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Abstract. This paper suggests a family of estimators of population mean using multi-
auxiliary variate based on post-stratified sampling and itsproperties are studied under
large sample approximation. Asymptotically optimum estimator in the class is identified
alongwith its approximate variance formulae. The proposedclass of estimators is
also compared with corresponding unstratified class of estimators based on estimated
optimum value. At the end, an empirical study has been carried out to support the
proposed methodology.
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1 Introduction

Stratification is one of the most widely used techniques in sample survey design serving
the dual purpose of providing samples that are representative of major sub-groups of the
population and improving the precision of estimators [1]. Stratified sampling presupposes
the knowledge of strata size as well as the availability of a frame for drawing a sample
in each stratum [2]. However application of this technique presupposes the knowledge of
strata size and the availability of sampling frames within strata. In many socio-economic
and agricultural surveys where it is necessary to partitionthe finite population under con-
sideration, due to its heterogeneity, into different sub-populations (strata), the sampling
frame within strata may not be available. However frame for entire population may be
available and percentage of population units falling into different strata may be known.
Under such circumstances usual stratified sampling can not be used and thus an effort
is made to get over the problem through post-stratification which consists in selecting a
sample from the whole population by the procedure of simple random sampling without
replacement followed by the classification of the selected sample units by strata and then
treating it as if it were stratified sample, for instance, see[1,3–11].
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It is further noted that in sample surveys, the information on an auxiliary variate
correlated with the principal (study) variate under study is either readily available or may
be made available by diverting a part of the survey resources. This information may be
utilized to increase the precision of estimators of population meanY of the study variate
y. Such an information is the known population meanX of the auxiliary variatex. For
illustration, the average farm size in a local government area or district may be known
while the problem is to estimate the average area under a particular crop per farm. The
strata may be formed according to farm size, the percentage of farms falling into different
size groups may be known but the identity of farms within a size group may not be known,
see [12].

We assume that the population comprisesN units, which can be uniquely parti-
tioned intoL strata of sizeN1, N2, . . . , NL such that

∑L
h=1 Nh = N . The strata weights

Wh = Nh/N (h = 1, 2, . . . , L) are assumed known. Let(yhi, xhi) (i = 1, 2, . . . , Nh)
denote the values of variates(y, x) respectively fori-th unit in h-th stratum andY h and
Xh denote strata means. A simple random sample of sizen is drawn without replacement
from the population which results into the configurationn = (n1, n2, . . . , nL), nh deno-
ting the number of units in the sample falling in stratumh,

∑L
h=1 nh = n. Assume that

n is large enough so that the probability ofnh being zero is small (i.e.Pr(nh = 0) =
0). Based on the foregoing procedure which is known as post-stratification, the usual
unbiased post-stratified estimators for population meansY =

∑L
h=1 WhY h andX =∑L

h=1 WhXh of the study variatey and the auxiliary variatex areyPS =
∑L

h=1 Whyh

andxPS =
∑L

h=1 Whxh, whereyh = 1
nh

∑nh

i=1 yhi andxh = 1
nh

∑nh

i=1 xhi are the
means of thenh sample units that fall into theh-th stratum whose sizeNh is assumed to
be known.

For given configuration of samplen = (n1, n2, . . . , nL) we have

Var(yPS |n) = E
((

yPS − Y
)2∣∣n

)
=

L∑

h=1

W 2
h

(
1 − fh

nh

)
S2

hy,

Var(xPS |n) = E
((

xPS − X
)2∣∣n

)
=

L∑

h=1

W 2
h

(
1 − fh

nh

)
S2

hx,

Cov{(yPS , xPS)|n}

= E
{((

yPS − Y
)(

xPS − X
))∣∣n

}
=

L∑

h=1

W 2
h

(
1 − fh

nh

)
Shxy,

see [1], where

fh =
nh

Nh

, S2
hy =

1

Nh−1

Nh∑

i=1

(
yhi − Y h

)2
,

S2
hx =

1

Nh−1

Nh∑

i=1

(
xhi − Xh

)2
, Shxy =

1

Nh−1

Nh∑

i=1

(
xhi − Xh

)(
yhi − Y h

)
.
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Using the results from [13] forE(n−1
h ), to the terms of ordern−2, we have

