux effecton free convection in a non-
Darcian porous medium. They studied four different flow regimes i.e. that adjacent
to the isothermal surface, flow with a uniform heat flux, planeplume flow and also
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the flow generated from a horizontal line energy source on a vertical adiabatic surface.
Radiation was found to significantly affect all flow cases. Takhar et al. [16] used an
implicit difference scheme and the Cogley-Vincenti-Gilesnon-gray model to simulate the
radiation-convectiongas flow in a non-Darcy porous medium with viscous heating effects.
Radiation parameter was found to strongly affect temperature distributions. Satapathy
et al. [17] studied the natural convection heat transfer in aDarcian porous regime with
Rosseland radiative flux effects. El-Hakiem et al. [18] considered the radiation-convection
flow in a non-Darcy porous medium numerically. Nagaraju et al. [19] used the Schuster-
Schwartzchild two-flux radiative model and the Blottner finite difference scheme to in-
vestigate the combined radiative and convective heat transfer in a medium with variable
porosity. Takhar et al. [20] employed a Runge-Kutta-Mersonshooting quadrature and the
Rosseland diffusion algebraic radiation model to analyze the mixed radiation-convection
flow in a non-Darcy porous medium, showing that temperature gradients are boosted
with radiative flux. More recently Chamkha et al. studied [21] the influence of thermal
radiation on steady natural convection in a viscoelastic-fluid saturated non-Darcian porous
medium using the Keller Box numerical scheme. Temperatureswere seen to be substan-
tially boosted with an increase in radiative parameter. Other studies discussing the effects
of radiation on convection flows in porous media have been communicated by Raptis and
Perdikis [22] who considered transient flows and Takhar et al. [23]. In certain industrial
systems, the flow past an impulsively started plate is also important. Such flows are
transient and therefore temporal velocity and temperaturegradients have to be included
in the analysis. Excellent work in this regard has been presented by Stewartson [24]
although his study ignored heat transfer. Later Soundalgekar [25] extended this study
obtaining Laplace transform solutions for the natural convection and mass transfer effects
on flow past an impulsively-started vertical surface. More recently Muthukumaraswamy
and Ganesan [26] considered the transient heat and mass transfer past an impulsively-
started vertical plate. Impulsive flows with thermal radiation effects and in porous media
are also important in chemical engineering systems, aerodynamic blowing processes and
geophysical energy modeling. Raptis and Singh [27] studiednumerically the natural
convection boundary layer flow past an impulsively started vertical plate in a Darcian
porous medium. More recently Ganesan et al. [28] have studied the influence of thermal
radiation on convection flows past an impulsively started plate. Thusfar however the
transient laminar heat and mass transfer past an impulsively-started surface embedded in a
non-Darcian porous medium with thermal radiation present has to the authors’ knowledge
not been considered. We shall therefore study this problem numerically in the present
paper. Such as study has significant applications in solar collection systems, fire dynamics
in insulations, and also geothermal energy systems. The transformed problem is shown to
be dictated by eight thermophysical parameters, viz dimensionless time, thermal Grashof
number, species Grashof number, Darcy number, Reynolds number, Forchheimer number,
Prandtl number and Schmidt number. The influence of these parameters on the velocity
profiles, temperature function, mass transfer function, local shear stress, local Nusselt
number and local Sherwood number are presented and discussed at length.
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2 Mathematical model

We study the laminar unsteady viscous free convection heat and species transfer of an
incompressible, absorbing, emitting and non-scattering,gray, Newtonian fluid past an
impulsively started vertical semi-infinite surface adjacent to an isotropic, non-Darcian,
porous medium. The physical model is shown in Fig. 1.

Fig. 1. Physical model and coordinate system.

TheX∗ direction is located parallel to the plate surface and theY ∗ direction normal
to it. The plate and fluid are taken to be at the same temperature. The concentration of
species diffusing in the binary mixture is much lower than the concentration of chemical
species otherwise present. We neglect stratification, anisotropic porous and viscous heat-
ing effects in our analysis. At timet∗ = 0, the plate commences impulsive motion in
theX∗ direction, with constant velocityu∗

0, and the plate temperature and concentration
levels are instantaneously elevated. These new values are sustained for all timet∗ > 0.
Thermal radiation is assumed to be present in the form of a unidirectional flux in theY ∗

direction i.e.qr (transverse to the vertical surface). The Rosseland diffusion flux model
is used and is defined following Modest [1] as follows:

qr = −
4σ

3κ′

∂T ∗4

∂Y ∗
. (1)

