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Abstract. We consider the Brownian motion processBm(s) in the m-space and the
distribution

F
m(t, x, a) = P

˘

sup
0≤s≤t

˛

˛B
m(s) + x

˛

˛ < a
¯

, where a > 0, x ∈ R
m

, |x| < a.

There is a probability that a particle starting from the point x on the sphereSm

r with the
radiusr = |x| < a will not be absorbed by the sphereSm

a with a radiusa before the
epocht.

Keywords: Brownian motion process, distribution, random variable.

1 Introduction

The most important stochastic process is a Brownian or Wiener process. It was first dis-
cussed by Louis Bachelier (1900), who was interested in modelling fluctuations of prices
in financial markets, and by Albert Einstein (1905), who gavea mathematical model for
the irregular motion of colloidal particles, first observedby the Scottish botanist, Robert
Brown, in 1827.

Let there be anm-dimensional Euclidean space ande1, e2, . . . , em be a fixed basis
in Rm, wherex1, x2, . . . , xm, are coordinates of the vector fromRm in the basis. A scalar

product of the elementsx andy ∈ Rm is the number(x · y) =
m
∑

i=1

xi · yi, and the norm

of the elementx ∈ Rm is a (non-negative) number|x| =
√

(x · x). Let Sm
a be an

m-dimensional sphere with the center at the beginning of coordinates and the radiusa.
Distribution of the random variableBm(s) is defined by density of the distribution

p(s, x) = (2πs)
m
2 exp

(

− |x|2
2s

)

,
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so for every Borel setA ∈ Rm we get

P
{

Bm(s) ∈ A
}

= (2πs)
m
2

∫

A

exp

(

− |x|2
2s

)

dx. (1)

We have examined the distribution

Fm(t, x, a) = P
{

sup
0≤s≤t

∣

∣Bm(s) + x
∣

∣ < a
}

, (2)

wherea > 0, x ∈ Rm and|x| < a.
There is a probability that a particle starting from the point x on the sphereSm

r with
the radiusr = |x| < a will not be absorbed by the sphereSm

a with a radiusa before the
epocht.

In a one-dimensional case, the probability distribution function

F 1(t, 0, a) = P
{

sup
0≤s≤t

|B(s)| < a
}

has a complicated expression and different authors obtained several forms of this function
in [1–10]. The author [11] has proved that all the expressions are equivalent.

P. Levy [7] examined one-dimensional Brownian motion starting at the pointx
(−a1 < x < a2), impeded by two absorbing barriers at−a1 < 0 < a2, and obtained the
general formula

P{−a1 < B(s) + x < a2, 0 ≤ s ≤ t}

=
1√
2πt

∞
∑

k=−∞

a2
∫

−a1

[

e−
(x−x′

k
−y)2

2t − e−
(x−x′′

k
+y)2

2t

]

dy, (3)

wherex′
k = 2dk, x′′

k = 2a2 − 2dk, d = a1 + a2 andk = . . . ,−1, 0, 1, . . ..
If a1 = a2 = a, d = 2a, then it follows that

F 1(t, x, a) = P
{

sup
0≤s≤t

|B(s) + x| < a
}

=
1√
2πt

∞
∑

k=−∞

a
∫

−a

(

e−
(x−4ka−y)2

2t − e−
(x+4ka−2a+y)2

2t

)

dy. (4)

W. Feller [4] considered one-dimensional Brownian motion starting at the point
0 < x < a, impeded by two absorbing barriers at0 anda > 0 and has obtained two very
different representations for the same distribution function λa(t, x) (see [4, Chapter X]):

λa(t, x) = P{0 < B(s) + x < a, 0 ≤ s ≤ t}

=
∞
∑

k=−∞

{

Φ

(

2ka + a − x√
t

)

− Φ

(

2ka − x√
t

)

− Φ

(

2ka + a + x√
t

)

+ Φ

(

2ka + x√
t

) }

(5)
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and

λa(t, x) =
4

π

∞
∑

k=0

1

2k + 1
exp

(

− (2k + 1)2π2t

2a2

)

sin

(

− (2k + 1)πx

a

)

, (6)

whereΦ(x) is standard normal distribution function.
Fortunately, the series in (5) converges reasonably only whent is small, whereas (6)

is applicable to larget.
In [11], the author derived an other different representation for the same distribution

function (4)F 1(t, x, a)

F 1(t, x, a) =
4

π

∞
∑

k=0

(−1)k

2k + 1
exp

(

− (2k + 1)2π2t

8a2

)

cos

(

(2k + 1)πx

2a

)

, (7)

where−a < x < a. This formula gives a probability that the Brownian motion leaving
the pointx, will not be absorbed till the momentt.