Var(yPS) =

(
1 − f

n

) L∑

h=1

WhS2
hy +

(
N − n

N − 1

)
1

n2

L∑

h=1

(1 − Wh)S2
hy,

Var(xPS) =

(
1 − f

n

) L∑

h=1

WhS2
hx +

(
N − n

N − 1

)
1

n2

L∑

h=1

(1 − Wh)S2
hx,

Cov(yPS , xPS) =

(
1 − f

n

) L∑

h=1

WhShxy +

(
N − n

N − 1

)
1

n2

L∑

h=1

(1 − Wh)Shxy,

wheref = n/N is over all sampling fraction.
It is known that when the auxiliary information is used at theestimation stage, the

ratio estimator is the best among a wide class of estimators when the relation between
y andx, the variate under study and the auxiliary variate respectively, is a straight line
through the origin and the variance ofy about this line is proportional tox, see [14]. In
such a situation the ratio estimator is as good as regressionestimator. In many practical
situations, the regression line does not pass through the origin. In these situations, the
ratio estimator does not perform equally well as that of regression estimator. Keeping this
fact in view and also due to the stronger intuitive appeal statisticians are more inclined
towards the use of the ratio and the product estimators and hence a large amount of work
has been carried out towards the modification of ratio and product estimators, for instance,
see [11,15–17] etc. These authors have proposed various estimators under simple random
sampling without replacement (SRSWOR) and stratified random technique which under
some realistic conditions is more efficient than the mean perunit estimator, the ratio and
the product estimator are efficient as the linear regressionestimator in optimum case. It is
to be mentioned that the problem of estimation of populationmeanY of the study variate
y based on post-stratification and auxiliary information hasnot attracted much attention
of survey statisticians, for instance, [12] and [18].

In this paper, following approaches developed by [19] and [20], we have sug-
gested a family of estimators of population meanȲ of the study variatey based on post-
stratification using multi-auxiliary variate and its properties are studied.

When information onp-auxiliary variatesx1, x2, . . . , xp is available. LetWh (h =
1, 2, . . . , L) andX1, X2, . . . , Xp be the known strata weights and the known population
means of the auxiliary variatesx1, x2, . . . , xp respectively. Suppose the observations
(yhi, xkhi), i = 1, 2, . . . , nh, h = 1, 2, . . . , L andk = 1, 2, . . . , p are available. We
denote

xkPS =

L∑

h=1

Whxkh, xkh =
1

nh

nh∑

i=1

xkhi,

Xk =

L∑

h=1

WhXkh, Xkh =
1

Nh

Nh∑

i=1

xkhi.

235



Gajendra K. Vishwakarma, Housila P. Singh, Sarjinder Singh

Let xPS denote the column vector ofp-elementsx1PS , x2PS , . . . , xpPS . Superfix
T over a column vector denotes the corresponding row vector.

Definingε0 = (yPS−Y ), εk = (xkPS−Xk) andεT = (ε1, ε2, . . . εp), we have for
a given configuration ofn = (n1, n2, . . . , nL), the values of the conditional expectations:

E(ε0|n) = 0 = E(εk|n)

and ifnh is large, to terms of ordern−1
h , the conditional expected values are

E(ε2
0|n) =

L∑

h=1

W 2
h

(
1 − fh

nh

)
S2

h0,

E(ε2
k|n) =

L∑

h=1

W 2
h

(
1 − fh

nh

)
S2

hk,

E(ε0εk|n) =

L∑

h=1

W 2
h

(
1 − fh

nh

)
Sh0k,

E(εkεl|n) =

L∑

h=1

W 2
h

(
1 − fh

nh

)
Shkl,

(1)

where

Sh0k =ρh0kSh0Shk ⇒ ρh0k =
Sh0k

Sh0Shk

, Shkl =ρhklShkShl ⇒ ρhkl =
Shkl

ShkShl

,

S2
h0 =

1

Nh − 1

Nh∑

i=1

(
yhi − Y h

)2
, S2

hk =
1

Nh − 1

Nh∑

i=1

(
xhki − Xhk

)2
,

Sh0k =
1

Nh − 1

Nh∑

i=1

(
yhi − Y h

)(
xhki − Xhk

)
,

Shkl =
1

Nh − 1

Nh∑

i=1

(
xhki − Xhk

)(
xhli − Xhl

)
.

