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Abstract. The problem of unsteady oscillatory flow and heat transfer ina horizontal
composite porous medium is performed. The flow is modeled using the Darcy-Brinkman
equation. The viscous and Darcian dissipation terms are also included in the energy
equation. The partial differential equations governing the flow and heat transfer are
solved analytically using two-term harmonic and non-harmonic functions in both regions
of the channel. Effect of the physical parameters such as theporous medium parameter,
ratio of viscosity, oscillation amplitude, conductivity ratio, Prandtl number and the Eckert
number on the velocity and/or temperature fields are shown graphically. It is observed
that both the velocity and temperature fields in the channel decrease as either of the porous
medium parameter or the viscosity ratio increases while they increase with increases in
the oscillation amplitude. Also, increasing the thermal conductivity ratio is found to
suppress the temperature in both regions of the channel. Theeffects of the Prandtl and
Eckert numbers are found to decrease the thermal state in thechannel as well.

Keywords: unsteady, composite porous medium, horizontal channel.

Nomenclature

A real positive constant s permeability of porous matrix
Cp specific heat at constant pressure T temperature
Ec Eckert number Tw wall temperature
h channel half width t time
K thermal conductivity u, v velocity components of velocity along
k ratio of thermal conductivities and perpendicular to the plates, resp.
m ratio of viscosities ūl average velocity
P non-dimensional pressure gradient v0 scale of suction
p pressure x, y Cartesian coordinates
Pr Prandtl number
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Greek letters

ε coefficient of periodic parameter ωt periodic frequency parameter
δ Kronecker delta ν kinematic viscosity
ρ0 fluid density σ porous medium parameter
µ fluid dynamic viscosity θ non-dimensional temperature
ω frequency parameter

Subscripts

1, 2 quantities for region I and region II, respectively
eff effective value for porous matrix

Superscripts

∗ dimensionless quantity

1 Introduction

In recent years considerable interest has been evidenced inthe study of flow past a
porous medium because of its natural occurrence and importance in both geophysical
and engineering environments. Research on thermal interaction between heat generating
porous bed and overlying fluid layer was largely motivated bythe nuclear reactor severe
accident problems. Another area of nuclear engineering applications is the design of
pebble bed reactor which requires a proper understanding offorced convection through
packed beds under normal operating conditions and of free convection either in the case
of loss of coolant or during cold shut down. The applicationsalso include problems
involving porous bearings [1–6], porous rollers [7], porous layer insulation consisting of
solid and porous media [8] and, in biomathematics. Composite fluid and porous layers
also find its application in porous journal bearings. Under high pressure conditions,
the lubricant is squeezed into the porous matrix which releases the fluid as soon as the
pressure decreases thereby maintaining a liquid-film between the shaft and in human
body hip and knee, etc., acts on a similar principle. The surfaces of the joint are articular
cartilage, a smooth rubbery material which is attached to the solid bone. The surface of the
articular cartilage is rough and porous, and hence, can trapthe synovial fluid. It has been
suggested that because of the porous nature of the articularcartilage, other lubricating
material is squeezed into the joint when it is under stress. One theory is that pressure
causes lubricating “threads” to squeeze out of the cartilage into the joint; one end of each
lubricating threads remains in the cartilage and as the pressure reduces, the threads are
pulled back into the holes. Zaturaska et al. [9] reported on the flow of viscous fluid driven
along a channel by suction at porous walls. More recently, King and Cox [10] performed
an asymptotic analysis of the steady-state and time-dependent laminar porous channel
flows.

Problems involving multiphase flow and heat transfer and multi-component mass
transfer arise in a number of scientific and engineering disciplines and are important in the
petroleum extraction and transport. For example, the reservoir rock of an oil field always
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contains several immiscible fluids in its pores. Part of the pore volume is occupied either
by oil or gas or both. Crude oils often contain dissolved gases which may be released
into the reservoir rock when the pressure decreases. There has been some theoretical
and experimental work on stratified laminar flow of two immiscible fluids in a horizontal
pipe [11–14]. Chamkha [15] reported analytical solutions for flow of two-immiscible
fluids in porous and non-porous parallel-plates. Later on, MHD two-fluid convective flow
and heat transfer in composite porous medium was analyzed byMalashetty et al. [16–18].

All of the above studies pertain to steady flow. However, a significant number of
problems of practical interest are unsteady. The flow unsteadiness may be caused by a
change in the free stream velocity or in the surface temperature or in both. When there is
an impulsive change in the velocity field, the inviscid flow isdeveloped instantaneously,
but the flow in the viscous layer near the wall is developed slowly which becomes fully
developed steady flow after sometime. Raptis and Kafousias [19] studied the influence
of a magnetic field on the steady free convection flow through aporous medium bounded
by an infinite vertical isothermal plate with a constant suction velocity. Umavathi [20]
studied oscillatory flow of unsteady convective fluid in a infinite vertical stratum.

The objective of this paper is to consider unsteady flow and heat transfer in a horizon-
tal composite channel consisting of two parallel permeableplates with half of the distance
between them filled by a fluid-saturated porous layer and the other half by a clear viscous
fluid.

2 Mathematical formulation

Consider unsteady, fully developed, laminar flow of an incompressible viscous fluid
through a an infinitely-long composite channel (see Fig. 1).