Under the Boussinesq approximation, the boundary layer equations for mass, momentum,
energy and species conservation in an(X∗, Y ∗) coordinate system, can be shown to take
the form:

Mass conservation

∂U∗

∂X∗
+

∂V ∗

∂Y ∗
= 0; (2)
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Momentum conservation

∂U∗

∂t∗
+ U∗

∂U∗

∂X∗
+ V ∗

∂U∗

∂Y ∗
= gβ[T ∗

− T ∗

∞
] + gβ∗[C∗

− C∗

∞
]

+ ν
∂2U∗

∂Y ∗2
−

ν

K
U −

b

K
U2;

(3)

Energy (heat) conservation

∂T ∗

∂t∗
+ U∗

∂T ∗

∂X∗
+ V ∗

∂T ∗

∂Y ∗
= α

∂2T ∗

∂Y ∗2
−

1

ρCp

∂qr

∂Y ∗
; (4)

Species conservation

∂C∗

∂t∗
+ U∗

∂C∗

∂X∗
+ V ∗

∂C∗

∂Y ∗
= D

∂2C∗

∂Y ∗2
. (5)

The corresponding temporal and spatial boundary conditions are prescribed as:

t∗ ≤ 0: U∗ = 0, V ∗ = 0, T ∗ = T ∗

∞
, C∗ = C∗

∞
, (6)

t∗ > 0: U∗ = U∗

0 , V ∗ = 0, T ∗

w = T ∗

∞
, C∗ = C∗

∞
at Y ∗ = 0, (7)

U∗ = 0, T ∗ = T ∗

∞
, C∗ = C∗

∞
at X∗ = 0, (8)

U∗
→ 0, T ∗

→ T ∗

∞
, C∗

→ C∗

∞
as Y ∗

→ ∞, (9)

whereX∗ andY ∗ are coordinates,U∗, V ∗ are velocity components in theX∗, Y ∗ di-
rections,t∗ is dimensionless time,σ is the Stefan-Boltzmann constant,g is gravitational
acceleration,κ′ is the mean absorption coefficient,β is coefficient of thermal expansion,
β∗ is mass transfer coefficient of expansion,ν is the kinematic viscosity of the gray fluid,
T ∗ is temperature,C∗ is species concentration,K is the permeability (hydraulic conduc-
tivity of the porous medium with dimensions m2), b is the Forchheimer geometrical inertia
parameter of the porous medium,α is the thermal diffusivity,D is the species diffusivity,
( )w denotes conditions at the wall (vertical surface) and( )∞ designates conditions in
the free stream (outside the boundary layers). Following Raptis and Perdikis [22] we can
express the quartic temperature function in (1) as alinear function of temperature. The
Taylor series forT ∗4, discarding higher order terms can be shown to give:

T ∗4
∼ 4T ∗

∞

3
− 3T ∗

∞

4. (10)

Substitution of this expression into (1) and then the heat conservation equation (4), even-
tually leads to the following form of the energy equation:

∂T ∗

∂t∗
+ U∗

∂T ∗

∂X∗
+ V ∗

∂T ∗

∂Y ∗
= α

∂2T ∗

∂Y ∗2
+

16σT ∗

∞

3

3κ′ρCp

∂2T ∗

∂Y ∗2
. (11)

Equations (2), (3), (5) and (11) with boundary conditions (6) to (9) constitute a two-
point boundary value problem which is fairly challenging tosolve. We therefore non-
dimensionalize the model to facilitate a numerical solution by thenetwork model. This
serves to introduce standard thermofluid parameters such asthe Prandtl number etc and
also allows general solutions relevant to any size of the flowregime.
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3 Transformation of model

Defining:

X =
X∗U∗

0

ν
, Y =

Y ∗U∗

0

ν
, U =

U∗

U∗

0

, U =
V ∗

U∗

0

,

t =
t∗U∗

0
2

ν
, T =

T ∗ − T ∗

∞

T ∗

w − T ∗

∞

, C =
C∗ − C∗

∞

C∗

w − C∗

∞

,

P r =
ν

α
, Sc =

ν

D
, Da =

K

L2
, Fs =

b

L
, Re

U∗

0 L

ν
, N =

κ′k

4σT ∗

∞

3
,

Gr =
gβν(T ∗

w − T ∗

∞
)