Putting the above results in matrix notations, we have

E(ε|n) = 0, E
(
εεT

∣∣n
)

= D, E(ε0ε|n) = A, (2)

where

AT = (a1, a2, . . . , ap), ak =

L∑

h=1

W 2
h

(
1 − fh

nh

)
Sh0k,

D = [dkl]p×p, dkl =

L∑

h=1

W 2
h

(
1 − fh

nh

)
Shkl.
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The unconditional expectations are:

E(ε0) = E(εk) = 0, for all k = 1, 2, . . . , p

and for largen, to terms of ordern−1, the unconditional expected values are given by

E(ε2
0) =

1 − f

n

L∑

h=1

WhS2
h0,

E(ε2
k) =

1 − f

n

L∑

h=1

WhS2
hk,

E(ε0εk) =
1 − f

n

L∑

h=1

WhSh0k,

E(εkεl) =
1 − f

n

L∑

h=1

WhShkl.

(3)

Putting the above results in matrix notation, we have

E(ε) = 0, E(εεT ) = A∗, E(ε0ε) = D∗, (4)

where

A∗T = (a∗

1, a
∗

2, . . . , a
∗

p), a∗

k =
1 − f

n

L∑

h=1

WhSh0k,

D∗ = [d∗kl]p×p, and d∗kl =
1 − f

n

L∑

h=1

WhShkl.

2 The suggested family of estimators

Let X
T

= (X1, X2, . . . , Xp) denote the row vector ofp elementsX1, X2, . . . , Xp.
Whatever be the sample chosen let(yPS , xT

PS) assume values in a closed convex subset,

Q, of the (p + 1) dimensional real space containing the point(Y , X
T
). We suggest a

family of post-stratified estimators for the population mean using multi-auxiliary variable
as:

Ŷ G = G(yPS , x1PS , x2PS , . . . , xpPS) = G
(
yPS , xT

PS

)
, (5)

whereG(yPS , xT
PS) is a function ofyPS , x1PS , x2PS , . . . , xpPS such that

G
(
Y , X

T
)

= Y , for all Y (6)

and such that it satisfies the following conditions:
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1. The functionG(yPS , xT
PS) is continuous and bounded inQ,

2. The first and second order partial derivatives of the functionG(yPS , xT
PS) exist and

are continuous and bounded inQ.

Expanding the functionG(yPS , xT
PS) about the point(Y , X

T
) in a second order Taylor’s

series, we obtain:

Ŷ G = G
(
Y , X

T )
+

(
yPS − Y

)∂G(·)

∂yPS

∣∣∣∣(
Y ,X

T
) +

(
xPS − X

)T
G(1)

(
Y , X

T )

+
1

2

{
(
yPS − Y

)2 ∂2G(·)

∂y2
PS

∣∣∣∣(
y∗

P S
,x∗T

P S

)

+ 2
(
yPS − Y

)(
xPS − X

)T ∂G(1)(·)

∂yPS

∣∣∣∣(
y∗

P S
,x∗T

PS

)

+
(
xPS − X

)T
G(2)

(
y∗PS , x∗T

PS

)(
xPS − X

)
}

, (7)

wherey∗

PS = Y + ξ(yPS − Y ), x∗

PS = X + ξ(xPS − X), 0 < ξ < 1, G(1) de-
notes thep elements column vector of first partial derivatives ofG(·) i.e. G(1)T =

(G
(1)
1 , G

(1)
2 , . . . , G

(1)
p ) with G

(1)
k = (∂G(yPS , xPS)/∂xkPS)|(Y ,Xk) andG(2) denotes

thep × p matrix of the second partial derivatives ofG(·) with respect toxPS about the

point(Y , X
T
). Expressing (7) in terms ofε’s and noting thatG(Y , X

T
) = Y

T
, we have

Ŷ G = Y +
∂G(·)