Fig. 1. Physical configuration.

The region−h < y < 0 (region I) is filled with a porous matrix and the region
0 < y < h (region II) is occupied by a clear viscous fluid. The two wallsof the channel
are held at constant different temperaturesTw1

andTw2
with Tw1

< Tw2
and the infinite
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plates are placed horizontally. It should be noted here thatsince the plates of the channel
are assumed to be infinite, all of the physical dependent variables except pressure will
only depend ony and t. The thermo-physical properties of the fluid and the effective
properties of the porous medium are assumed constant. In region I, both the fluid and the
porous matrix are assumed to be in local thermal equilibrium. Further, the flow in both
regions of the channel is assumed to be driven by a common pressure gradient(−∂P

∂x
) and

temperature gradient∆T = Tw1
− Tw2

.
With the assumptions mentioned above, the governing equations of motion and

energy are:

∂vi

∂y
= 0, (1)

ρ0

(

∂ui

∂t
+ vi

∂ui

∂y

)

= χµ

∂2ui

∂y2
−

∂p

∂x
− χ

µ

s
ui, (2)

ρ0Cp

(

∂Ti

∂t
+ vi

∂Yi

∂y

)

= χK

∂2Ti

∂y2
− χµ

(

∂ui

∂y

)2

+ χ
µ

s
u2

i , (3)

wherei = 1, 2 gives equations for regions I and II, respectively,u is thex-component of
fluid velocity,v is they-component of fluid velocity andT is temperature of the fluid.ρ0,
µ andCp are the fluid density, dynamic viscosity and specific heat at constant pressure,
respectively. The parameters is the porous medium permeability. The other coefficients
appearing in equations (2) and (3) are such that

χµ = µeff for porous matrix region,

χµ = µ for clear fluid region,

χ = 1 for porous matrix region,

χ = 0 for clear fluid region,

χK = Keff for porous matrix region,

χK = K for clear fluid region.

The boundary conditions on velocity are the no-slip boundary conditions which
require that thex-component of velocity must vanish at the wall. The boundaryconditions
on temperature are the isothermal conditions. It is also assumed that the velocity, shear
stress, temperature and heat flux at the interfaces are continuous.

The boundary and interface conditions on velocity for the two fluids can then be
written as

u1(−h) = 0, u2(h) = 0,

u1(0) = u2(0),

µeff

∂u1

∂y
= µ

∂u2

∂y
at y = 0.

(4)
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The thermal boundary and interface conditions for both fluids are given by

T1(−h) = Tw1
, T2(h) = Tw2

,

T1(0) = T2(0),

Keff

∂T1

∂y
= K

∂T2

∂y
at y = 0.

(5)

The continuity equations of both fluids (equation (1)) implythat, v1 and v2 are
independent ofy, they can be utmost a function of time alone. Hence, we can write
(assumingv1 = v2 = v)

v = v0

(

1 + εAeiωt
)

, (6)

whereA is real positive constant,ω is the frequency parameter andε is small such that
εA ≤ 1. Here, it is assumed that the transpiration velocity variesperiodically with time
about a non-zero constant meanv0. WhenεA = 0, the case of constant transpiration
velocity is recovered. By use of the following non-dimensional quantities

ui = ū1u
∗

i , y =
ν

v0

y∗, t =
ν

v2
0

t∗, v = v0v
∗, σ2 =

ν2

sv2
0

,

P =
ν2

µv2
0
U0

(

∂P

∂x

)

, θ =
T − Tw2

Tw1
− Tw2

, Ec =
U2

0

Cp∆T
.

(7)

Equations (2) and (3) are placed in dimensionless form as

∂ui

∂t
+ v

∂ui

∂y
= Ai

∂2ui

∂y2
− χσ2ui − P, (8)

∂θi

∂t
+ v

∂θi

∂y
= Bi

∂2θi

∂y2
+ AiEc

(

∂ui

∂y

)2

+ χσ2Ec u2

i , (9)

wherei = 1, 2 gives equations for regions I and II and

A1 = m, A2 = 1, B1 =
k

Pr
, B2 =

1

Pr
.

Pr =
ρ0νCp

K
, m =

µeff

µ
is the ratio of viscosities andk =

Keff

K
is the ratio of thermal

conductivities.
The non-dimensional form of the hydrodynamic and thermal boundary and interface

conditions reduce to

u1(−1) = 0, u2(1) = 0,

u1(0) = u2(0),

m
∂u1

∂y
=

∂u2

∂y
at y = 0;

(10)
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θ1(−1) = 1, θ2(1) = 0,

θ1(0) = θ2(0),

k
∂θ1

∂y
=

∂θ2

∂y
at y = 0.

(11)

(The asterisks have been dropped for simplicity.)

3 Closed-form solutions

The governing momentum and energy equations (8) and (9) are solved subject to the
boundary and interface conditions (10) and (11) for the velocity and temperature distribu-
tions in both regions. These equations are coupled partial differential equations that can
not be solved in closed form. However, they can be reduced to set of ordinary differential
equations that can be solved analytically. This can be done by representing the velocity
and temperature as

ui(y, t) = ui0(y) + εeiωtui1(y) + O
(

ε2
)

+ . . . , i = 1, 2, (12)

θi(y, t) = θi0(y) + εeiωtθi1(y) + O
(

ε2
)

+ . . . , i = 1, 2. (13)

This is a valid assumption because of the choice of v as definedin equation (6) that the
amplitudeεA ≪ 1.