U∗

0
3

, Gm =
gβ∗ν(C∗

w − C∗

∞
)

U∗

0
3

,

(12)

whereX andY are dimensionless coordinates,U andV dimensionless velocities,t is
dimensionless time,T is dimensionless temperature function,C is dimensionless con-
centration function,N is the conduction-radiation heat transfer parameter,Pr is Prandtl
number,Sc is Schmidt number,Da is Darcy number,Fs is the Forchheimer inertial
number,Re is the Reynolds number,Gr is thermal Grashof number andGm is species
Grashof number. Introducing these transformations into equations (2), (3), (5) and (11)
we arrive at the following dimensionless conservation equations:

∂U

∂X
+

∂V

∂Y
= 0, (13)

∂U

∂t
+ U

∂U

∂X
+ V

∂U

∂Y
= GrT +GmC+

∂2U

∂Y 2
−

[

1

DaRe2

]

U−

[

Fs

DaRe

]

U2, (14)

∂T

∂t
+ U

∂T

∂X
+ V

∂T

∂Y
=

1

Pr

[

1 +
4

3N

]

∂2T

∂Y 2
, (15)

∂C

∂t
+ U

∂C

∂X
+ V

∂C

∂Y
=

1

Sc

∂2C

∂Y 2
. (16)

The corresponding initial and end boundary conditions now take the form:

t ≤ 0: U = 0, V = 0, T = 0, C = 0, (17)

t > 0: U = 1, V = 0, T = 1, C = 1 at Y = 0, (18)

U = 0, T = 0, C = 0 at X = 0, (19)

U → 0, T → 0, C → 0 as Y → ∞. (20)

The following quantities are also of interest for thermal design in for example energy
systems engineering, namely the local skin friction, localNusselt number and the local
Sherwood number. They provide a good estimate of the basic heat and mass transfer
processes in the flow regime. Following Incropera and Dewitt[29] these functions are
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computed with the following mathematical expressions:

τX = −

[

∂U

∂Y

]

Y =0

, (21)

NuX = −X

[

∂T

∂Y

]

Y =0

, (22)

ShX = X

[

∂C

∂Y

]

Y =0

, (23)

where the appropriate value for the streamwise coordinate,X , can be utilized. Addition-
ally mean values of these parameters can be defined as follows:

τ = −

1
∫

0

[

∂U

∂Y

]

Y =0

dX, (24)

Nu = −

1
∫

0

[

∂T

∂Y

]

Y =0

dX, (25)

Sh = −

1
∫

0

[

∂C

∂Y

]

Y =0

dX. (26)

4 Special cases of the model

A number of special cases can be derived from the transformedmomentum, energy and
species conservation equations in order to test the accuracy of the numerical method
employed in this study:

Case 1. Transient radiative free convective heat and mass transfer in a gray fluid-
saturated Darcian porous medium

For the case whereFs → 0, the inertial porous drag effects vanish and the momentum
equation (14) reduces to:

∂U

∂t
+ U

∂U

∂X
+ V

∂U

∂Y
= GrT + GmC +

∂2U

∂Y 2
−

[

1

DaRe2

]

U. (27)

The other transport equations remain unaffected as do the boundary conditions.

Case 2. Transient radiative free convective heat and mass transfer in a gray fluid
medium

With Da → ∞, all porous hydrodynamical body forces vanish. This implies that the
porous matrix permeability becomes infinite so that the regime is purely fluid. Again we
can modify the momentum equation (27) to the reduced form:

∂U

∂t
+ U

∂U

∂X
+ V

∂U

∂Y
= GrT + GmC +

∂2U

∂Y 2
. (28)
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This version of the momentum equation was studied by Prasad et al. [30].

Case 3. Transient free convective heat and mass transfer in anon-Darcian porous
medium without radiation

As N → ∞, thermal radiation heat flux effects vanish in the limit. Theregime is therefore
only purely free convection heat and mass transfer. In this case only the energy equation
(15) now reduces from:

∂T

∂t
+ U

∂T

∂X
+ V

∂T

∂Y
=

1

Pr

∂2T

∂Y 2
. (29)

The other transport equations remain unchanged from (13), (14) and (16).

