On the Sojourn Time of the Brownian Process in a Multidimensional Sphere

S. Steišūnas
Institute of Mathematics and Informatics Akademijos str. 4, LT-08663 Vilnius, Lithuania
stst@ktl.mii.lt

Received: 2008-11-10 Revised: 2009-05-11 Published online: 2009-09-11
Abstract. We consider the Brownian motion process $B^{m}(s)$ in the m-space and the distribution

$$
F^{m}(t, x, a)=P\left\{\sup _{0 \leq s \leq t}\left|B^{m}(s)+x\right|<a\right\}, \quad \text { where } a>0, \quad x \in R^{m}, \quad|x|<a
$$

There is a probability that a particle starting from the point x on the sphere S_{r}^{m} with the radius $r=|x|<a$ will not be absorbed by the sphere S_{a}^{m} with a radius a before the epoch t.

Keywords: Brownian motion process, distribution, random variable.

1 Introduction

The most important stochastic process is a Brownian or Wiener process. It was first discussed by Louis Bachelier (1900), who was interested in modelling fluctuations of prices in financial markets, and by Albert Einstein (1905), who gave a mathematical model for the irregular motion of colloidal particles, first observed by the Scottish botanist, Robert Brown, in 1827.

Let there be an m-dimensional Euclidean space and $e_{1}, e_{2}, \ldots, e_{m}$ be a fixed basis in R^{m}, where $x_{1}, x_{2}, \ldots, x_{m}$, are coordinates of the vector from R^{m} in the basis. A scalar product of the elements x and $y \in R^{m}$ is the number $(x \cdot y)=\sum_{i=1}^{m} x_{i} \cdot y_{i}$, and the norm of the element $x \in R^{m}$ is a (non-negative) number $|x|=\sqrt{(x \cdot x)}$. Let S_{a}^{m} be an m-dimensional sphere with the center at the beginning of coordinates and the radius a.

Distribution of the random variable $B^{m}(s)$ is defined by density of the distribution

$$
p(s, x)=(2 \pi s)^{\frac{m}{2}} \exp \left(-\frac{|x|^{2}}{2 s}\right)
$$

so for every Borel set $A \in R^{m}$ we get

$$
\begin{equation*}
P\left\{B^{m}(s) \in A\right\}=(2 \pi s)^{\frac{m}{2}} \int_{A} \exp \left(-\frac{|x|^{2}}{2 s}\right) \mathrm{d} x \tag{1}
\end{equation*}
$$

We have examined the distribution

$$
\begin{equation*}
F^{m}(t, x, a)=P\left\{\sup _{0 \leq s \leq t}\left|B^{m}(s)+x\right|<a\right\} \tag{2}
\end{equation*}
$$

where $a>0, x \in R^{m}$ and $|x|<a$.
There is a probability that a particle starting from the point x on the sphere S_{r}^{m} with the radius $r=|x|<a$ will not be absorbed by the sphere S_{a}^{m} with a radius a before the epoch t.

In a one-dimensional case, the probability distribution function

$$
F^{1}(t, 0, a)=P\left\{\sup _{0 \leq s \leq t}|B(s)|<a\right\}
$$

has a complicated expression and different authors obtained several forms of this function in [1-10]. The author [11] has proved that all the expressions are equivalent.
P. Levy [7] examined one-dimensional Brownian motion starting at the point x $\left(-a_{1}<x<a_{2}\right)$, impeded by two absorbing barriers at $-a_{1}<0<a_{2}$, and obtained the general formula

$$
\begin{align*}
& P\left\{-a_{1}<B(s)+x<a_{2}, 0 \leq s \leq t\right\} \\
& \quad=\frac{1}{\sqrt{2 \pi t}} \sum_{k=-\infty}^{\infty} \int_{-a_{1}}^{a_{2}}\left[e^{-\frac{\left(x-x_{k}^{\prime}-y\right)^{2}}{2 t}}-e^{-\frac{\left(x-x_{k}^{\prime \prime}+y\right)^{2}}{2 t}}\right] \mathrm{d} y \tag{3}
\end{align*}
$$