By substituting equations (12) and (13) into equations (8) to (9), equating the har-
monic and non-harmonic terms and neglecting the higher order terms ofO(ε2), one
obtains the following pairs of equations for(ui0, θi0) and(ui1, θi1).

Non-periodic coefficientsO(ε0)

Ai

d2ui0

dy2
+

dui0

dy
− χσ2ui0 = P, (14)

Bi

d2θi0

dy2
+

dθi0

dy
= −AiEc

(

dui0

dy

)2

− χσ2Ec u2

i0. (15)

Periodic coefficientsO(ε1)

Ai

d2ui1

dy2
+

dui1

dy
− χ

(

σ2 + iω
)

ui1 = −A
dui0

dy
, (16)

Bi

d2θi1

dy2
+

dθi1

dy
− iωθi1 = −A

dui0

dy
− 2Ec Ai

dui0

dy

dui1

dy
− 2χσ2Ec ui0ui1. (17)

Using equations (12) and (13), the boundary and interface conditions may be writ-
ten as:

u1i(−1) = 0, u2i(1) = 0,

u1i(0) = u2i(0),

m
∂u1i

∂y
=

∂u2i

∂y
at y = 0;

(18)
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θ1i(−1) = 1 − δ1i, θ2i(1) = 0,

θ1i(0) = θ2i(0),

k
∂θ1i

∂y
=

∂θ2i

∂y
at y = 0,

(19)

wherei = 0, 1 gives the boundary and interface conditions for non-periodic (O(ε0)) and
periodic(O(ε1)) coefficients, respectively andδ1i is the Kronecker delta.

Without going into detail, solution of the equations (14) to(17) using the boundary
and interface conditions (18) and (19) can be written as

u10 =C1e
m1y + C2e

m2y −
P

σ2
, (20)

u20 =C3 + C4e
−y + Py, (21)

θ10 =C5 + C6e
m4y + k8y + k10e

m1y + k11e
m2y

+ k12e
2m1y + k13e

2m2y + k14e
m5y, (22)

θ20 = C7 + C8e
−Pr y + k15e

−2y + k16e
−y + k17y, (23)

u11 =ee1y(XC9 cosF1y + XC10 sin F1y) + E2e
m1y + E3e

m2y

+ i
[

ee1y(Y C9 cosF1y + Y C10 sin F1y) + F2e
m1y + F3e

m2y
]

, (24)

u21 =ee4y(XC11 cosF4y + XC12 sin F4y)

+ i

[

ee4y(Y C11 cosF4y + Y C12 sin F4y) +
A

ω
(C4e

−y + P )

]

, (25)

θ11 =ee5y(XC13 cosF5y+XC14 sin F5y)+P23e
2m1y+P24e

2m2y+E7e
m4y

+P25e
m5y+P26e

m1y+P27e
m2y+em6y(P28 cosF1y+P29 sin F1y)

+em7y(P30 cosF1y+P31 sin F1y)+ee1y(P32 cosF1y+P33 sin F1y)

+i
[

ee5y(Y C13 cosF5y+Y C14 sinF5y)+Q23e
2m1y+Q24e

2m2y

+F7e
m4y+Q25e

m5y+Q26e
m1y+Q27e

m2y

+em6y(Q28 cosF1y+Q29 sin F1y)

+em7y(Q30 cosF1y+Q31 sin F1y)

+ee1y(Q32 cosF1y+Q33 sin F1y)+K18

]

, (26)

θ21 =ee27y(XC15 cosF27y+XC16 sin F27y)+P44e
−2y+P45e

−y

+em8y(P46 cosF4y+P47 sin F4y)+eE4y(P48 cosF4y+P49 sinF4y)

+i
[

ee27y(XC15 cosF27y+XC16 sin F27y)+P44e
−2y+P45e

−y

+k28e
−Pr y+em8y(P46 cosF4y+P47 sinF4y)

+ee4y(P48 cosF4y+P49 sin F4y)+k29

]

. (27)

It should be noted that all of the constants appearing in the above solutions are defined in
Appendix section.
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4 Results and discussion

The problem of unsteady flow and heat transfer in a horizontalcomposite porous medium
channel is investigated analytically. The closed-form solutions are reported for small such
that oscillation amplitudeεA ≤ 1. The solution of non-periodic and periodic coefficients
of eiωt is evaluated for various parametric conditions. The results are depicted graphically
in Figs. 2 to 10.

Figs. 2 and 3 display the effect of the porous medium parameter σ on the velocity
and temperature profiles, respectively. As the porous medium parameterσ increases, the
velocity and temperature decrease in both regions of the channel. This is expected since
the porous matrix represents an obstacle to flow and therefore, reduces its velocity and
temperature. This result is also similar to the case of fullydeveloped flow through a
porous medium as predicted by Rudraiah and Nagraj [21].

Fig. 2. Velocity profiles for different values
of the porous medium parameterσ.

