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Abstract. In this work, the homotopy analysis method is applied to study the unsteady
boundary-layer flow and heat transfer due to a stretching sheet. The analytic solutions of
the system of nonlinear ordinary differential equations are constructed in the series form.
The convergence of the obtained series solutions is carefully analyzed. The velocity
and temperature profiles are shown and the influence of non-dimensional parameter on
the heat transfer is discussed in detail. The validity of oursolutions is verified by the
numerical results.

Keywords: homotopy analysis method, system of nonlinear ordinary differential
equations, convergence, stretching sheet.

1 Introduction

Nonlinear differential equations are usually arising frommathematical modeling of many
physical systems. Some of them are solved using numerical methods and some are solved
using the analytic methods such as perturbation [1, 2]. The numerical methods such as
Rung-Kutta method are based on discretization techniques,and they only permit us to
calculate the approximate solutions for some values of timeand space variables, which
cause us to overlook some important phenomena, in addition to the intensive computer
time required to solve the problem. Thus it is often costly and time consuming to get
a complete curve of results and so in these methods, stability and convergence should
be considered so as to avoid divergence or inappropriate results. Numerical difficulties
additionally appear if a nonlinear problem contains singularities or has multiple solutions.
Perturbation techniques are based on the existence of small/large parameters, the so-called
perturbation quantity. Unfortunately, many nonlinear problems in science and engineering
do not contain such kind of perturbation quantities at all. Some nonperturbative tech-
niques, such as the artificial small parameter method [3], theδ-expansion method [4] and
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the Adomian’s decomposition method [5], have been developed. Different from perturba-
tion techniques, these nonperturbative methods are independent upon small parameters.
However, both of the perturbation techniques and the nonperturbativemethods themselves
cannot provide us with a simple way to adjust or control the convergence region and rate
of given approximate series.

In 1992, Liao [6] employed the basic ideas of the homotopy in topology to propose
a general analytic method for nonlinear problems, namely homotopy analysis method
(HAM), [7–11]. Based on homotopy of topology, the validity of the HAM is independent
of whether or not there exist small parameters in the considered equation. Therefore, the
HAM can overcome the foregoing restrictions and limitations of perturbation methods
[12]. The HAM also avoids discretization and provides an efficient numerical solution
with high accuracy, minimal calculation and avoidance of physically unrealistic assump-
tions. Furthermore, the HAM always provides us with a familyof solution expressions
in the auxiliary parameter~ the convergence region and rate of each solution might
be determined conveniently by the auxiliary parameter~. Besides, the HAM is rather
general and contains the homotopy perturbation method (HPM) [11, 12], the Adomian
decomposition method (ADM) [13] andδ-expansion method.

In recent years, the homotopy analysis method has been successfully employed
to solve many types of nonlinear problems such as the nonlinear equations arising in
heat transfer [14], the nonlinear model of diffusion and reaction in porous catalysts [15],
the chaotic dynamical systems [16], the non-homogeneous Blasius problem [17], the
generalized three-dimensional MHD flow over a porous stretching sheet [18], the wire
coating analysis using MHD Oldroyd 8-constant fluid [19], the axisymmetric flow and
heat transfer of a second grade fluid past a stretching sheet [20], the MHD flow of a second
grade fluid in a porous channel [21], the generalized Couetteflow [22], the squeezing flow
between two infinite plates [23], the Glauert-jet problem [24], the Burger and regularized
long wave equations [25], the laminar viscous flow in a semi-porous channel in the
presence of a uniform magnetic field [26], and other problems. All of these successful
applications verified the validity, effectiveness and flexibility of the HAM.