Case 4. Transient radiative forced convective heat and masstransfer in a non-Darcian
porous medium

WhenGr → 0 andGm → 0, the buoyancy effects vanish and the temperature and con-
centration fields become de-coupled from the momentum equation. Only the momentum
equation is affected which reduces from the general case, (14) to:

∂U

∂t
+ U

∂U

∂X
+ V

∂U

∂Y
=

∂2U

∂Y 2
−

[

1

DaRe2

]

U −

[

Fs

DaRe

]

U2. (30)

5 Numerical solution by network simulation method

Numerical solutions to the governing transformed equations (13) to (16) under boundary
conditions (17) to (20) are to be obtained using the network simulation method. This
method has been used efficiently by Zueco and co-workers [31–33] and is now briefly
described. The starting point for this method is always the discretization of the equa-
tions that form the mathematical model of the problem under study, (13) to (16). This
discretization is based on the finite-difference formulation, and only a discretization of
the spatial co-ordinates is necessary, while time remains as a real continuous variable,
thereby transforming the partial differential equations into a set of ordinary differential
equations (ODEs) which can then be described by anelemental network cell. Unlike the
usual numerical methods, in the NSM the independent variable reticulation is successive
since we carry out first the spatial and then the temporal reticulation to solve the circuit
equations. This difference in the reticulation may provideus with some advantages in the
use of the NSM, at least in certain problems. No time intervalneeds to be established
by the users to obtain the numerical solution, the time interval sets automatically in
every iteration according to the given stability and convergence requirements, and this
means without a doubt an advantage. A second advantage is that with the NSM we
must only transform PDEs into ODEs and the latter along with the initial and boundary
conditions must be formulated in terms of circuit. The program to solve ODEs is based
on the network model. In other methods algorithms are rathermore complex and require
considerable programming efforts. For the transient analysis, Pspice uses the numerical
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implicit integration formulae (trapezoidal integration)with an order two accuracy; addi-
tionally a central-difference methodology has been used for the approximation of first and
second spatial-derivatives. As a result second order accuracy of the spatial discretization
is achieved. Based on the governing discretized equations,an electrical network circuit is
design for each equation, where these equations are formally equivalent to the discretized
equations. The finite-difference differential equations resulting from dimensionless con-
tinuity, momentum balance, energy balance and mass balanceequations (13)–(16) are:

∆Y dUi,j/dt + Ui,j(Ui+∆X,j − Ui−∆X,j)∆Y/∆X + Vi,j(Ui,j+∆Y − Ui,j−∆Y )

= ∆Y GrTi,j + ∆Y GmCi,j + (Ui,j−∆Y − Ui,j)/(∆Y/2)

− (Ui,j − Ui,j+∆Y )/(∆Y/2) − ∆Y Ui,j(Re + FsUi,j)/(DaRe), (31)

∆Y Pr dTi,j/dt + Ui,j(Ti+∆X,j − Ti−∆X,j)∆Y/∆X + PrVi,j(Ti,j+∆Y − Ti,j−∆Y )

= (Ti,j−∆Y − Ti,j)
[

2
(

1 + 4/3N−1
)]

/∆Y

− (Ti,j − Ti,j+∆Y )
[

2
(

1 + 4/3N−1
)]

/∆Y, (32)

∆Y Sc dCi,j/dt+∆Y ScUi,j(Ci+∆X,j−Ci−∆X,j)/∆X+ScVi,j(Ci,j+∆Y −Ci,j−∆Y )

= (Ci,j−∆Y − Ci,j)/(∆Y/2) − (Ci,j − Ci,j+∆Y )/(∆Y/2). (33)

The terms that contains these equations can be treated as electrical currents, due that
the electric-(motion-thermal-mass) analogy and the current Kirchhoff’s law are consid-
ered (Zueco [34]). This analogy can be applied is such away that the variables velocity
(U, V ), temperature (T ) and concentration (C) are equivalent to the variable, voltage,
while the velocity flux (∂U/∂X , ∂U/∂Y ), heat flux (∂T/∂X , ∂T/∂Y ) and concentration
flux (∂C/∂X , ∂C/∂Y ) are equivalent to the variable, electric current. NSM simulates
the behaviour of unsteady electric circuits by means of resistors, capacitors and non-linear
devices that seek to resemble thermal systems governed by unsteady linear or non-linear
equations. Another noticeable advantage of the NSM is that it provides both the velocity
and velocity flux density fields immediately (without no needof numerical manipulation).
Later, an electrical network circuit is designs to model theboundary conditions. The
whole network must be converted into a suitable program thatis solved by a computer
code in a PC using suitable software, Pspice [35] in this work. A mesh system with
20×200 nodes is proven to suggest mesh-independent results. An advantage of the NSM
is that the derivatives involved in equations (21) to (23) are directly evaluated, while other
methods for example using five-point approximation formula. The integrals (24) to (26)
are evaluated using Newton-Cotes closed integration formula.

