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Abstract. Simulations are presented for a reaction-diffusion systemwithin a thin layer
containing an enzyme, fed with a substrate from the surrounding electrolyte. The
chemical term is of the nonlinear Michaelis-Menten type andrequires a technique such
as Newton iteration for solution. It is shown that approximating the nonlinear chemical
term in these systems by a linearised form reduces both the accuracy and, in the case
of second-order methods such as Crank-Nicolson, reduces the global error order from
O(δT 2) to O(δT ). The first-order methods plain backwards implicit with and without
linearisation, and Crank-Nicolson with linearisation areall of O(δT ) and very similar
in performance, requiring, for a given accuracy target, an order of magnitude more CPU
time than the efficient methods backward implicit with extrapolation and Crank-Nicolson,
both with Newton iteration to handle the nonlinearity. Steady state computations agree
with expectations, tending to the known solutions for limiting cases. The Crank-Nicolson
method shows some concentration oscillations close to the outer layer boundary but this
does not propagate to the inner boundary at the electrode. The backward implicit methods
do not result in such oscillations and if concentration profiles are of interest, may be
preferred.

Keywords: numerical simulation, computational electrochemistry, reaction-diffusion,
amperometric sensor.

1 Introduction

This paper describes algorithms for the simulation of chronoamperometry at a thin en-
zyme layer on an electrode. The thin layer contains an enzymethat converts a substrate

∗This work was partially supported by Lithuanian State Science and Studies Foundation, project
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S into a product P, the substrate diffusing into the layer from an electrolyte outside the
layer. The product P is electroactive at the electrode and the electrode potential is set such
that the resulting current is limited by diffusive transport of P to the electrode, setting the
boundary condition that the concentration of P is zero at theelectrode. The electrolyte
outside the enzyme layer is well stirred and contains S at some bulk concentration, this
being the boundary concentration at the outer layer surface. The electrolyte does not
initially contain P and is assumed to have a much greater volume than the layer, ensuring
that the concentration of P remains virtually at zero; this is the other boundary condition
for P at the outer layer surface. The system tends towards a steady state. There are
analytical solutions for the current for some parameter limits but no general solution
exists, which is why a simulation is needed.

Enzyme kinetics was first described by Michaelis and Menten in 1913 [1] and their
equation was confirmed by Briggs and Haldane in 1925 [2]. The enzyme electrode
was suggested by Updike and Hicks in 1967 for the first time [3], followed by other
early works [4–7]. These papers attempted to solve the mathematics of the relevant
kinetics. The electrodes can either be run in the amperometric mode, in which the
product is electrolysed at the electrode, or in the potentiometric mode, where no current
is drawn at the electrode and the electrode potential is usedto measure the product
concentration. A useful review was written in 1990 by Schulmeister [8], who described
mathematical and numerical approaches to solving the kinetics of these electrodes. Kulys
et al. presented some steady state solutions for the amperometric mode of these electrodes
[9], which are used for comparison in the present paper. Somenumerical solutions were
presented for the amperometric and potentiometric cases [10–12], and most recently in
2007 [13, 14], where the nonlinear chemical homogeneous terms were approximated by
linearised forms. In this paper, we present further algorithms of greater efficiency, not
avoiding the nonlinearity.

2 Theory

The chemical reactions in the layer are

S+ E ⇋ ES→ E + P, (1)

where E refers to the enzyme, ES is a transitory complex assumed to be at a steady
concentration, and P is the product [15]. This is a catalyticreaction, the enzyme itself
not being used up.

Let the layer be of thicknessd along the coordinatex. The partial differential
equations describing the kinetics of the two substances S and P within the layer are [8,14]

∂s

∂t
= Ds

∂2s

∂x2
− Vm

s

s + KM

, (2a)

∂p

∂t
= Dp

∂2p

∂x2
+ Vm

s

s + KM

, 0 < x < d, t > 0, (2b)
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in which s andp are the concentrations of S and P, respectively,t is the time variable,x
the coordinate across the layer,Ds andDp are the two diffusion coefficients,Vm is the
maximal rate of the enzymatic reaction, andKM is the Michaelis constant. The chemical
reaction term is the Michaelis-Menten term, and gives rise to problems in the simulation,
as it is nonlinear. The bulk concentration of S iss0. Initially, there is neither S nor P
within the enzyme layer. S diffuses into that layer and is converted to P there. Also,
because the bulk volume is assumed large and well stirred, there is never appreciable P in
the bulk outside the enzyme layer.