The flow and heat transfer of a viscous and incompressible fluid induced by a con-
tinuously moving or stretching surface in a resting fluid is relevant to many manufacturing
processes such as polymers involves the cooling of continuous strips or filaments by
drawing them through a quiescent fluid [33]. Further, glass blowing, continuous casting
of metals and spinning of fibers involve the flow due to a stretching surface. Crane [27]
was first to study the boundary-layer flow due to a stretching surface in an ambient fluid
and applied a similarity transformation for the steady boundary-layer flow by stretching of
a sheet when its velocity varying linearly with the distancefrom a fixed point. Carragher
and Crane [28] considered the influence of heat transfer in the flow over a stretching
surface in the case when the temperature difference betweenthe surface and the ambient
fluid is proportional to a power of distance from the fixed point [33]. Dutta [29], Grubka
and Bobba [30] studied the temperature field in the flow over a stretching surface when
a uniform heat flux is exerted to the surface. Elbashbeshy [31] considered the case of
a stretching surface with a variable surface heat flux. The unsteady flow filed and heat
transfer occur when a flat plat stretches suddenly or a step change of the temperature or
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heat flux of the sheet [33]. Elbashbeshy and Bazid [32] studied the unsteady flow and
heat transfer over a stretching sheet.

The main goal of the present study is to find the totally analytic solution for un-
steady boundary-layer flow and heat transfer due to a stretching sheet by homotopy anal-
ysis method. This problem studied first by Sharidan [33] in 2006 and exerted the similarity
solution. Liao and Pop [34] applied the HAM to solve a steady boundary-layer flow due
to a stretching sheet. In this way, the Letter has been organized as follows. In Section 2,
the flow analysis and mathematical formulation are presented. In Section 3, we extend
the application of the HAM to construct the approximate solutions for the governing
equations. The convergence of the obtained series solutions is carefully analyzed in
Section 4. Section 5 contains the results and discussion. The conclusions are summarized
in Section 6.

2 Flow analysis and mathematical formulation

Fig. 1 shows the unsteady flow and heat transfer of a viscous and incompressible fluid
past a semi-infinite stretching sheet in the regiony > 0. Keeping the origin fixed, two
equal and opposite forces are suddenly applied along thex-axis. These forces stretch the
sheet and the flow is generated. The wall temperatureTw(x, t) of the sheet is suddenly
raised fromT∞ to Tw(t, x) > T∞ or there is suddenly imposed a heat fluxqw(t, x) at the
wall [34].

Fig.1. Geometry of the problem. 
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Fig. 1. Geometry of the problem.

With these assumptions, the governing equations for the unsteady boundary-layer
flow due to the stretching sheet are given as follow

∂u

∂x
+
∂v

∂y
= 0, (1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
, (2)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
(3)
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and the boundary conditions are

u = uw(t, x), v = 0,
at y = 0,

T = Tw(t, x) (VWT) or
∂T

∂y
= −

qw(t, x)

k
(VHF) (4)

u→ 0, T → T∞ at y → ∞,

wheret is the time,u andv are the velocity components along thex- andy-axes respec-
tively, T is the temperature,α is the thermal diffusivity,ν is the kinematic viscosity and
k is the thermal conductivity.

The velocity of the sheetuw(t, x) the sheet temperatureTw(t, x) and the heat flux
qw(t, x) are defined

uw(t, x) =
cx

1 − γt
, Tw(t, x) = T∞ +

c

2νx2(1 − γt)3/2
,

qw(t, x) =
qw0

2x2

(
c

ν

)3/2
1

(1 − γt)2
,

(5)

wherec is the stretching rate being a positive constant,γ is a positive constant, which
measures the unsteadiness andqw0

is a characteristic heat transfer quantity [33]. Sharidan
[33] introduced the following similarity transforms

η =

√
c

ν(1 − γt)
y, ψ =

√
cν

1 − γt
xf(η),

T = T∞ +
c

2νx2(1 − γt)3/2
θ(η) (VWT), (6)

T = T∞ +
qw0

k

c

2νx2(1 − γt)3/2
θ(η) (VHF),

whereψ is the stream function and is defined asu = ∂ψ/∂y andv = −∂ψ/∂x. The
governing equations are reduced by using (6) as follow

f ′′′ + f f ′′
− f ′2

−A

(
f ′ +

1

2
ηf ′′

)
= 0, (7)