To test the accuracy of the NSM simulations we have compared the transient velocity
profiles versusY at X = 1.0 and the steady-state local skin friction distributions versus
axial coordinate,X , for various combinations ofGr, Gm, Sc andN with the Crank-
Nicolson central difference computations of Prasad et al. [30]. The comparisons are
shown in Figs. 2 and 3 and found to be in excellent agreement.

Extensive computations have been performed for the effectsof the controlling ther-
mofluid and hydrodynamic parameters on dimensionless velocities (U, V ), temperature
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Fig. 2. Transient velocity profiles atX = 1.0 for variousGr, Gm, Sc andN values.

Fig. 3. Steady state local skin friction profiles versusX for variousGr, Gm, Sc andN

values.

(T ) and concentration (C), and also on the local skin friction (τx), local Nusselt num-
ber (Nux) and local Sherwood number (Shx). In addition we have aimed to study
the interactional effects of for example Forchheimer drag (Fs) and thermal radiation
parameter (N ). Only selective figures have been reproduced here for brevity. Default
values of the parameters are as follows: conduction-radiation parameter (N ) i.e. Stark
numberN = 0.5, Forchheimer parameterFs = 0.1, thermal Grashof numberGr = 1,
species Grashof numberGm = 1, Prandtl numberPr = 0.7 (air), Darcy number
Da = 0.1, Schmidt numberSc = 0.5 (water vapour) and Reynolds numberRe of
unity. All graphs therefore correspond to these valuesunless specifically indicated on
the appropriate graph. We have also opted to study the spatial variation of variables at
a certain time e.g. fort = 1. Separate transient profiles have also been computed. The
present analysis concerns the case of optically thick boundary layers, where the thermal
boundary layer is expected to become very thick as the mediumis highly absorbing. The
radiative diffusion (Rosseland model) adds a radiative conductivity to the conventional
thermal conductivity. The effect of radiation is to thickenthe thermal boundary layer
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similar to the effect of decreasing Prandtl number (the latter representing the ratio of the
viscous to thermal diffusion). Radiation supplements the thermal diffusion effectively
enhancing the thermal diffusivity, as described by Siegel and Howell [36].

Figs. 4 to 8 illustrate the effects ofN, Da, Gr, Gm, Pr respectively on the dimen-
sionless temperature profiles versusY (transverse coordinate) att = 1. An increase in
N corresponds to an increase in the relative contribution of conduction heat transfer to
thermal radiation heat transfer. AsN → ∞, conduction heat transfer dominates and
the contribution of thermal radiative flux vanishes. The converse is true forN = 0 where
thermal radiation dominates over conduction [20]. Small values ofN therefore physically
correspond to stronger thermal radiation flux and in accordance with this, the maximum
temperatures are observed in Fig. 4 forN = 0.1. As N increases to0.5, 1, 3, 5 and100,
considerable reduction is observed in the temperature values,T , from the peak value at
the wall (Y = 0) across the boundary layer regime to the free stream whereY = 10, at

Fig. 4. Transient temperature distribution withY for various conduction-radiation
parameters (N ).

Fig. 5. Transient temperature distribution withY for various Darcy numbers (Da).
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Fig. 6. Transient temperature distribution withY for various thermal Grashof numbers
(Gr).

Fig. 7. Transient temperature distribution withY for various species Grashof number
(Gm).