where $x_{k}^{\prime}=2 d k, x_{k}^{\prime \prime}=2 a_{2}-2 d k, d=a_{1}+a_{2}$ and $k=\ldots,-1,0,1, \ldots$.
If $a_{1}=a_{2}=a, d=2 a$, then it follows that

$$
\begin{align*}
F^{1}(t, x, a) & =P\left\{\sup _{0 \leq s \leq t}|B(s)+x|<a\right\} \\
& =\frac{1}{\sqrt{2 \pi t}} \sum_{k=-\infty}^{\infty} \int_{-a}^{a}\left(e^{-\frac{(x-4 k a-y)^{2}}{2 t}}-e^{-\frac{(x+4 k a-2 a+y)^{2}}{2 t}}\right) \mathrm{d} y \tag{4}
\end{align*}
$$

W. Feller [4] considered one-dimensional Brownian motion starting at the point $0<x<a$, impeded by two absorbing barriers at 0 and $a>0$ and has obtained two very different representations for the same distribution function $\lambda_{a}(t, x)$ (see [4, Chapter X]):

$$
\begin{align*}
\lambda_{a}(t, x)= & P\{0<B(s)+x<a, 0 \leq s \leq t\} \\
= & \sum_{k=-\infty}^{\infty}\left\{\Phi\left(\frac{2 k a+a-x}{\sqrt{t}}\right)-\Phi\left(\frac{2 k a-x}{\sqrt{t}}\right)\right. \\
& \left.-\Phi\left(\frac{2 k a+a+x}{\sqrt{t}}\right)+\Phi\left(\frac{2 k a+x}{\sqrt{t}}\right)\right\} \tag{5}
\end{align*}
$$

and

$$
\begin{equation*}
\lambda_{a}(t, x)=\frac{4}{\pi} \sum_{k=0}^{\infty} \frac{1}{2 k+1} \exp \left(-\frac{(2 k+1)^{2} \pi^{2} t}{2 a^{2}}\right) \sin \left(-\frac{(2 k+1) \pi x}{a}\right) \tag{6}
\end{equation*}
$$

where $\Phi(x)$ is standard normal distribution function.
Fortunately, the series in (5) converges reasonably only when t is small, whereas (6) is applicable to large t.

In [11], the author derived an other different representation for the same distribution function (4) $F^{1}(t, x, a)$

$$
\begin{equation*}
F^{1}(t, x, a)=\frac{4}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1} \exp \left(-\frac{(2 k+1)^{2} \pi^{2} t}{8 a^{2}}\right) \cos \left(\frac{(2 k+1) \pi x}{2 a}\right) \tag{7}
\end{equation*}
$$

where $-a<x<a$. This formula gives a probability that the Brownian motion leaving the point x, will not be absorbed till the moment t.

The authors in $[12,13]$ examined the distribution $F^{m}(t, 0, a)$. They considered the Brownian motion $B^{m}(t)$ starting from the origin. Definition of such probabilities is one of the most important problems in the theory of random processes. Following the results of A.V. Skorokhod [9], the probability $F^{m}(t, x, a)$, we are interested in, satisfies a differential equation of diffusion. In the case of an m-dimensional Brownian motion, we impose a condition of a circular symmetry which leads to the equation

$$
\begin{equation*}
2 \frac{\partial F^{m}(t, x, a)}{\partial t}=\frac{\partial^{2} F^{m}(t, x, a)}{\partial x_{1}^{2}}+\ldots+\frac{\partial^{2} F^{m}(t, x, a)}{\partial x_{m}^{2}} \tag{8}
\end{equation*}
$$

under the boundary condition $\left.F^{m}(t, x, a)\right|_{|x|=a}=0$ and the initial condition $\left.F^{m}(t, x, a)\right|_{t=0}=1$.