Initial and boundary conditions are

t = 0, 0 ≤ x ≤ d : s = 0, p = 0, (3)

t > 0, x = 0:
∂s

∂x
= 0, p = 0, (4a)

t > 0, x = d : s = s0, p = 0. (4b)

P is thus held at zero concentrations at both ends of the layer, but will attain finite
concentrations within it. (In potentiometric mode, the last condition at the electrode
becomes the zero-flux condition,x = 0: ∂p/∂x = 0, and as here,x = d : p = 0).

It is convenient to normalise the variables,

X =
x

d
, T =

Dst

d2
, S =

s

s0
, P =

p

s0
, r =

Dp

Ds

. (5)

This leads to a dimensionless form of the kinetic equations,

∂S

∂T
=

∂2S

∂X2
− µ

S

S + κ
, (6a)

∂P

∂T
= r

∂2P

∂X2
+ µ

S

S + κ
, 0 < X < 1, T > 0, (6b)

where we have two new symbols

µ =
Vmd2

Dss0
and κ = KM/s0. (7)

Following Kulys et al. [9], we also define the diffusion module

σ2 =
Vmd2

DsKM

= µ/κ . (8)

The new initial and boundary conditions are

T = 0, 0 ≤ X ≤ 1: S = 0, P = 0, (9)

T > 0, X = 0:
∂S

∂X
= 0, P = 0, (10a)

T > 0, X = 1: S = 1, P = 0. (10b)
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The current densityg occuring at the electrode due to reduction or oxidation of P is
given by

g = nFDp

∂p

∂x

∣

∣

∣

∣

x=0

, (11)

wheren is the number of electrons transferred andF is the Faraday constant. This
becomes the dimensionless current densityG, simply given by

G =
∂P

∂X

∣

∣

∣

∣

X=0

. (12)

The system tends towards a steady state at long times (T ≫ 1). There are analytical
solutions for the steady state current density [9] only for the extreme cases ofκ ≪ 1,

G0 = µ/2 , (13)

andκ ≫ 1,

G∞ = 1 −
1

coshσ
. (14)

These can be used for comparison with simulated values.
In what follows, both steady state and chronoamperometric solutions will be de-

monstrated by digital simulation [16].

3 Discretisation and simulation methods

The domain0 ≤ X ≤ 1 is divided intoN equal intervalsH and the time dependent si-
mulations proceed by steps of lengthδT . The notation used is that we have concentration
samplesSi, Pi, i = 0, . . . , N at the pointsXi = iH, i = 0, . . . , N (X0 = 0, XN = 1),
and that the plain symbolsSi andPi correspond to present, known values at timeT and
the symbolsS′

i andP ′

i are the next values, atT + δT , to be computed. It is the aim of this
work to achieve global concentration and current errors ofO(δT 2, H2). Second order
with respect toH is easily achieved by a central difference approximation tothe spatial
second derivative, and will not be included in order statements hereafter, as the focus is
on the order with respect toδT . Achievement of second order error is critically dependent
on how the nonlinear term in (6) is discretised.

The system (6) has one convenient property. Although it is a coupled pair of equa-
tions, only the second equation, forP , depends on the other. Thus we can compute all
S values first, handling the nonlinearity in some manner, and then compute allP values,
where the nonlinearity is now simply a function of known old and newS values.