Fig. 8. Transient temperature distribution withY for various Prandtl numbers (Pr).
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which point temperatures are negligible for any value ofN . All profiles decay asymptot-
ically to zero in the free stream. We also observe that the relative decrease in temperature
from N = 0.1 to 0.5 is greatest; separation of profiles reduces fromN = 0.5 to 1
(almost identical) and progressively so toN = 5 andN = 10. In Fig. 5 a small decrease
in temperature accompanies a tenfold rise inDa from 0.1 to 1; the effect of a rise in
Da (implying an increase in permeability and a simultaneous decrease in Darcian drag
force) implies that conduction heat transfer becomes less prominent than convection heat
transfer (there is less solid material present in the porousmedium) and this contributes to
the marginal decrease in temperatures across the boundary layer from the wall to the free
stream. The influence of thermal Grashof number,Gr on temperatures is shown in Fig. 6.
Gr signifies the relative effect of the thermal buoyancy force to the viscous hydrodynamic
force in the boundary layer regime. An increase inGr from 0.1 through20, 30, 50, 200
and500 induces a sizeable decrease in the temperature throughout the porous regime.
The temperature distributions descend smoothly from theirmaxima of unity at the wall
(Y = 0) to zero at the edge of the boundary layer. Thermal buoyancy therefore depresses
temperatures in the medium. A similar trend is observed for the species Grashof number,
Gm, as shown in Fig. 7. Again temperatures are seen to fall with arise in Gm from
0.1 to 500; however the profiles descend less steeply than forGr i.e. there is a more
gradual reduction in temperatures. The influence of Prandtlnumber (Pr) on T profiles
with Y coordinate is shown in Fig. 8.Pr defines the ratio of momentum diffusivity to
thermal diffusivity i.e. it controls the thickness of the thermal boundary layer and the rate
of heat transfer. ForPr = 1, the momentum and thermal boundary layer thicknesses, as
described by Schlichting [37], are approximately of equal extent. For fluids possessing a
large viscosity (highPr fluids e.g. oils), the ability to transport momentum is large. As a
result the elimination of momentum introduced by the presence of the boundary (no slip
condition of Prandtl at the wall), extends considerably into the fluid causing the velocity
boundary layer to be relatively large. We therefore expect that with an increase inPr the
thermal boundary layer will be decreased in thickness and there will be a corresponding
uniformity of temperature distributions across the boundary layer. The profiles in Fig. 8
attest to this where we observe that the maximum temperatures correspond to lowest
Pr values(0.1), and progressively decrease asPr rises. The profiles also steepen and
intersect the abscissa faster for higherPr fluids i.e. temperatures across the boundary
layer (normal to the wall) reach zero faster for higherPr fluids. The lowerPr values may
correspond to certain metallic fluids whilePr of 1 corresponds to approximately water.
HigherPr values (100) are observed in high viscosity working fluids, oils, lubricants etc.

Figs. 9 to 12 depict the effects ofN, Da, Fs andSc on temperature profiles versus
X , for constantY andt values i.e. there a snapshots in time and at a fixed location from
the wall. Fig. 9 shows the effect of conduction-radiation parameter,N (i.e. Stark number)
on the temperature variation along the vertical surface i.e. in the streamwise direction, at
t = 1, Y = 1.25 i.e. at some small distance into the boundary layer regime, ashort
time after impulsive loading has been initiated. Although we have computed the time
taken to reach the steady-state for variousN values, and it has been found that, as with
the finite difference calculations of Prasad et al. [30], theequilibration time is increased
with an increase inN , this has not been reproduced here for brevity. Our computations
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Fig. 9. Transient temperature distribution withX for various conduction-radiation
numbers (N ) atY = 1.25.

Fig. 10. Transient temperature distribution withX for various Darcy numbers (Da) at
Y = 1.25.

Fig. 11. Transient temperature distribution withX for various Forchheimer numbers
(Fs) atY = 1.25.
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Fig. 12. Transient temperature distribution withX for various Schmidt numbers (Sc)
atY = 1.25.