Passing to spherical coordinates, we shall transform equation (8) into the following shape:

$$
\begin{equation*}
2 \frac{\partial v^{m}(t, r, a)}{\partial t}=\frac{\partial^{2} v^{m}(t, r, a)}{\partial r^{2}}+\frac{m-1}{r} \frac{\partial v^{m}(t, r, a)}{\partial r} \tag{9}
\end{equation*}
$$

under the boundary condition

$$
\begin{equation*}
\left.v^{m}(t, r, a)\right|_{r=a}=0 \tag{10}
\end{equation*}
$$

and the initial condition

$$
\begin{equation*}
\left.v^{m}(t, r, a)\right|_{t=0}=1 . \tag{11}
\end{equation*}
$$

This paper is meant for studying the properties of distribution functions $F^{m}(t, x, a)=$ $v^{m}(t, r, a)$, where $a>r=|x|>0$.

2 Statement of the basic results

We consider the Brownian motion process $B^{m}(t)$ in an m-space starting from the point x on the sphere S_{r}^{m} with the radius $r=|x|<a$. We shall prove the following theorem.

Theorem 1. Let $B^{m}(s), 0 \leq s \leq t$, be an m-dimensional Brownian motion, starting from the point x on the sphere S_{r}^{m} with the radius $r=|x|<a$. Then

$$
\begin{equation*}
v^{m}(t, r, a)=\sum_{n=1}^{\infty} \frac{2 a^{\nu} J_{\nu}\left(\mu_{n} r / a\right)}{r^{\nu} \mu_{n} J_{\nu+1}\left(\mu_{n}\right)} \exp \left(-\frac{\mu_{n}^{2} t}{2 a^{2}}\right) \tag{12}
\end{equation*}
$$

where $\mu_{n}, n=1,2, \ldots$, are the positive roots of the Bessel function $J_{\nu}(z)$ with $\nu=$ $m / 2-1$.

Proof. We find the solution to this differential diffusion equation (9) by the standard Fourier method. We try to find a solution of the form

$$
\begin{equation*}
v^{m}(t, r, a)=T(t) R(r), \tag{13}
\end{equation*}
$$

where $T(t)$ is a function only of the variable t and $R(r)$ is a function only of the variable r. Substituting the proposed form of solution (13) into equation (9) and dividing both sides of the equality by $T(t) R(r)$, we obtain

$$
\begin{equation*}
2 \frac{T^{\prime}(t)}{T(t)}=\frac{R^{\prime \prime}(r)+\frac{m-1}{r} R^{\prime}(r)}{R(r)}=-\lambda^{2} \tag{14}
\end{equation*}
$$

Then, from equality (14) we obtain two ordinary equations

$$
\begin{align*}
& 2 T^{\prime}(t)+\lambda^{2} T(t)=0, \tag{15}\\
& R^{\prime \prime}(r)+\frac{m-1}{r} R^{\prime}(r)+\lambda^{2} R(r)=0 . \tag{16}
\end{align*}
$$

Boundary condition (10) yields $R(a)=0$. Thus, in view of the found function $R(r)$, we derive the simplest problem on eigenvalues: find the values of the parameter λ at which there exist nontrivial solutions of equation (16) and the boundary condition $R(a)=0$.

Set

$$
\begin{equation*}
R(r)=\frac{u(r)}{r^{\nu}} \tag{17}
\end{equation*}
$$

in equation (16). Then $u(r)$ satisfies the Bessel equation
$r^{2} u^{\prime \prime}(r)+r u^{\prime}(r)+\left(\lambda^{2} r^{2}-\nu^{2}\right) u(r)=0, \quad$ where $\nu=\frac{m}{2}-1$.
The general solution of equation (18) is of the shape:

$$
\begin{equation*}
u(r)=c_{1} J_{\nu}(\lambda r)+c_{2} Y_{\nu}(\lambda r), \tag{19}
\end{equation*}
$$

where $J_{\nu}(\lambda r)$ is the Bessel function of the first kind of order ν and $Y_{\nu}(\lambda r)$ is the Bessel function of the second kind. It follows from (17) and (19) that

$$
\begin{equation*}
R(r)=\frac{c_{1} J_{\nu}(\lambda r)+c_{2} Y_{\nu}(\lambda r)}{r^{\nu}} \tag{20}
\end{equation*}
$$