3.1 Steady state

In order to compute the steady state, one can use the time-marching method [14], driving
the simulation to times so long that no further change is noted. This is indeed a good
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check on the correctness of the simulations, but an easier method to achieve steady state
is to set the time derivatives on the left-hand side of (6a) and (6b) to zero, discretise the
right-hand side and solve. ForS, the discrete expression at the pointXi becomes

0 =
Si−1 − 2Si + Si+1

H2
− µ

Si

Si + κ
, i = 1, . . . , N − 1. (15)

At the electrode surface, we invoke the zero flux condition (4a). In order to achieve
a global error ofO(H2) here, a three-point forward approximation is used (seey′

1(3)
in [16, p. 281]),

−3S0 + 4S1 − S2 = 0, (16)

and ati = N , condition (10b),

SN = 1 . (17)

These equations now form a system of nonlinear equations to be solved, which we express
as

F = 0 (18)

with

F0 = −3S0 + 4S1 − S2,

F1 =
S0 − 2S1 + S2

H2
− µ

S1

S1 + κ
,

...
Fi =

Si−1 − 2Si + Si+1

H2
− µ

Si

Si + κ
,

...
FN−1 =

SN−2 − 2SN−1 + SN

H2
− µ

SN−1

SN−1 + κ
,

FN = SN − 1.

(19)

Newton’s method [17] suggests itself here, with an initial guess at the vectorS = 0, and
computing at each Newton iteration a correction vectorδS given as the solution of

JδS = −F, (20)

in whichJ is the Jacobian matrix ofF. This is an iterative process, and generally, only 3–4
iterations are required for convergence. This was set to thecondition that the Euclidian
norm||δS|| < 10−8.

3.2 Chronoamperometry

For time-marching problems, the left-hand side of (6a) and (6b) must be included in the
simulation. This is always approximated here as

∂Zi

∂T
≈

Z ′

i − Zi

δT
, (21)
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whereZ stands for eitherS or P . This approximation takes different orders, depending
on which position in the intervalδT it refers to. Second order errors with respect toδT
are achieved if (21) refers to the midpoint of the time interval; this is the case if Crank-
Nicolson is used [18], where the right-hand sides of the partial differential equations
are also discretised referred to the midpoint (see below). For the explicit simulation
method [19] , the approximation is a forward difference, andfor the fully implicit method
(backward implicit BI or Laasonen method [20]) it becomes a backward difference, both
producing global errors ofO(δT ) (see also below).

We now outline several possible methods of solution. In the previous works [13,
14], the nonlinearity was avoided by an approximation. It will be seen that this leads
to an order reduction toO(δT ), even for methods that otherwise achieve global errors
of O(δT 2). Nonlinearities often occur in connection with homogeneous chemical terms
in electrochemical simulation problems, and in many cases [16, pp. 135–136] second-
order linear approximations can be found. This is not possible here, so we must cope
with the nonlinearity in some manner. We explore the use of the backward difference
or Laasonen method [20] (here called BI) and of the Crank-Nicolson method [18], here
called CN. The explicit method [19] is not used here, as it hasstability limitations, nor
is hopscotch [21, 22] used, although it is a stable method, because of the “propagational
inadequacy” problem, pointed out by Feldberg [23].

In all cases below, use is made of the definition

λ = δT/H2 (22)

for convenience, and we assumer = 1, that is, the two species S and P share the same
diffusion coefficient.

3.3 Method BI1, backward implicit with linearisation

This is the use of the BI or Laasonen method, but avoids the nonlinearity, as was done
in [13]. The discretisations for S are

− 3S′

0 + 4S′

1 − S′

2 = 0,

1

λ

(

S′

1 − S1

)

= S′

0 − 2S′

1 + S′

2 − µH2 S′

1

S1 + κ
,

...
1

λ

(

S′

i − Si

)

= S′

i−1 − 2S′

i + S′

i+1 − µH2 S′

i

Si + κ
,

...
1

λ

(

S′

N−1 − SN−1

)

= S′

N−2 − 2S′

N−1 + S′

N − µH2 S′

N−1

SN−1 + κ
,

S′

N = 1.

(23)

Note that the nonlinearity has been removed. BI is a first-order method, so this might
not matter. It will be seen in Section 5 that it works as well asBI2 as described be-
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low. The system can be rearranged in an obvious manner and solved using the Thomas
algorithm [16, 24, 25]. The boundary valueS0 is computed using the “u-v” mechanism
[16, pp. 87–89], which is simply a convenient way to solve thesmall linear system com-
prised of the boundary condition equation (the first in (23))together with the next two
equations, after they have been reduced to two unknowns eachby the first (backward)
Thomas sweep (for details, see [16, pp. 86–89]). Having computed allS values, a similar
system is written forP ,

P0 = 0,

1

λ

(

P ′

1 − P1

)