indicate that asN decreases from100 (low radiation contribution) through5, 3, 1, 0.5
and to0.1 (strong radiation), the temperatures are increased markedly throughout the
length of the wall i.e. along theX direction. The values in all cases are higher than for
theY -variation due to the proximity of the regime to the wall, from which the radiative
flux emanates. As a result in both distributions the thermal boundary layer thickness is
decreasing due to a rise inN values i.e. it increases with a decrease inN . The effect
of the Darcy number onT versusX profiles is shown in Fig. 10. As observed for the
T versusY profiles, again an increase in permeability (Da value) causes a decrease in
temperatures along the wall direction. Maximum temperatures correspond therefore to the
lowestDa value (0.001 i.e. very low permeability implying high solid material presence
and strong conduction heat transfer contribution, especially near the leading edge i.e.
X ∼ 0.05); the lowest temperatures are observed forDa = 1 (for which the Darcian drag
force is a minimized for this graph), for which the profile is approximately monotonic
and more evenly dispersed throughout theX domain. Fig. 11 shows the effect of the
second order porous drag parameter i.e.Fs on T versusX distributions. Conversely to
Da effects, a rise inFs (implying greater inertial drag force contribution) causes a rise in
temperature values. The influence of the Schmidt number,Sc, onT versusX profiles is
shown in Fig. 12. Sc embodies the ratio of the momentum diffusivity to the mass (species)
diffusivity. Larger Sc fluids will therefore have lower mass diffusion properties i.e.
concentration boundary layers will be thinner than the velocity (hydrodynamic) boundary
layer thickness. This is analagous to higherPr fluids for which the thermal boundary
layer will be much thinner than the velocity boundary layer [37]. A rise inSc from 0.1
through0.5, 1, 3 and to5 induces a rise in temperatures. Profiles are in all cases monotonic
although they become steeper for higherSc values.Sc of 0.5 approximately represents
water andSc of 1 approximates well to that for Carbon Dioxide. Higher valuesare
associated with hydrocarbon working fluids. For exampleSc = 2 would represent Ethyl
Benzene. The increase inT with Sc has been computed also by Prasad [30], however
they only considered the distribution transverse to the wall i.e. in theY direction for
constantX (X = 1.0). The importance of our numerical calculations may be exploited in
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for example controlling temperatures in energy systems, using lower viscosity fluids i.e.
lowerSc fluids.

Figs. 13 to 15 represent the distribution of streamwise velocity, U , with streamwise
distance,X , at fixedt andY values, for the effects ofFs, N andDa respectively. As
expected, an decrease inFs induces a substantial increase in transient velocity,U . In the
momentum equation (14), the quadratic drag term,−[ Fs

DaRe
]U2 is directly proportional

to Fs. Consequently asFs increases from0.1, through0.5, 1, 10, 20 to 50, we observe
a dramatic fall inU velocity component which is sustained shortly downstream from the
leading edge (X ∼ 0.05) throughout the wall length up toX = 1.0. Fig. 14 shows
the distribution ofU againstX for variousN values. As with temperatures, a decrease
in radiation contribution (corresponding to a rise inN value) causes a large decrease in
transient velocity,U . Our results concur with those obtained by Prasad [30]. Fig.15
reveals that a rise in Darcy number (from0.01, through0.1, 0.3, 0.5 to 1) accompanying
a decrease in Darcian porous resistance in the momentum equation (14) i.e. −[ 1

DaRe2 ]U ,

Fig. 13. Transient velocity distribution withX for various Forchheimer numbers (Fs)
at t = 1 andY = 1.25.

Fig. 14. Transient velocity distribution withX for various conduction-radiation
numbers (N ) at t = 1 andY = 1.25.

296



Network Numerical Simulation of Porous Radiation-Convection Heat and Mass Transfer

Fig. 15. Transient velocity distribution withX for various Darcy numbers (Da) att = 1
andY = 1.25.

induces a substantial rise in transient velocity,U . Higher permeability regimes offer less
fiber resistance to the flow and therefore it is accelerated compared with lower permeabili-
ty (i.e. lowerDa) regimes which offer more resistance to the flow causing a deceleration
i.e. reduction in velocity,U . This trend is maintained along the plate length i.e. for
0 < X < 1.

Figs. 16 and 17 show the influence of thermal Grashof number (Gr) and Stark
conduction-radiation number (N ) on the spanwise variation in transient concentration
(C) and streamwise variation in transient concentration (C), respectively. A rise inGr
from 0.1 to 500 (Fig. 16) causes a strong decrease in species concentrationthroughout
the boundary layer regime fromY = 0 (at the wall) toY = 6.0. Profiles decrease
asymptotically from a maximum at the wall to zero in the free stream.Gr is therefore a
useful control parameter i.e. buoyancy can be used to regulate the species concentration
distributions. This may be of importance in for example nearand far field migration
of heat-generating waste materials in underground geo-repositories. An increase in

Fig. 16. Transient concentration distribution with Y for various thermal Grashof
numbers (Gr) at t = 1.
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Fig. 17. Transient concentration distribution with X for various conduction-radiation
numbers (N ) at t = 1 andY = 1.25.

conduction-radiation parameter (N ) (Fig. 17) is seen to decrease slightly the concen-
tration profiles. Thermal radiation indirectly affects thediffusion conservation equation
(16) via the coupling of the momentum equation to the former (in the termGmC) and the
coupling of the latter to the energy conservation equation (15) via the thermal buoyancy
term, GrT . As a result there is weak effect of thermal radiation experienced by the
concentration field, explaining the less dramatic influenceof N on C profiles compared
with Fig. 16.