∂yPS

∣∣∣∣(
Y ,X

T
) + εT G(1)(Y , X

T
)

+
1

2

{
ε2
0

∂2G(·)

∂y2
PS

∣∣∣∣(
y∗

P S
,x∗T

PS

) + 2ε0ε
T ∂G(1)(·)

∂yPS

∣∣∣∣(
y∗

P S
,x∗T

P S

)

+ εT G(2)
(
Y

∗

PS , x∗T
PS

)
ε

}
(8)

Taking conditional expectation in (8) and noting that second derivatives are bounded.
Thus we arrived at the following theorem:

Theorem 1.

E
(
Ŷ G

∣∣n
)

= Y + o
(
n−1

h

)
.

From Theorem 1, it follows that the bias of the estimatorŶ G is of the ordern−1
h ,

and hence its contribution to the mean squared error ofŶ G will be of the order ofn−2
h .

Now we prove the following result:
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Theorem 2. Up to terms of ordern−1
h , the conditional variance of̂Y G is minimized for

G(1)
(
Y , X

T )
= −D−1A (9)

and the conditional minimum variance is given by

Var
(
Ŷ G

∣∣n
)

=
(
1 − R2

)
S∗2

0 . (10)

Proof. From (8), we have upto terms of ordern−1
h ,

Var
(
Ŷ G

∣∣n
)

= E
{(

Ŷ G − Y
)2∣∣n

}

= E

{(
ε0

∂G(·)

∂yPS

∣∣∣∣(
Y ,X

T
) + εT G(1)

(
Y , X

T ))2∣∣∣∣n
}

= E
{(

ε0 + εT G(1)
(
Y , X

T ))2∣∣n
}
,

from (6) which implies that∂G(·)
∂y

PS

|
(Y ,X

T
)
= 1,

Var
(
Ŷ G

∣∣n
)

=
[
E

(
ε2
0

∣∣n
)

+ 2E
(
ε0ε

T
∣∣n

)
G(1)

(
Y , X

T )

+
(
G(1)

(
Y , X

T ))T
E

(
εεT

∣∣n
)(

G(1)
(
Y , X

T ))]

=S∗2
0 +2AT G(1)

(
Y , X

T)
+

(
G(1)

(
Y , X

T))T
D

(
G(1)

(
Y , X

T))
(11)

which is minimized for

G
(1)
opt = −D−1A = δ0 (say), (12)

whereS∗2
0 =

∑L
h=1 W 2

h (1−fh

nh
)S2

h0.
Thus the resulting conditional variance is given by

min.Var
(
Ŷ G

∣∣n
)

=
(
1 − R2

)
S∗2

0 , (13)

whereR2 = AT D−1A
S∗2

0

andR is the multiple correlation coefficient betweenyPS and the
vectorxPS . Hence proved the Theorem 2.

The conditional variance of any estimator of the class (5) can be obtained from (11).

From (11) the conditional minimum variance (i.e.min.Var(Ŷ G|n)) is not larger than the
conditional variance of the unbiased estimatoryPS , sinceAT D−1A > 0.

Taking unconditional expectation in (8) and noting that second derivatives are
bounded, we have:

Theorem 3.

E
(
Ŷ G

)
= Y + o

(
n−1

)
.
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Theorem 3 shows that the bias of the estimatorŶ G is of the ordern−1, and hence

its contribution to the mean square error (MSE) ofŶ G will be of the ordern−2. Thus, to

the first order of approximation, the unconditional variance of Ŷ G will be the same.

Theorem 4. Upto terms of ordern−1, the unconditionalVar(Ŷ G) is minimized for

G(1)
(
Y , X

T )
= −D∗−1A∗ (14)

and the unconditional minimum variance ofŶ G is given by

min.Var
(
Ŷ G

)
=

(
1 − R∗2

)
S∗∗2

0 , (15)

whereS∗∗2
0 = 1−f

n

∑L
h=1 WhS2

h0.