= P ′

0 − 2P ′

1 + P ′

2 + µH2 S′

1

S1 + κ
,

...
1

λ

(

P ′

i − Pi

)

= P ′

i−1 − 2P ′

i + P ′

i+1 + µH2 S′

i

Si + κ
,

...
1

λ

(

P ′

N−1 − PN−1

)

= P ′

N−2 − 2P ′

N−1 + P ′

N + µH2 S′

N−1

SN−1 + κ
,

P ′

N = 0,

(24)

where both the oldSi and the newS′

i values are used. Again, the Thomas algorithm is
used. Lastly,G is computed using a three-point current approximation, known to have
errors ofO(H2) [16,26].

3.4 Method BI2, backward implicit without linearisation

With this method, the nonlinearity is not removed. Then theith equation in (26) becomes

1

λ

(

S′

i − Si

)

= S′

i−1 − 2S′

i + S′

i+1 − µH2 S′

i

S′

i + κ
(25)

and similarly forP , where the nonlinear term is positive. Here, the Thomas algorithm
cannot be used. There are two main possibilities.

The nonlinear system can be solved using the Rosenbrock method [27], described
for electrochemical digital simulations by Bieniasz [28] and described in detail in [16,
pp. 167–172]. This evaluates concentrations at the next time level without iteration, and
will handle nonlinearities without problems. There are several variants, of different error
orders and unconditional stability.

Another way to handle the nonlinearity is, at each step, to use the Newton method
as was done above for the steady state computation, computing a correction set in each
iteration. This is necessary only forS, after which the known new valuesS′ can be used
for the computation ofP , again using the Thomas algorithm.

ForS, the system of equations like (23) but using (25), is cast into a form similar to
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(19), solving for the correction vector. The system corresponding to (20) is the following:

























−3 4 −1

1 a1−
µH2κ

(S1+κ)2 1

. . .

1 a1−
µH2κ

(Si+κ)2 1

. . .

a1−
µH2κ

(SN−1+κ)2

















































δS0

δS1

...
δSi

...
δSN−1

























=

























−b0

−b1

...
−bi

...
−bN−1

























(26)

where

a1 = −(2 + 1/λ),

b0 = −3S0 + 4S1 − S2,

bi = −Si/λ (1 ≤ i ≤ N − 2),

bN−1 = −Si/λ − SN .

(27)

The system is solved iteratively untilδS converges, each time correcting the vectorS by
this amount. Since changes from one time step to the next are rather small, in most cases
only 2–3 iterations are required in order to achieve convergence. Then one solves forP
using the equations as in (24), except that the chemical termnow contains only terms in
(now known)S′

i.

3.5 Method BI3, backward implicit without linearisation an d using extrapolation

The BI method is a first-order method with respect to time intervals. It has the ad-
vantage of a smooth error response in cases of a sharp initialstep, such as we have
in the present system, where concentrations0 (or in dimensionless terms, unityS) is
applied at a boundary atT = 0. We shall show below that Crank-Nicolson reacts with
oscillations to such sharp transients; this can be damped inseveral ways [29] but it is
often more convenient to use BI with extrapolation [30, 31],which preserves the smooth
error response and increases the order. Extrapolation was introduced to electrochemical
simulations by Strutwolf and Schoeller [32]. In the second-order variant, each step is first
taken with the full time intervalδT , and the new concentrations stored. This is denoted
as the operationL1. Then the calculation is repeated using two steps of lengthδT/2,
denoted asL2

2, and the resulting concentrations combined with those fromthe first step
according to

Z
′ =

(

2L2
2 − L1

)

Z (28)

(Z again denotes eitherS or P). This eliminates the first-order error term, leaving the
term inO(δT 2). Method BI2 was modified in this sense.
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3.6 Method CN1, Crank-Nicolson with linearisation

The essence of CN is to match the time derivative approximation, left-hand side of (6a)
and (6b), with right-hand side terms referred to the midpoint across the time step. This
makes the time derivative approximation a central second-order difference. CN produces
global errors ofO(δT 2). As mentioned above, CN has the problem of reacting to sharp
changes in an oscillatory manner, which can be a disadvantage. The oscillations can
be damped [29] with some programming effort. In the present case, as will be shown
below, there are oscillations in concentrations, but they do not appear to matter, as they
do not propagate to the electrode, where the current is computed. It is possible that some
parameter choices could produce oscillations even on this side of the enzyme layer and if
this happens, then damping techniques can be used.