Fig. 3. Temperature profiles for different
values of the porous medium parameterσ.

Fig. 4 depicts the effect of Prandtl number on the temperature profiles. The Prandtl
number is the ratio of momentum diffusion to heat diffusion.It is a measure of the relative
importance of viscosity and heat conduction in a flow field. Thus, as the Prandtl number
increases, the viscous forces dominate over heat conduction and hence, the temperature
decreases. This is obvious from Fig. 4.

Fig. 5 presents the effect of the Eckert number on the temperature profiles. Physically
speaking, the Eckert number represents the effects of the viscous and porous medium dis-
sipations. As the Eckert number increases, the temperaturefield in the channel decreases.
The magnitude of reduction in the temperature field in regionII is larger compared to that
in region I.

The effect of the viscosity ratio m on the velocity and temperature profiles is shown
in Figs. 6 and 7, respectively. As the viscosity ratio increases, both the velocity and
temperature profiles are decreased. This is due to the fact that as the fluid viscosity
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increases, the fluid in both regions of the channel becomes thicker and hence the flow
velocity is reduced causing the temperature distribution to reduce as well.

Fig. 4. Temperature profiles for different
values of the Prandtl numberPr.

Fig. 5. Temperature profiles for different
values of the Eckert numberEc.

Fig. 6. Velocity profiles for different values
of the ratio of viscositiesm.

Fig. 7. Temperature profiles for different
values of the ratio of viscositiesm.

Fig. 8 displays the influence of the thermal conductivity ratio k on the temperature
profiles. Increases in the thermal conductivity ratio have the tendency to cool down the
thermal state in the channel. This is depicted in the reduction in the fluid temperatures as
k increases as shown in Fig. 8.

Figs. 9 and 10 illustrate the effect of the oscillation amplitudeεA on the velocity and
temperature fields, respectively. It should be reminded that the oscillation amplitude was
assumed to be small in evaluating the analytical solutions i.e. εA ≤ 1. The condition of
εA = 0 is for steady state solutions. It is clear from Figs. 9 and 10 that as the oscillation
amplitude increases, both the velocity and temperature profiles increase in both regions
of the channel.
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Fig. 8. Temperature profiles for different
values of the ratio of conductivitiesk.

Fig. 9. Velocity profiles for different values
of the oscillation amplitudeεA.

Fig. 10. Temperature profiles for different
values of the oscillation amplitudeεA.

5 Conclusions

The problem of unsteady flow of a viscous fluid through a horizontal composite channel
whose half width is filled with a uniform layer of porous mediain the presence of time-
dependent oscillatory wall transpiration velocity was investigated analytically. Both the
fluid and the porous matrix were assumed to have constant physical properties. Separate
closed-form solutions for each region of the channel were obtained taking into conside-
ration suitable interface matching conditions. The closed-form results were numerically
evaluated and presented graphically for various values of the porous medium parameter,
viscosity and thermal conductivity ratios, oscillation amplitude and the Prandtl and Eckert
numbers.

It was predicted that both the velocity and temperature profiles decreased as either
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of the porous medium parameter or the viscosity ratio was increased. Furthermore, it
was concluded that the temperature field decreased as eitherof the Prandtl number, the
Eckert number or the thermal conductivity ratio increased.However, both the velocity and
temperature fields in the channel increased as the oscillation amplitude was increased.
It can be concluded that the flow and heat transfer aspects in ahorizontal composite
channel with permeable walls can be controlled by considering different combinations of
fluids and porous media having different viscosities, conductivities and also by varying
the amplitude of the transpiration velocity at the boundary.

Appendix

B1 = 2k2m6 + 1, B2 = k2m
2

6
+ m6 − k2F

2

1
, B3 = B2

2
+ ω2 − B2

1
F 2

1
,

B4 = 2k2m7 + 1, B5 = k2m
2

7
+ m7 − k2F

2

1
, B6 = B2

5
+ ω2 − B2

4
F 2

1
,

B7 = 2k2e1 + 1, B8 = k2e
2

1
+ e1 − k2F

2

1
, B9 = B2

8
+ ω2 − B2

7
F 2

1
,

B10 = 2m8 + Pr, B11 = m2

8 + Pr m8 − F 2

4 , B12 = B2

11 + ω2Pr2−B2

10F
2

4 ,

B13 = 2e4 + Pr, B14 = e2

4 + Pr e4 − F 2

4 , B15 = B2

14 + ω2Pr2−B2

13F
2

4 ;

C1 =
−(l3e

−m2σ2 + l2P )

σ2(l1e−m2 − l2e−m1)
, C2 =

−(P − C1e
−m1σ2)

σ2e−m2

,

C3 = C1 + C2 − C4 −
P

σ2
, C4 = P − m(m1C1 − m2C2),

C5 = −C6e
−m4 − l4, C6 =

l9 − l4
e−m4 − l8

,

C7 = C5 + C6 − C8 − l6, C8 =
−(km4C6 + l7)

Pr
;