Finally using expressions (21) to (23) we have computed in Figs. 18 to 20, the
variation of transient local skin friction, local Nusselt number and local Sherwood number
with streamwise distance for the selected effects ofN , Da andFs parameter, at fixed
time, t = 1.

Shear stress,τX , at the wall (Y = 0), as shown in Fig. 18, is illustrated for com-
binations ofN andFs. For Darcian flow,Fs = 0, which corresponds to Case 1 (dis-
cussed earlier), we observe that the shear stress values,τX , are noticeably above those for
Fs = 0.1 for all values of Stark number (N ) i.e. shear stress at the wall is increased
with a decrease inFs. For purely Darcian convection, the flow will be accelerated
compared with weakly Darcy-Forchheimer convection (Fs = 0.1) for which it will be
slightly decelerated. IncreasingN (i.e. decreasing radiation contribution) also causes a
slight increase in wall shear stress, which is understandable due to the indirect effect of
radiation flux on the momentum equation (14) via the thermal buoyancy coupling with
the energy conservation equation (15). The local Nusselt number,NuX , is seen to be
increased with a rise inDa (andFs) as seen in Fig. 19. Hence with higher permeability
media, wall heat transfer rate is enhanced since the regime becomes increasingly fluid
with a rise inDa allowing a dominance of thermal convection over conduction, the latter
being more significant in lowerDa regimes. This behaviour is maintained throughout the
wall length i.e. for allX . We note that there is a minute difference inNuX profiles for
Fs = 0.1 compared with the purely Darcian case. Values are slightly higher with non-
zeroFs owing to the increase in thermal convection and heat transfer rate from the wall
caused by the deceleration induced by Forchheimer effects (however small). A similar
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Fig. 18. Transient local skin friction distribution withX for various conduction-
radiation numbers (N ) and Forchheimer numbers (Fs) at t = 1 andY = 0.

Fig. 19. Local Nusselt number distribution withX for various Darcy numbers (Da)
and Forchheimer numbers (Fs) at t = 1 andY = 0.

Fig. 20. Local Sherwood Number withX for various Darcy numbers (Da) and
Forchheimer numbers (Fs) at t = 1 andY = 0.
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trend is observed for theShX profiles versusX with Da andFs values (Fig. 20).ShX is
maximized at higherDa values i.e. greater species diffusion rate from the wall to the fluid
takes place for more porous regimes. Such a feature may be exploited in chemical reactor
systems and energy systems where higher diffusion rates from the wall to the working
fluid are required.

6 Conclusions

A mathematical model has been presented for the radiative-convective flow in a gray
absorbing-emmitting fluid-saturated porous medium adjacent to a vertical impulsively
started surface. The Rosseland diffusion flux model has beenused to simulate radiative
flux. A Darcy-Forchheimer porous medium drag force model is utilized with isotropic
permeability. The Network Simulation Method has been used to compute the dimen-
sionless velocity, and concentration profiles. Several important special cases of the flow
regime are described. We have studied graphically the influence of the effects of con-
duction-radiation parameter (N ), Forchheimer parameter (Fs), thermal Grashof number
(Gr), species Grashof number (Gm), Prandtl number (Pr), Darcy number (Da), Schmidt
number and also time on the pertinent dependent variables. It has been shown that:

1. IncreasingN , Da, Gr, Gm andPr reduces temperature,T , whereas a rise inFs
andSc increases temperatures along the wall and transverse to thewall.

2. A decrease inFs induces a substantial increase in transient velocity,U .

3. A decrease in radiation contribution (corresponding to arise in N value) causes a
large reduction in transient velocity,U .

4. A rise in Darcy number induces a substantial rise in transient velocity,U .

5. A rise inGr induces a considerable decrease in species concentration,C.

6. An increase in conduction-radiation parameter (N ) causes a small decrease in con-
centration,C.

7. Shear stressτX , at the wall is increased with a decrease inFs.

8. Local Nusselt number,NuX , is increased with a rise inDa (andFs)

9. ShX is increased with a rise inDa values.

The present model is currently being extended to more complex radiative transfer
models e.g. Schuster-Schwartzchild two-flux model. The results of these investigations
will be communicated in the future.
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