In [14], CN1 was used, discretising at theith point forS as

2

λ

(

S′

i − Si

)

= S′

i−1 − 2S′

i + S′

i+1 + Si−1 − 2Si + Si+1 − 2µH2 Si

Si + κ
. (29)

The discrete expressions for the boundary conditions atX = 0 are, in the CN manner,

−3S′

0 + 4S′

1 − S′

2 − 3S0 + 4S1 − S2 = 0 (30)

and the condition atX = 1 is the same as that for BI1, Section 3.3. The system is easily
solved by the Thomas algorithm. Then we have for P, at theith point,

2

λ

(

P ′

i − Pi

)

= P ′

i−1 − 2P ′

i + P ′

i+1 + Pi−1 − 2Pi + Pi+1 − 2µH2 S′

i

S′

i + κ
, (31)

now using the new values forS. Again, this is readily solved.

3.7 Method CN2, Crank-Nicolson without linearisation

Using the CN idea, a more consistent discretisation is the following. The first and last dis-
crete equations, expressing boundary conditions, are those for CN1, but the discretisation
at pointi becomes

2

λ

(

S′

i − Si

)

= S′

i−1 − 2S′

i + S′

i+1 + Si−1 − 2Si + Si+1

− µH2

(

S′

i

S′

i + κ
+

Si

Si + κ

)

. (32)

This is a nonlinear system, and can be solved by the Newton procedure as described
above. ForP , we then have, at pointi,

2

λ

(

P ′

i − Pi

)

= P ′

i−1 − 2P ′

i + P ′

i+1 + Pi−1 − 2Pi + Pi+1

+ µH2

(

S′

i

S′

i + κ
+

Si

Si + κ

)

, (33)

where now bothS andS′ are known.
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4 Estimating error orders

Except at extreme values ofκ, there are no analytical solutions, so that if we wish to
compute error orders, we cannot use known solutions for the estimation. However, there
is a way, due to Østerby [33], which does not require exact values to compare with. In
a given simulation, one first takesN steps of lengthh, with the resultR1. Then the
simulation is repeated usingN/2 steps of length2h, with resultR2, followed by a third
usingN/4 steps of length4h, with resultR4. These are combined to produce the factor
q, given by

q =
R4 − R2

R2 − R1
(34)

and the order is thenln q/ ln 2. This was carried out in the present work.

5 Results and discussion

Except for the steady state computations, all simulations were driven at equal space
intervals of 0.001, that isN = 1000, which was found to be adequate, and at various
numbers of time intervalsδT always toT = 1.

The computations were carried out under Linux Suse 10.2 using the Intel Fortran
90/95 compiler and IEEE 754 standard double precision, giving roughly 16 decimal digit
precision.

The orders were computed by the procedure mentioned above, and are tabulated in
Table 1. We note that there are only two methods, BI3 and CN2, that produce global
errors of second order, the others all having errors ofO(δT ), even CN1. Thus it is seen
that eliminating the nonlinearity reduces the error order for CN.

Table 1. Error orders with respect toδT for the methods,µ = κ = 10, N = 1000

Method Order ofS0 Order ofG
BI1 1 1
BI2 1 1
BI3 2 2
CN1 1 1
CN2 2 2

Steady state currentsG were computed as described for a range ofκ and three values
of µ, and are shown in Fig. 1. They are all referred to bothG0 given in (13) andG∞ given
in (14). Note the convergence to unity at the respective endsof theκ scale.

Errors in the current densities were computed relative to converged current values,
obtained by increasing the number of time steps in a simulation using CN2, until there
were no further changes in the value to 8 decimals. The errorsare expressed as relative
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errorse, given by

e =
G − Gc

Gc

, (35)

whereGc is the converged current. This had to be computed for any given parameter
set (µ, κ). It was found thatNT = 4096 was sufficient for convergence to 8 decimal
places. The Newton iterations can easily achieve much better convergence than this, and
it is indeedNT here which limits convergence. The errors are shown in Fig. 2. The figure
reflects the orders from Table 1 by the slopes and it is seen that all three first-order methods
BI1, BI2 and CN1 have very similar errors, CN1 being only a slight improvement on BI1
and BI2. BI2, which accounted for the nonlinearity, might have been thought to show
smaller errors than BI1, despite the same order, but did not.Clearly, CN2 and BI3 have
the smallest errors and a second-order slope.