D1 = 2B2

1
B2, D2 = 2B1B

2

1
−B1B3, D3 = −B3B2,

D4 = 2ωB1B2, D5 = 2B2

4
B5, D6 = 2B4B

2

5
− B4B6,

D7 = −B6B5, D8 = 2ωB4B5, D9 = 2B2

7B8,

D10 = 2B7B
2

8−B7B9, D11 = −B9B8, D12 = 2ωB7B8,

D13 = 2B2

10B11, D14 = 2B10B
2

11−B10B12, D15 = −B11B12,

D16 = 2ωPrB10B11, D17 = 2B2

13
B14, D18 = 2B13B

2

14
−B13B15,

D19 = −B14B15, D20 = 2ωPrB13B14;

e1 =
−1 +

√
r1 cos(θ1/2)

2m
, e2 =

−2Am1C1(mm2

1 + m1 − σ2)

(mm2

1
+ m1 − σ2)2 + ω2

,

e3 =
−Am2C2(mm2

2 + m2 − σ2)

(mm2

2
+ m2 − σ2)2 + ω2

, e4 =
−1 +

√
r2 cos(θ2/2)

2
,
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e5 =
−1 +

√
r3 cos(θ3/2)

2k2

, e5a =
−2Am1k12(4k2m

2

1
+ 2m1)

(4km2

1
+ 2m1)2 + ω2

,

e6 =
−2Am2k13(4k2m

2

2
+ 2m2)

(4k2m2
2

+ 2m2)2 + ω2
, e7 =

−Am4C6(k2m
2

4
+ m4)

(k2m2
4
+ m4)2 + ω2

,

e8 =
−Am5k14(k2m

2
5 + m5)

(k2m2

5
+ m5)2 + ω2

, e9 =
−Am1k10(k2m

2
1 + m1)

(k2m2

1
+ m1)2 + ω2

,

e10 =
−2Am2k11(k2m

2

2
+m2)

(k2m2

2
+ m2)2 + ω2

, e11 =
−2Ec mm2

1
C1e2(4k2m

2

1
+2m1)

(4k2m2

1
+ 2m1)2 + ω2

,

e12 =
−2Ec mm2

2
C2e3(4k2m

2

2
+2m2)

(4k2m2

2
+ 2m2)2 + ω2

, e13 =
−2Ec mk21(k2m

2

5
+m5)

(k2m2

5
+ m5)2 + ω2

,

e14 =
−2Ec mm2

1C1F2(4k2m
2

1+2m1)

(4k2m2

1
+ 2m1)2 + ω2

, e15 =
−2Ec mm2

2C2F3(4k2m
2

2+2m2)

(4k2m2

2
+ 2m2)2 + ω2

,

e16 =
−2Ec mk22(k2m

2

5
+ m5)

(k2m2
5
+ m5)2 + ω2

, e17 =
−2Ec σ2C1e2(4k2m

2

1
+ 2m1)

(4k2m2
1
+ 2m1)2 + ω2

,

e18 =
−2Ec σ2C2e3(4k2m

2
2 + 2m2)

(4k2m2

2
+ 2m2)2 + ω2

, e19 =
−2Ec σ2k26(k2m

2
5 + m5)

(k2m2

5
+ m5)2 + ω2

,

e20 =
−2Ec Pe2(k2m

2

1 + m1)

(k2m2

1
+ m1)2 + ω2

, e21 =
−2Ec Pe3(k2m

2

2 + m2)

(k2m2

2
+ m2)2 + ω2

,

e22 =
−2Ec σ2C1F2(4k2m

2

1
+ 2m1)

(4k2m2
1

+ 2m1)2 + ω2
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−2Ec σ2C2F3(4k2m
2

2
+ 2m2)

(4k2m2
2
+ 2m2)2 + ω2

,

e24 =
−2Ec σ2k27(k2m

2
5 + m5)

(k2m2

5
+ m5)2 + ω2

, e25 =
−2Ec PF2(k2m

2
1 + m1)

(k2m2

1
+ m1)2 + ω2

,

e26 =
−2Ec PF3(k2m

2

2
+ m2)

(k2m2

2
+ m2)2 + ω2

, e27 =
−Pr +

√
r4 cos(θ4/2)

2
,

e28 =
2PrAk15(4 − 2Pr)

(4 − 2Pr)2 + ω2Pr2
, e29 =

PrAPk16(1 − Pr)

(1 − Pr)2 + ω2Pr2
,

e30 =
−2Ec PrAC2

4
(4 − 2Pr)

ω((4 − 2Pr)2 + ω2Pr2)
, e31 =

−2Ec PrAC4(1 − Pr)

ω((1 − Pr)2 + ω2Pr2)
;

F1 =

√
r1 sin(θ1/2)

2m
, F2 =

−Am1C1ω

(mm2

1
+ m1 − σ2)2 + ω2

,

F3 =
−Am2C2ω

(mm2

2
+ m2 − σ2)2 + ω2

, F4 =

√
r2 sin(θ2/2)

2
,

F5 =

√
r3 sin(θ3/2)