Since $Y_{\nu}(\lambda r) \rightarrow \infty$ as $r \rightarrow 0$, most probably $c_{2}=0$. Under the boundary condition (8) we get the following equation

$$
\begin{equation*}
J_{\nu}(\lambda a)=0, \tag{21}
\end{equation*}
$$

that has infinitely many positive zeros $\mu_{1}, \mu_{2}, \mu_{3}, \ldots$ (see [14]).
Hence we derive that λ_{k} is defined by the formulas

$$
\lambda_{k}=\frac{\mu_{k}}{a},
$$

and

$$
\begin{equation*}
R_{k}(r)=\frac{J_{\nu}\left(\frac{\mu_{k} r}{a}\right)}{r^{\nu}}, T_{n}(t)=c_{n} \exp \left(-\frac{\mu_{n}^{2} t}{2 a^{2}}\right), \quad k=1,2,3, \ldots, \infty . \tag{22}
\end{equation*}
$$

Now, in view of equations (13), (15) and (22), we find that the functions

$$
\begin{equation*}
v^{m}(t, r, a)=c_{n} \exp \left(-\frac{\mu_{n}^{2} t}{2 a^{2}}\right) \frac{J_{\nu}\left(\frac{\mu_{n} r}{a}\right)}{r^{\nu}} \tag{23}
\end{equation*}
$$

satisfy equation (9) and the boundary condition (10) for any c_{n}.
Let us compose a series

$$
\begin{equation*}
v^{m}(t, r, a)=\sum_{n=1}^{\infty} c_{n} \frac{J_{\nu}\left(\frac{\mu_{n} r}{a}\right)}{r^{\nu}} \exp \left(-\frac{\mu_{n}^{2} t}{2 a^{2}}\right) . \tag{24}
\end{equation*}
$$

To satisfy the initial condition (11), we need to fulfil the equality

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n} J_{\nu}\left(\frac{\mu_{n} r}{a}\right)=r^{\nu} \tag{25}
\end{equation*}
$$

The written series represents an expansion of the function r^{ν} in Bessel functions in the interval $(0, a)$. The coefficients of expansions are defined by the formula

$$
\begin{equation*}
c_{n}=\frac{2}{a^{2} J_{\nu+1}^{2}\left(\mu_{n}\right)} \int_{0}^{a} r^{\nu+1} J_{\nu}\left(\frac{\mu_{n} r}{a}\right) \mathrm{d} r . \tag{26}
\end{equation*}
$$

Let $y=\frac{\mu_{n} r}{a}$, then

$$
\begin{equation*}
c_{n}=\frac{2}{a^{2} J_{\nu+1}^{2}\left(\mu_{n}\right)}\left(\frac{a}{\mu_{n}}\right)^{\nu+2} \int_{0}^{\mu_{n}} y^{\nu+1} J_{\nu}(y) \mathrm{d} y . \tag{27}
\end{equation*}
$$

Making use of the recurrence relation

$$
\frac{\mathrm{d}}{\mathrm{~d} y} y^{\nu+1} J_{\nu+1}(y)=y^{\nu+1} J_{\nu}(y)
$$

it is easy to find that

$$
\begin{equation*}
\int_{0}^{\mu_{n}} y^{\nu+1} J_{\nu}(y) \mathrm{d} y=\int_{0}^{\mu_{n}} \mathrm{~d}\left(y^{\nu+1} J_{\nu+1}(y)\right)=\mu_{n}^{\nu+1} J_{\nu+1}\left(\mu_{n}\right) \tag{28}
\end{equation*}
$$

It follows from (27) and (28) that

$$
\begin{equation*}
c_{n}=\frac{2 a^{\nu}}{\mu_{n} J_{\nu+1}\left(\mu_{n}\right)} . \tag{29}
\end{equation*}
$$