1

Pr
θ′′ + fθ′ + 2f ′θ −

1

2
A(3θ + ηθ′) = 0, (8)

with boundary conditions

f(0) = 0, f ′(0) = 1, f ′(∞) = 0,

θ(0) = 1 (VWT) or θ′(0) = 1 (VHF), θ(∞) = 0,
(9)

wherePr is the Prandtl number,A = γ/c is a non-dimensional constant which measures
the flow and heat transfer unsteadiness and primes denote thedifferentiation with respect
to the similarity variableη [33].
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The skin friction coefficientCf and the local Nusselt numberNux are the important
physical quantities in this problem and are defined as

Cf =
τw
ρu2

w

, Nux =
xqw

k(T − Tw)
, (10)

where the skin frictionτw and the heat transfer from the sheetqw are given by

τw = µ

(
∂u

∂y

)

y=0

, qw = −k

(
∂T

∂y

)

y=0

, (11)

andµ is the dynamic viscosity. By using equations (5) and (6), it is obvious to get

CfRe
1/2
x = f ′′(0),

Nux

Re
1/2
x

= −θ′(0) (VWT),
Nux

Re
1/2
x

=
1

θ(0)
(VHF), (12)

whereRex = uwx/ν is the local Reynolds number.

3 HAM solution

To investigate the explicit and totally analytic solutionsof equations (7) and (8) by using
HAM, we choose

f0(η) = 1 − e−η, (13)

θ0(η) = e−η, (14)

as initial approximations off(η) and θ(η) which satisfy the boundary conditions (9).
Besides, we select the auxiliary linear operatorsL1(f) andL2(θ) as

L1(f) = f ′′′ + f ′′, (15)

L2(θ) = θ′′ + θ′, (16)

satisfying the following properties

L1(c1e
−η + c2η + c3) = 0, (17)

L2(c4e
−η + c5) = 0, (18)

whereci, i = 1–5 are arbitrary constants. Ifp ∈ [0, 1] is an embedding parameter,~f and
~θ are auxiliary nonzero parameters andHf (η) andHθ(η) are auxiliary functions, then
the zeroth-order deformation equations are of the following form

(1 − p)L1

[
f̂(η; p) − f0(η)

]
= p~fHf (η)N1

[
f̂(η; p)

]
, (19)

(1 − p)L2

[
θ̂(η; p) − θ0(η)

]
= p~θHθ(η)N2

[
f̂(η; p), θ̂(η; p)

]
, (20)

87



M.M. Rashidi , S.A. Mohimanian Pour

subject to the boundary conditions

f̂(0; p) = 0, f̂ ′(0; p) = 1, f̂ ′(∞; p) = 0,

θ̂(0; p) = 1 (VWT) or θ̂′(0; p) = −1 (VHF), θ̂(∞; p) = 0,
(21)

in which we define the nonlinear operatorsN1 andN2 as

N1 =
∂3f̂(η; p)

∂η3
+ f̂(η; p)

∂2f̂(η; p)

∂η2
−

(
∂f̂(η; p)

∂η

)2

−A

(
∂f̂(η; p)

∂η
+

1

2
η
∂2f̂(η; p)

∂η2

)
, (22)

N2 =
1

Pr

∂2θ̂(η; p)

∂η2
+ f̂(η; p)

∂θ̂(η; p)

∂η
+ 2

∂f̂(η; p)

∂η
θ̂(η; p)

−
1

2
A

(
3θ̂(η; p) + η

∂θ̂(η; p)

∂η

)
. (23)

Forp = 0 andp = 1, we have

f̂(η; 0) = f0(η), f̂(η; 1) = f(η), θ̂(η; 0) = θ0(η), θ̂(η; 1) = θ(η). (24)

As p increases from0 to 1, f̂(η; p) and θ̂(η; p) vary from f0(η) to f(η) andθ(η). By
Taylor’s theorem and equations (24) one obtains

f̂(η; p) = f0(η) +

+∞∑

m=1

fm(η)pm, (25)

θ̂(η; p) = θ0(η) +

+∞∑

m=1

θm(η)pm, (26)

where

fm(η) =
1

m!

∂mf̂(η; p)

∂pm

∣∣∣∣
p=0

, θm(η) =
1

m!