2k2

, F5a =
−2Am1k12ω

(4k2m2

1
+ 2m1)2 + ω2

,
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F6 =
−2Am2k13ω

(4k2m2

2
+ 2m2)2 + ω2

, F7 =
−Am4C6ω

(k2m2

4
+ m4)2 + ω2

,

F8 =
−Am5k14ω

(k2m2

5
+ m2)2 + ω2

, F9 =
−Am1k10ω

(k2m2

1
+ m1)2 + ω2

,

F10 =
−Am2k11ω

(k2m2
2
+ m2)2 + ω2

, F11 =
−2Ec mm2

1
C1e2ω

(4k2m2
1

+ 2m1)2 + ω2
,

F12 =
−2Ec mm2

2C2e3ω

(4k2m2

2
+ 2m2)2 + ω2

, F13 =
−2Ec mk21ω

(k2m2

5
+ m5)2 + ω2

,

F14 =
−2Ec mm2

1C1F2ω

(4k2m2

1
+ 2m1)2 + ω2

, F15 =
−2Ec mm2

2C2F3ω

(4k2m2

2
+ 2m2)2 + ω2

,

F16 =
−2Ec mk22ω

(k2m2
5
+ m5)2 + ω2

, F17 =
−2Ec σ2C1e2ω

(4k2m2
1

+ 2m1)2 + ω2
,

F18 =
−2Ec σ2C2e3ω

(4k2m2

2
+ 2m2)2 + ω2

, F19 =
−2Ec σ2k26ω

(k2m2

5
+ m5)2 + ω2

,

F20 =
−2Ec Pe2ω

(k2m2
1
+ m1)2 + ω2

, F21 =
−2Ec Pe2ω

(k2m2
2

+ m2)2 + ω2
,

F22 =
−2Ec σ2C1F2ω

(4k2m2

1
+ 2m1)2 + ω2

, F23 =
−2Ec σ2C2F3ω

(4k2m2

2
+ 2m2)2 + ω2

,

F24 =
−2Ec σ2k27ω

(k2m2

5
+ m5)2 + ω2

, F25 =
−2Ec PF2ω

(k2m2

1
+ m1)2 + ω2

,

F26 =
−2Ec PF3ω

(k2m2
2
+ m2)2 + ω2

, F27 =

√
r4 sin(θ4/2)

2
,

F28 =
−2Pr2Ak15ω

(4 − 2Pr)2 + ω2Pr2
, F29 =

Pr2Ak16ω

(1 − Pr)2 + ω2Pr2
,

F30 =
−2Ec Pr2AC2

4

(4 − 2Pr)2 + ω2Pr2
, F29 =

−2Ec Pr2AC4

(1 − Pr)2 + ω2Pr2
;

k2 =
k

Pr
, k3 =

−mEc m2
1C

2
1

4m2

1
k2 + 2m1

, k4 =
−mEc m2

2C
2
2

4m2

2
k2 + 2m2

,

k5 =
−2mEc m1m2C1C2

m2
5
k2 + m5

, k6 =
−σ2Ec C2

1

4m2
1
k2 + 2m1

, k7 =
−σ2Ec C2

2

4m2
2
k2 + 2m2

,

k8 =
−Ec P 2

σ2
, k9 =

−2σ2Ec C1C2

m2

5
k2 + m5

, k10 =
2Ec C1P

m2

1
k2 + m1

,

k11 =
2Ec C2P

m2

2
k2 + m2

, k12 = k3 + k6, k13 = k4 + k7,

k14 = k5 + k9, k15 =
−Ec PrC2

4

4 − 2Pr
, k16 =

2Ec Pr PC4

1 − Pr
,
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k17 = −Ec P 2, k18 =
−Ak8

ω
, k19 =

2Ec mm1C1

4B2

1
B2

2
F 2

1
+ B2

3

,

k20 =
2Ec mm2C2

4B2

4
B2

5
F 2

1
+B2

6

, k21 =m1m2(C1e3+C2e2), k22 =m1m2(C1F3+C2F2),

k23 =
2Ec σ2C1

4B2

1
B2

2
F 2

1
+ B2

3

, k24 =
2Ec σ2C2

4B2

4
B2

5
F 2

1
+ B2

6

, k25 =
2Ec P

σ2(4B2

7
B2

8
F 2

1
+ B2

9
)
,

k26 = C1e3 + C2e2, k27 = C1F3 + C2F2, k28 =
PrAC8

ω
,

k29 =
−Ak17

ω
, k30 =

−2Ec PrC4

4B2
10

B2
11

F 2
4

+ B2
12

, k31 =
−2Ec Pr P

4B2
13

B2
14

F 2
4

+ B2
15

)
;

l1 = 1 − (e−1 − 1)mm1, l2 = 1 − (e−1 − 1)mm2, l3 = Pe−1 −
P

σ2
,

l4 = −k8 + k10e
−m1 + k11e

−m2 + k12e
−2m1 + k13e

−2m2 + k14e
−m5 − 1,

l5 = k15e
−2 + k16e

−1 + k17, l6 = k10 + k11 + k12 + k13 + k14 − k15 − k16,

l7 = k(k8 + m1k10 + m2k11 + 2m1k12 + 2m2k13 + m5k14) + 2k15 + k16 − k17,

l8 = 1 −
km4(e

−Pr − 1)

Pr
, l9 = l5 + l6 −

l7(e
−Pr − 1)

Pr
,

l10 = e−e1 cosF1, l11 = −e−e1 sin F1,

l12 = e2e
−m1 + e3e

−m2 , l13 = F2e
−m1 + F3e

−m2 ,

l14 = ee4 cosF4, l15 = ee4 sin F4,

l16 =
A

ω

(

C4e
−1 + P

)