Formulae (24) and (29) complete the proof of Theorem 1.
Let us mention some corollaries.
Corollary 1. Let $B^{m}(s)$ be an m-dimensional Brownian motion, starting from the origin. Then, passing to the limit from Theorem 1 as $r \rightarrow 0$, we obtain

$$
\begin{equation*}
P\left\{\sup _{0 \leq s \leq t}\left|B^{m}(s)\right|<a\right\}=\sum_{n=1}^{\infty} \frac{1}{2^{\nu-1} \Gamma(\nu+1)} \frac{\mu_{n}^{\nu-1}}{J_{\nu+1}\left(\mu_{n}\right)} \exp \left(-\frac{\mu_{n}^{2} t}{2 a^{2}}\right), \tag{30}
\end{equation*}
$$

where $a>0$.
Proof. We obtain the limit from formula (4.14.4) in [15]

$$
\lim _{r \rightarrow 0} \frac{J_{\nu}\left(\mu_{n} r / a\right)}{\left(\mu_{n} r / a\right)^{\nu}}=\frac{1}{2^{\nu} \Gamma(\nu+1)}
$$

and

$$
\lim _{r \rightarrow 0} \frac{2 a^{\nu} J_{\nu}\left(\mu_{n} r / a\right)}{r^{\nu} \mu_{n} J_{\nu+1}\left(\mu_{n}\right)}=\frac{1}{2^{\nu-1} \Gamma(\nu+1)} \frac{\mu_{n}^{\nu-1}}{J_{\nu+1}\left(\mu_{n}\right)} .
$$

Hence we derive the result [12]. The proof is complete.
We can easily find positive roots of the Bessel functions $J_{\nu}(z)$ in formula (12) only for one-dimensional and three-dimensional cases. Therefore, only for that cases we present the following corollaries:
Corollary 2. Let $B(s)$ be a one-dimensional Brownian motion, starting from the point $x \in[-a, a]$. Then

$$
\begin{align*}
F^{1}(t, x, a) & =P\left\{\sup _{0 \leq s \leq t}|B(s)+x|<a\right\} \\
& =\frac{4}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1} \exp \left(-\frac{(2 k+1)^{2} \pi^{2} t}{8 a^{2}}\right) \cos \left(\frac{(2 k+1) \pi x}{2 a}\right), \tag{31}
\end{align*}
$$

where $-a<x<a$.

Proof. It is easy to see, that if $m=1$, then $\nu=-\frac{1}{2}, J_{\nu}(x)=J_{-\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \cos (x)$, $J_{\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \sin (x)$. The positive roots of the Bessel function $J_{-\frac{1}{2}}(x)$ are $\mu_{n}=$ $\frac{\pi}{2}(1+2 n), \quad n=0,1,2, \ldots$.

Thus, we have

$$
\frac{2 a^{\nu} J_{\nu}\left(\mu_{n} r / a\right)}{r^{\nu} \mu_{n} J_{\nu+1}\left(\mu_{n}\right)}=\frac{2}{\mu_{n}} \frac{\cos \left(\frac{\mu_{n} r}{a}\right)}{\sin \left(\mu_{n}\right)}=\frac{4}{\pi(2 n+1)} \cos \left(\frac{(2 k+1) \pi x}{2 a}\right)(-1)^{n} .
$$

Applying this formula and (12), we get the proof of Corollary 2. The proof is complete.

This formula gives a probability that the one-dimensional Brownian motion leaving the point x, will not be absorbed till the moment t. Hence we derive the result [11].

Corollary 3. Let $B^{3}(s), 0 \leq s \leq t$, be a three-dimensional Brownian motion, starting from the point x on the sphere S_{r}^{3} with the radius $r=|x|<a$. Then

$$
\begin{equation*}
v^{3}(t, r, a)=-2 \sum_{n=1}^{\infty}(-1)^{n} \frac{a}{\pi r n} \sin \left(\frac{\pi r n}{a}\right) \exp \left(-\frac{n^{2} \pi^{2} t}{2 a^{2}}\right) \tag{32}
\end{equation*}
$$

Proof. If $m=3$, then $\nu=\frac{m}{2}-1=\frac{1}{2}$ and $J_{\nu}(x)=J_{\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \sin (x), J_{\frac{3}{2}}(x)=$ $\sqrt{\frac{2}{\pi x}}\left(\frac{\sin (x)}{x}-\cos (x)\right)$. The positive roots of the Bessel function $J_{\frac{1}{2}}(x)$ are $\mu_{n}=\pi n$, $n=1,2, \ldots$.