The authors in [12, 13] examined the distributionFm(t, 0, a). They considered the
Brownian motionBm(t) starting from the origin. Definition of such probabilities is
one of the most important problems in the theory of random processes. Following the
results of A.V. Skorokhod [9], the probabilityFm(t, x, a), we are interested in, satisfies a
differential equation of diffusion. In the case of anm-dimensional Brownian motion, we
impose a condition of a circular symmetry which leads to the equation

2
∂Fm(t, x, a)

∂t
=

∂2Fm(t, x, a)

∂x2
1

+ . . . +
∂2Fm(t, x, a)

∂x2
m

(8)

under the boundary conditionFm(t, x, a)||x|=a = 0 and the initial condition
Fm(t, x, a)|t=0 = 1.

Passing to spherical coordinates, we shall transform equation (8) into the following
shape:

2
∂vm(t, r, a)

∂t
=

∂2vm(t, r, a)

∂r2
+

m − 1

r

∂vm(t, r, a)

∂r
(9)

under the boundary condition

vm(t, r, a)|r=a = 0 (10)

and the initial condition

vm(t, r, a)|t=0 = 1. (11)

This paper is meant for studying the properties of distribution functionsFm(t, x, a) =
vm(t, r, a), wherea > r = |x| > 0.
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2 Statement of the basic results

We consider the Brownian motion processBm(t) in anm-space starting from the point
x on the sphereSm

r with the radiusr = |x| < a. We shall prove the following theorem.

Theorem 1. Let Bm(s), 0 ≤ s ≤ t, be anm-dimensional Brownian motion, starting
from the pointx on the sphereSm

r with the radiusr = |x| < a. Then

vm(t, r, a) =

∞
∑

n=1

2aνJν(µnr/a)

rνµnJν+1(µn)
exp

(

− µ2
nt

2a2

)

, (12)

whereµn, n = 1, 2, . . ., are the positive roots of the Bessel functionJν(z) with ν =
m/2 − 1.

Proof. We find the solution to this differential diffusion equation(9) by the standard
Fourier method. We try to find a solution of the form

vm(t, r, a) = T (t)R(r), (13)

whereT (t) is a function only of the variablet andR(r) is a function only of the variabler.
Substituting the proposed form of solution (13) into equation (9) and dividing both sides
of the equality byT (t)R(r), we obtain

2
T ′(t)

T (t)
=

R′′(r) + m−1
r

R′(r)

R(r)
= −λ2. (14)

Then, from equality (14) we obtain two ordinary equations

2T ′(t) + λ2T (t) = 0, (15)

R′′(r) +
m − 1

r
R′(r) + λ2R(r) = 0. (16)

Boundary condition (10) yieldsR(a) = 0. Thus, in view of the found function
R(r), we derive the simplest problem on eigenvalues: find the values of the parameter
λ at which there exist nontrivial solutions of equation (16) and the boundary condition
R(a) = 0.

Set

R(r) =
u(r)

rν
(17)

in equation (16). Thenu(r) satisfies the Bessel equation

r2u′′(r) + ru′(r) +
(

λ2r2 − ν2
)

u(r) = 0, where ν =
m

2
− 1. (18)

The general solution of equation (18) is of the shape:

u(r) = c1Jν(λr) + c2Yν(λr), (19)
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whereJν(λr) is the Bessel function of the first kind of orderν andYν(λr) is the Bessel
function of the second kind. It follows from (17) and (19) that

R(r) =
c1Jν(λr) + c2Yν(λr)

rν
. (20)

SinceYν(λr) → ∞ asr → 0, most probablyc2 = 0. Under the boundary condition
(8) we get the following equation

Jν(λa) = 0, (21)

that has infinitely many positive zerosµ1, µ2, µ3, . . . (see [14]).
Hence we derive thatλk is defined by the formulas

λk =
µk

a
,

and

Rk(r) =
Jν(µkr

a
)

rν
, Tn(t) = cn exp

(

− µ2
nt

2a2

)

, k = 1, 2, 3, . . . ,∞. (22)

Now, in view of equations (13), (15) and (22), we find that the functions

vm(t, r, a) = cn exp

(

− µ2
nt

2a2

)

Jν(µnr
a

)

rν
(23)

satisfy equation (9) and the boundary condition (10) for anycn.
Let us compose a series

vm(t, r, a) =

∞
∑

n=1

cn

Jν(µnr
a

)

rν
exp

(

− µ2
nt

2a2

)

. (24)

To satisfy the initial condition (11), we need to fulfil the equality

∞
∑

n=1

cnJν

(

µnr

a

)