∂mθ̂(η; p)

∂pm

∣∣∣∣
p=0

. (27)

As pointed by Liao [7], the convergence of the series (25) and(26) strongly depend upon
auxiliary parameters~f and~θ. Assume that~f and~θ are selected such that the series
(25) and (26) are convergent atp = 1 then due to equation (24) we have

f(η) = f0(η) +

+∞∑

m=1

fm(η), (28)

θ(η) = θ0(η) +

+∞∑

m=1

θm(η). (29)
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For themth-order deformation equations, we differentiate equations (19) and (20)
m times with respect top divide bym! and then setp = 0. The resulting deformation
equations at themth-order are

L1

[
f̂m(η) − χmfm−1(η)

]
= ~fHf (η)R1,m(η), (30)

L2

[
θ̂m(η) − χmθm−1(η)

]
= ~θHθ(η)R2,m(η), (31)

with the following boundary conditions

fm(0) = 0, f ′

m(0) = 0, f ′

m(∞) = 0,

θm(0) = 0 (VWT) or θ′m(0) = 0 (VHF), θm(∞) = 0,
(32)

where

R1,m =
∂3fm−1(η)

∂η3
+

m−1∑

n=0

(
fn(η)

∂2fm−1−n(η)

∂η2
+
∂fn(η)

∂η

∂fm−1−n(η)

∂η

)

−A

(
∂fm−1(η)

∂η
+

1

2
η
∂2fm−1(η)

∂η2

)
, (33)

R2,m =
1

Pr

∂2θm−1(η)

∂η2
+

m−1∑

n=0

(
fn(η)

∂θm−1−n(η)

∂η
+ 2

∂fn(η)

∂η
θm−1−n(η)

)

−
1

2

(
θm−1(η) + η

∂θm−1(η)

∂η

)
, (34)

and

χ =

{
0, m ≤ 1,

1, m > 1.
(35)

According to the rule of solution expression, the rule of coefficient ergodicity and
the rule of solution existence as discussed by Liao [7], we choose auxiliary functions as
follow

Hf (η) = e−η, (36)

Hθ(η) = e−η, (37)

and use the symbolic software MATHEMATICA to solve the system of linear equations,
equations (30) and (31), with the boundary conditions equation (32), and successively
obtain

f1(η) = 0.125A~f − 0.125A~fe
−η

− 0.125A~fηe
−2η, (38)

θ1(η) = 0.5~θe
−3η

− 0.5~θe
−2η

− 0.375A~θe
−2η

− 1.110223 · 10−16
~θe

−η

+ 0.375A~θe
−η +

0.5~θe
−2η

Pr
−

0.5~θe
−η

Pr
+ 0.25A~θe

−2η. (39)
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4 Convergence of HAM solution

Note that the two series (28) and (28) contain the auxiliary parameter~f and~θ which
influences the convergent rate and region of the two series. To ensure that these two series
converge, we first focus on how to choose proper values of~f and~θ. To see the range
of admissible values of these parameters, the curves of~f and~θ are plotted in Figs. 2–4
for the20th-order of approximation.

Fig. 2. The~f -curves off ′′(0) obtained by
the 20th-order approximation of the HAM

for different values ofA.

Fig. 3. The~θ-curves ofθ′(0) (VWT case)
obtained by the20th-order approximation
of the HAM for different values ofA, when

Pr = 1.

Fig. 4. The~θ-curves ofθ(0) (VHF case)
obtained by the20th-order approximation
of the HAM for different values ofA, when

Pr = 1.

As pointed by Liao [7], the valid region of~f and~θ is a horizontal line segment.
For better presentation, we listed these valid regions in Table 1. A wide valid zone
is evident in these figures ensuring convergence of the series for both VWT and VHF
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cases. Table 2 show several best values obtained for the auxiliary parameters~f and~θ

for the VWT and VHF cases for different values of the non-dimensional constant. This
figure elucidates that the size of the valid region strongly depends on the non-dimensional
constant. In fact, the interval for admissible values of~f and~θ shrinks towards zero by
increasing the non-dimensional constant.