Consequently

$$
\frac{2 a^{\nu} J_{\nu}\left(\mu_{n} r / a\right)}{r^{\nu} \mu_{n} J_{\nu+1}\left(\mu_{n}\right)}=-\frac{2 a}{\pi r n} \sin \left(\frac{\pi r n}{a}\right)(-1)^{n} .
$$

The proof is complete.
Corollary 4. Let $B^{3}(s)$ be a three-dimensional Brownian movement, starting from the beginning of coordinates, then passing to the limit as $r \rightarrow 0$, we obtain.

$$
\begin{equation*}
v^{3}(t, 0, a)=-2 \sum_{n=1}^{\infty}(-1)^{n} \exp \left(-\frac{n^{2} \pi^{2} t}{2 a^{2}}\right) \tag{33}
\end{equation*}
$$

Proof. It is obvious, that the limit:

$$
\lim _{r \rightarrow 0} \frac{a}{\pi r n} \sin \left(\frac{\pi r n}{a}\right)=1
$$

It proves (33). The proof is complete.

References

1. L. Beghin, E. Orsingher, On the maximum of the generalized Brownian bridge, Lith. Math. J., 39(2), pp. 157-167, 1999.
2. R. Douady, M. Yor, A. N. Shiryaev, On probability characteristics of "downfalls" in a standard Brownian motion, Theor. Probab. Appl.+, 44(1), pp. 29-38, 2000.
3. P. Erdos, M. Kac, On certain limit theorems of the theory of probability, Bull. Amer. Math. Soc., 52, pp. 292-302, 1946.
4. W. Feller, Probability Theory and its Applications, 2nd ed., Wiley, New York, 2, 1971.
5. I. I. Gikhman, A.V. Skorokhod, Introduction to the Theory of Random Processes, Nauka, Moscow, 1965 (in Russian).
6. I. I. Gikhman, A.V. Skorokhod, The Theory of Stochastic Processes, II, Springer-Verlag, Berlin, 1975.
7. P. Levy, Processus Stochastiques et Mouvement Brownien, Paris, 1965.
8. A. Rosenkrantz, On rates of convergence for the invariance principle, T. Am. Math. Soc., 129(3), pp. 542-552, 1967.
9. A.V. Skorohod, Random Processes with Independent Increments, Moscow, 1964 (in Russian).
10. F. Spitzer, Principles of Random Walk, Mir, Moscow, 1969 (in Russian).
11. S. Steišūnas, On the standard Brownian motion I, LMD mokslo darbai, III, 1999.
12. Z. Ciesielski, J. Taylor, First passage times and sojourn times for Brownian motion in space and exact Hausdorff measure of the sample path, T. Am. Math. Soc., 103(3), pp. 434-450, 1962.
13. P. Levy, La Mesure de Hausdorff de la courbe du mouvement Brownien, Giorn. Ist. Ital. Attuari, 16, pp. 1-37, 1953.
14. N. N. Lebedev, Special functions and their Applications, Moscow-Leningrad, 1963 (in Russian).
15. G. E. Andrews, R. Askey, R. Roy, Special Function, Cambridge University, 2000.
16. A. N. Borodin, P. Salminen, Handbook of Brownian Motion - Facts and Formulae, Birkhäuser Verlag, Basel, Boston, Berlin, 1996.
17. N. S.Koshliakov, E. B. Gliner, M. M. Smirnov, Partial Differential Equations of Mathematical Physics, Moscow, 1970, (in Russian).
18. P. A. P. Moran, An Introduction to Probability Theory, Clarendon Press, Oxford, 1968.