, l17 = e2 + e3,

l18 = F2 + F3 −
A

ω
(C4 + P ), l19 = m(m1e2 + m2e3),

l20 = m(m1F2 + m2F3) +
AC4

ω
, l21 =

F4l14
l15

e4;

l22 =
F4l16
l15

+ L20, l23 = me1 + l21, l24 = l21l17 + l19,

l25 = l21l18 + l22, l26 = e−e5 cosF5, l27 = −e−e5 sin F5,

l28 = P23e
−2m1 + P24e

−2m2 + e7e
−m4 + P25e

−m5 + P26e
−m1 + P27e

−m2

+ e−m6(P28 cosF1 − P29 sin F1) + e−m7(P30 cosF1 − P31 sin F1)

+ e−e1(P32 cosF1 − P33 sin F1),

l29 = Q23e
−2m1 + Q24e

−2m2 + F7e
−m4 + Q25e

−m5 + Q26e
−m1 + Q27e

−m2

+ e−m6(Q28 cosF1 − Q29 sin F1) + e−m7(Q30 cosF1 − Q31 sin F1)

+ e−e1(Q32 cosF1 − Q33 sinF1) + k18,

l30 = ee27 cosF27, l31 = ee27 sin F27,
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l32 = P44e
−2 + P45e

−1 + em8(P46 cosF4 − P47 sinF4)

+ ee4(P48 cosF4 + P49 sin F4),

l33 = Q44e
−2 + Q45e

−1 + em8(Q46 cosF4 + Q47 sin F4)

+ ee4(Q48 cosF4 + Q49 sin F4) + k28e
−Pr + k29,

l34 = P23 + P24 + e7 + P25 + P26 + P27 + P28 + P30 + P32

− P44 − P45 − P46 − P48,

l35 = Q23 + Q24 + F7 + Q25 + Q26 + Q27 + Q28 + Q30 + Q32

− Q44 − Q45 − Q46 − Q48 − k28 − k29,

l36 = k(2m1P23 + 2m2P24 + m4e7 + m5P25 + m1P26 + m2P27 + m6P28

+ F1P29 + m7P30 + F1P31 + e1P32 + F1P33)

+ 2P44 + P45 − m8P46 − F4P47 − e4P48 − F4P49,

l37 = k(2m1Q23 + 2m2Q24 + m4F7 + m5Q25 + m1Q26 + m2Q27 + m6Q28

+ F1Q29 + m7Q30 + F1Q31 + e1Q32 + F1Q33)

+ 2Q44 + Q45 − m8Q46 − F4Q47 − e4Q48 − F4Q49 + Prk28,

l38 =
F27l30

l31
− e27, l39 =

F27l32
l31

+ l36, l40 =
F27l33

l31
+ l37,

l41 = ke5 + l38, l42 = l38l34 + l39, l43 = l38l35 + l40;

m1 =
−1 + sqrt1 + 4σm

2m
, m2 =

−1 − sqrt1 + 4σm

2m
,

m4 =
−1

k2

, m5 = m1 + m2;