 0

 1

 0.01  0.1  1  10  100

G
/G

ss

κ

0.3

0.3
1

1

3

3

Fig. 1. Steady state responses. The numbers show values ofµ. The curves converging to
unity at the left-hand edge areG/G0, while those converging to unity at the right-hand

edge areG/G∞.

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 10  100  1000

e

NT

BI1, BI2

CN1

BI3

CN2

Fig. 2. Errore vs. NT for the methods as shown,N = 1000, µ = κ = 10.
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It is of some interest to compare the efficiency of the methods, in terms of CPU time
needed to achieve a target accuracy. We choose the target 0.01% or a relative error of
10−4 here, for easy comparison, based on Fig. 2. Table 2 shows the results. The two
best methods, BI3 and CN2 are an order of magnitude faster than the other three. In
practice, such a small error is not needed for comparison with experimental data, nor are
the CPU times significant. However, if the simulation methodwere to be applied to longer
simulations such as linear sweep voltammetry and/or if experimental parameters such as
µ and κ or diffusion coefficients are to be fitted by doing many runs, then efficiency
becomes important.

Table 2.NT to T = 1 needed and CPU use to achieve a relative errore of 10−4

Method NT CPU/s
BI1 3000 0.45
BI2 3000 0.86
BI3 50 0.049
CN1 1500 0.22
CN2 40 0.025

It was mentioned above that Crank-Nicolson has an oscillatory response to sharp
initial transients. This is the case here, where the initialconditionS(X = 1) = 1 is
applied, all otherS values initially being zero. Normally, the oscillations that ensue result
also in oscillatory currents, but here the sharp transient takes place at the opposite end
of the enzyme layer from that at which the current is generated. Fig. 3 shows a time
development of theS profile for 50 steps in time withδT = 0.02, and the oscillations in
S are clearly seen at the outer plane of the layer, slowly damped with time.

X

T

 0

 0.5

 1

 1.5

S

 0.2
 0.4

 0.6
 0.8

 1

 0.2

 0.4

 0.6

 0.8

 1

S

Fig. 3. Concentration profile vs.X andT for method CN2. Parameters:µ = κ = 10,
N = 100, δT = 0.02, NT = 50.
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It is also clear, however, that these oscillations do not propagate to the electrode,
where the profiles are smooth. This is reflected in the current, which also has a smooth
time response. However, if one is interested in the concentrations themselves, then the
oscillations might not be desirable. In that case, method BI3 offers a similar efficiency
and a smooth response, as seen in Fig. 4.

X

T

 0

 1

 2

S

 0.2
 0.4

 0.6
 0.8

 1

 0.2

 0.4

 0.6

 0.8

 1

S

Fig. 4. Concentration profile vs.X andT for method BI3. Parameters:µ = κ = 10,
N = 100, δT = 0.02, NT = 50.

6 Conclusions

It is seen that attempting to approximate the nonlinear chemical term by a linear form
reduces both the accuracy and, in the case of second-order error methods such as Crank-
Nicolson, the order fromO(δT 2) to O(δT ). The first-order methods plain backwards
implicit with and without linearisation, and Crank-Nicolson with linearisation all have
global errors ofO(δT ) and are very similar in performance, requiring, for a given accu-
racy target, an order of magnitude more CPU time than the efficient methods backward
implicit with extrapolation and the Crank-Nicolson, both with Newton iteration to handle
the nonlinearity.

Steady state computations agree with expectations, tending to the limiting cases for
small and largeκ.

Crank-Nicolson shows some concentration oscillations close to the outer layer bound-
ary, X = 1, but this does not propagate to the inner boundary at the electrode, so it
may not matter. Backward implicit methods do not result in such oscillations and if
concentration profiles are of interest, may be preferred.
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