Table 1. The admissible values of~f and ~θ for different values ofA when
Pr = 1

A

Series solution 0.8 1.2 2

f(η) −1.6 ≤ ~f ≤ −0.2 −1.4 ≤ ~f ≤ −0.2 −1.2 ≤ ~f ≤ −0.2
θ(η) (VWT) −1.7 ≤ ~θ ≤ −0.2 −1.6 ≤ ~θ ≤ −0.2 −1.4 ≤ ~θ ≤ −0.2
θ(η) (VHF) −1.7 ≤ ~θ ≤ −0.5 −1.7 ≤ ~θ ≤ −0.5 −1.3 ≤ ~θ ≤ −0.2

Table 2. The best values of~f and~θ for different values ofA whenPr = 1

A ~f ~θ (VWT) ~θ (VHF)
0.8 −0.8 −1.3 −1.2
1.2 −0.8 −1.0 −1.0
2 −0.7 −0.7 −0.8

5 Results and discussion

Equations (7) and (8) with the boundary conditions (9) are solved using HAM for some
values of the parameterA. The rate of convergence forf ′′(0), θ′(0) (VWT case) and
θ(0) (VHF case) at some values ofA are shown in Tables 3–5, respectively. The results
obtained from HAM solution are compared with results of Sharidan [34]. The results
show that HAM gives an analytical solution with high order ofaccuracy with a few
iterations.

Table 3. The rate of convergence forf ′′(0) at some values ofA

A 5th-order 10th-order 15th-order 20th-order Sharidan [34]
0.8 −1.261088 −1.261063 −1.261048 −1.261042 −1.261042
1.2 −1.377594 −1.377647 −1.377710 −1.377721 −1.377722
2.0 −1.587983 −1.587347 −1.587382 −1.587360 −1.587362

Table 4. The rate of convergence forθ(0) (VWT case) at some values ofA

A 5th-order 10th-order 15th-order 20th-order Sharidan [34]
0.8 −0.472381 −0.471278 −0.471195 −0.471190 −0.471190
1.2 −0.787782 −0.787869 −0.788142 −0.788169 −0.788173
2.0 −1.247413 −1.243933 −1.243792 −1.243739 −1.243741
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The profilesf(η) andf ′(η) obtained by the20th-order approximation of the HAM
are shown in Figs. 5 and 6 for different values ofA. Figs. 7 and 8 show the effect of the
non-dimensional parameter,A, on the temperature profiles for both the VWT and VHF
cases.

Table 5. The rate of convergence for (VHF case) at some valuesof

A 5th-order 10th-order 15th-order 20th-order Sharidan [34]
0.8 2.099092 2.121981 2.122792 2.122869 2.122870
1.2 1.269349 1.269058 1.268772 1.268760 1.268756
2.0 0.802819 0.803925 0.804006 0.804021 0.804026

Fig. 5. The profilef(η) obtained by the
20th-order approximation of the HAM for

different values ofA.

Fig. 6. The profilef ′(η) obtained by the
20th-order approximation of the HAM for

different values ofA.

Fig. 7. The profileθ(η) for VWT obtained
by the 20th-order approximation of the
HAM for different values of A, when

Pr = 1.

Fig. 8. The profileθ(η) for VHF obtained
by the 20th-order approximation of the
HAM for different values of A, when

Pr = 1.
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6 Conclusions

In this Letter, the homotopy analysis method (HAM) was used for finding the totally
analytic solutions of the system of nonlinear ordinary differential equations derived from
similarity transform for unsteady boundary-layer flow and heat transfer due to a stretching
sheet. The validity of our solutions is verified by the numerical results. We analyzed the
convergence of the obtained series solutions, carefully. Unlike perturbation methods, the
HAM does not depend on any small physical parameters. Thus, it is valid for both weakly
and strongly nonlinear problems. Besides, different from all other analytic methods, the
HAM provides us a simple way to adjust and control the convergence region of the series
solution by means of auxiliary parameter~. Thus the auxiliary parameter~ plays an
important role within the frame of the HAM which can be determined by the so-called
~-curves. The solution obtained by means of the HAM is an infinite power series for
appropriate initial approximation, which can be, in turn, expressed in a closed form.
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