P1 = e1XC9 + F1XC10, P2 = e1XC10 − F1XC9,

P3 = −D1F
2

1 P1 + D2F1P2 + D3P1, P4 = −D1F
2

1 P2 − D2F1P1 + D3P2,

P5 = −D5F
2

1 P1 + D5F1P2 + D7P1, P6 = −D5F
2

1 P2 − D6F1P1 + D7P2,

P7 = −D1F
2

1 Q1 + D2F1P2 + D3P1, P8 = −D1F
2

1 Q2 − D2F1Q1 + D3Q2,

P9 = −D5F
2

1
Q1 + D5F1Q2 + D7Q1, P10 = −D5F

2

1
Q2 − D6F1Q1 + D7Q2,

P11 = −D1F
2

1 XC9 + D2F1XC10 + D3XC9,

P12 = −D1F
2

1
XC10 − D2F1XC9 + D3XC10,

P13 = −D5F
2

1
XC9 + D6F1XC10 + D7XC9,

P14 = −D5F
2

1
XC10 − D6F1XC9 + D7XC10,

P15 = −D9F
2

1
XC9 + D10F1XC10 + D11XC9,

P16 = −D9F
2

1 XC10 − D10F1XC9 + D11XC10,

P17 = −D1F
2

1 Y C9 + D2F1Y C10 + D3Y C9,

P18 = −D1F
2

1
Y C10 − D2F1Y C9 + D3Y C10,
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P19 = −D5F
2

1 Y C9 + D6F1Y C10 + D7Y C9,

P20 = −D5F
2

1 Y C10 − D6F1Y C9 + D7Y C10,

P21 = −D9F
2

1
Y C9 + D10F1Y C10 + D11Y C9,

P22 = −D9F
2

1
Y C10 − D10F1Y C9 + D11Y C10,

P23 = e5a+e11−F14+e17−F22, P24 = e6+e12−F15+e18−F23,

P25 = e8+e13−F16+e19 − F24, P26 = e9+e20 − F25,

P27 = e10+e21−F26, P28 = k19(P3−Q7)+k23(P11−Q17),

P29 = k19(P4−Q8)+k23(P12−Q18), P30 = k20(P5−Q9)+k24(P13−Q19),

P31 = k20(P6−Q10)+k24(P14−Q20), P32 = k25(P15−Q21),

P33 = k25(P16−Q22), P34 = e4XC11+F4XC12,

P35 = e4XC12−F4XC11, P36 =−D13F
2

4 P34+D14F4P35+D15P34,

P37 = −D13F
2

4
P35 − D14F4P34 + D15P35,

P38 = −D17F
2

4
P34 + D18F4P35 + D19P34,

P39 = −D17F
2

4 P35 − D18F4P34 + D19P35,

P40 = −D13F
2

4 Q34 + D14F4Q35 + D15Q34,

P41 = −D13F
2

4 Q35 − D14F4Q34 + D15Q35,

P42 = −D17F
2

4
Q34 + D18F4Q35 + D19Q34,

P43 = −D17F
2

4
Q35 − D18F4Q34 + D19Q35,

P44 = e28 − F30, P45 = e29 − F31, P46 = k30(P36 − Q40),

P47 = k30(P37 − Q41), P48 = k31(P38 − Q42), P49 = k31(P39 − Q43);

Q1 = e1Y C9 + F1Y C10, Q2 = e1Y C10 − F1Y C9,

Q3 = D4F1P2 − ωB3P1, Q4 = −D4F1P1 − ωB3P2,

Q5 = D8F1P2 − ωB6P1, Q6 = −D8F1P1 − ωB6P2,

Q7 = D4F1Q2 − ωB3Q1, Q8 = −D4F1Q1 − ωB3Q2,

Q9 = D8F1Q2 − ωB6Q1, Q10 = −D8F1Q1 − ωB6Q2,

Q11 = D4F1XC10 − ωB3XC9, Q12 = −D4F1XC9 − ωB3XC10,

Q13 = D8F1XC10 − ωB6XC9, Q14 = −D8F1XC9 − ωB6XC10,

Q15 = D12F1XC10 − ωB9XC9, Q16 = −D12F1XC9 − ωB9XC10,

Q17 = D4F1Y C10 − ωB3Y C9, Q18 = −D4F1Y C9 − ωB3Y C10,

Q19 = D8F1Y C10 − ωB6Y C9, Q20 = −D8F1Y C9 − ωB6Y C10,

Q21 = D12F1Y C10 − ωB9Y C9, Q22 = −D12F1Y C9 − ωB9Y C10,

Q23 = F5a + F11 + e14 + F17 + e22, Q24 = F6 + F12 + e15 + F18 + e23,

Q25 = F8 + F13 + e16 + F19 + e24, Q26 = F9 + F20 + e25,
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Q27 = F10 + F21 + e26, Q28 = k19(Q3+P7)+k23(Q11+P17),

Q29 = k19(Q4+P8)+k23(Q12+P18), Q30 = k20(Q5+P9)+k24(Q13+P19),

Q31 = k20(Q6+P10)+k24(Q14+P20), Q32 = k25(Q15 + P21),

Q33 = k25(Q16 + P22), Q34 = e4Y C11 + F4Y C12,

Q35 = e4Y C12 − F4Y C11, Q36 = D16F4P35 − ωPrB12Q34,

Q37 = −D16F4P34 − ωPrB12P35, Q38 = D20F4P35 − ωPrB15Q34,

Q39 = −D20F4P34 − ωPrB15P35, Q40 = D16F4Q35 − ωPrB12Q34,

Q41 = −D16F4Q34 − ωPrB12Q35, Q42 = D20F4Q35 − ωPrB15Q34,

Q43 = −D20F4Q34 − ωPrB15Q35, Q44 = F28+e30, Q45 = F29+e31,

Q46 = k30(Q36 + P40), Q47 = k30(Q37 + P41),

Q48 = k31(Q38 + P42), Q49 = k31(Q39 + P43);

XC9 =
l11l24 − m1F1l12
mF1l10 − l11l23

, XC10 =
−(l10XC9 + l12)

l11
,

XC11 = XC9 + l17, XC12 =
−l14XC11

l15
,

XC13 =
l27l42 − kF5l28
kF5l26 − l27l41

, XC14 =
−(l26XC13 + l28)

l27
,

XC15 = XC13 + l34, XC16 =
−(l30XC15 + l32)

l31
,

Y C9 =
l11l25 − m1F1l13
mF1l10 − l11l23

, Y C10 =
−(l10Y C9 + l13)

l11
,

Y C11 = Y C9 + l18, Y C12 =
−l14Y C11 + l16

l15
,

Y C13 =
l27l43 − kF5l29
kF5l26 − l27l41

, Y C14 =
−(l26Y C13 + l29)

l27
,

Y C15 = Y C13 + l35, Y C16 =
−(l30Y C15 + l33)

l31
;

r1 =
√

(1 + mσ2)2 + (4ωm)2, r2 =
√

1 + 16ω2,

r3 =
√

1 + 16ω2k2
2
, r4 =

√

Pr2 + (4ωPr)2,

θ1 = tan−1
4ωm

1 + mσ2
, θ2 = tan−1(4ω),

θ3 = tan−1(4ωk2), θ4 = tan−1
4ω

Pr
.
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