= rν . (25)

The written series represents an expansion of the functionrν in Bessel functions in
the interval(0, a). The coefficients of expansions are defined by the formula

cn =
2

a2J2
ν+1(µn)

a
∫

0

rν+1Jν

(

µnr

a

)

dr. (26)

Let y = µnr
a

, then

cn =
2

a2J2
ν+1(µn)

(

a

µn

)ν+2
µn
∫

0

yν+1Jν(y) dy. (27)
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Making use of the recurrence relation

d

dy
yν+1Jν+1(y) = yν+1Jν(y),

it is easy to find that
µn
∫

0

yν+1Jν(y) dy =

µn
∫

0

d
(

yν+1Jν+1(y)
)

= µν+1
n Jν+1(µn). (28)

It follows from (27) and (28) that

cn =
2aν

µnJν+1(µn)
. (29)

Formulae (24) and (29) complete the proof of Theorem 1.

Let us mention some corollaries.

Corollary 1. LetBm(s) be anm-dimensional Brownian motion, starting from the origin.
Then, passing to the limit from Theorem1 asr → 0, we obtain

P
{

sup
0≤s≤t

|Bm(s)| < a
}

=

∞
∑

n=1

1

2ν−1Γ(ν + 1)

µν−1
n

Jν+1(µn)
exp

(

− µ2
nt

2a2

)

, (30)

wherea > 0.

Proof. We obtain the limit from formula (4.14.4) in [15]

lim
r→0

Jν(µnr/a)

(µnr/a)ν
=

1

2νΓ(ν + 1)

and

lim
r→0

2aνJν(µnr/a)

rνµnJν+1(µn)
=

1

2ν−1Γ(ν + 1)

µν−1
n

Jν+1(µn)
.

Hence we derive the result [12]. The proof is complete.

We can easily find positive roots of the Bessel functionsJν(z) in formula (12)
only for one-dimensional and three-dimensional cases. Therefore, only for that cases
we present the following corollaries:

Corollary 2. Let B(s) be a one-dimensional Brownian motion, starting from the point
x ∈ [−a, a]. Then

F 1(t, x, a) = P
{

sup
0≤s≤t

|B(s) + x| < a
}

=
4

π

∞
∑

k=0

(−1)k

2k + 1
exp

(

− (2k + 1)2π2t

8a2

)

cos

(

(2k + 1)πx

2a

)

, (31)

where−a < x < a.
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Proof. It is easy to see, that ifm = 1, thenν = − 1
2 , Jν(x) = J− 1

2
(x) =

√

2
πx

cos(x),

J 1
2
(x) =

√

2
πx

sin(x). The positive roots of the Bessel functionJ− 1
2
(x) are µn =

π
2 (1 + 2n), n = 0, 1, 2, . . ..

Thus, we have

2aνJν(µnr/a)

rνµnJν+1(µn)
=

2

µn

cos(µnr
a

)

sin(µn)
=

4

π(2n + 1)
cos

(

(2k + 1)πx

2a

)

(−1)n.

Applying this formula and (12), we get the proof of Corollary2. The proof is
complete.

This formula gives a probability that the one-dimensional Brownian motion leaving
the pointx, will not be absorbed till the momentt. Hence we derive the result [11].

Corollary 3. Let B3(s), 0 ≤ s ≤ t, be a three-dimensional Brownian motion, starting
from the pointx on the sphereS3

r with the radiusr = |x| < a. Then

v3(t, r, a) = −2

∞
∑

n=1

(−1)n a

πrn
sin

(

πrn

a

)

exp

(

− n2π2t

2a2

)

. (32)

Proof. If m = 3, thenν = m
2 − 1 = 1

2 andJν(x) = J 1
2
(x) =

√

2
πx

sin(x), J 3
2
(x) =

√

2
πx

( sin(x)
x

− cos(x)). The positive roots of the Bessel functionJ 1
2
(x) areµn = πn,

n = 1, 2, . . ..
Consequently

2aνJν(µnr/a)

rνµnJν+1(µn)
= − 2a

πrn
sin

(

πrn

a

)

(−1)n.

The proof is complete.

Corollary 4. Let B3(s) be a three-dimensional Brownian movement, starting from the
beginning of coordinates, then passing to the limit asr → 0, we obtain.

v3(t, 0, a) = −2

∞
∑

n=1

(−1)n exp

(

− n2π2t

2a2

)

. (33)

Proof. It is obvious, that the limit:

lim
r→0

a

πrn
sin

(

πrn

a

)

= 1

It proves (33). The proof is complete.

395



S. Steiš̄unas
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