Proof. From (8), we have upto terms of ordern−1,

Var
(
Ŷ G

)
= E

(
Ŷ G − Y

)2
= E

(
ε0

∂G(·)

∂yPS

∣∣∣∣(
Y ,X

T
) + εT G(1)

(
Y , X

T ))2

= E
(
ε0 + εT G(1)

(
Y , X

T ))2
,

from (6) which implies that∂G(·)
∂yPS

|
(Y ,X

T
)
= 1,

Var
(
Ŷ G

)
=

[
E

(
ε2
0

)
+ 2E

(
ε0ε

T
)
G(1)

(
Y , X

T )

+
(
G(1)

(
Y , X

T ))T
E

(
εεT

)(
G(1)

(
Y , X

T ))]
.

Using the results (3) and (4) in the above expression we get the unconditional
variance over all possible distribution, for largen, to the terms of ordern−1, as:

Var
(
Ŷ G

)
= S∗∗2

0 + 2A∗T G(1)
(
Y , X

T )

+
((

G(1)
(
Y , X

T ))T
D∗

(
G(1)

(
Y , X

T ))
(16)

which is minimized for

G
(1)
opt = −D∗−1A∗ = G

(1)
0 (say), (17)

whereS∗∗2
0 = 1−f

nh

∑L
h=1 WhS2

h0.

Thus the resulting unconditional variance ofŶ G is given by

min.Var
(
Ŷ G

)
=

(
1 − R∗2

)
S∗∗2

0 , (18)

whereR∗2 = A∗T D∗−1A∗

S∗∗2

0

andR∗ is the multiple correlation coefficient betweenyPS and
the vectorxPS . Hence proved the Theorem 4.

240



A family of estimators of population mean using multi-auxiliary variate and post-stratification

The unconditional variance of any estimator of the class (5)can be obtained

from (16). From (16), themin.Var(Ŷ G) is not large than the unconditional variance
of the unbiased estimatoryPS , sinceA∗T D∗−1A∗ > 0.

Let G(1)
(
Y , X

T )
= −αG

(1)
0 = −αD∗−1A∗, is a departure from the optimum

value (α > 0 is a constant), we have

Var
(
Ŷ G

)
=

[
S∗∗2

0 − 2αA∗T D∗−1A∗ + α2A∗T D∗−1A∗
]

=
[
S∗∗2

0 − α(2 − α)A∗T D∗−1A∗
]
. (19)

It is well known that the unconditional variance of the usualunbiased estimatoryPS is

Var
(
Ŷ G

)
=

1 − f

n

L∑

h=1

WhS2
h0 = S∗∗2

0 . (20)

Thus for anyG(1)(Y , X
T
), we find from (18) and (19) that

Var(yPS) − Var
(
Ŷ G

)
= α(2 − α)A∗T D∗−1A∗ (21)

which shows that the proposed class of estimatorsŶ G would be better than usual unbiased
estimatoryPS as for as0 < α < 2.

Remark 1. It is to be mentioned that optimum estimators in the class arenot unique but
all of them have the same variance given either by (13) or (18). We also note that in
practice the value ofδ0 = −D−1A at (12) orG(1)

0 = −D∗−1A∗ = δ∗0 at (17) may not be
known. However, they can be estimated by

δ̂0 = δ̂∗0 − D̂−1Â, (22)

where

D̂ =
[
d̂kl

]
p×p

, d̂kl =
L∑

h=1

W 2
h

(
1 − fh

nh

)
shkl,

ÂT =
(
â1, â2, . . . , âp

)
, âk =

L∑

h=1

W 2
h

(
1 − fh

nh

)
sh0k,

sh0k =
1

nh − 1

nh∑

i=1

(yhi − yh)(xhki − xhk),

shkl =
1

nh − 1

nh∑

i=1

(xhki − xhk)(xhli − xhl), yh =
1

nh

nh∑

i=1

yhi,

xkh =
1

nh

nh∑

i=1

xkhi.
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In such a case we may define a class of estimators based on estimated optimum
valueδ̂0 as:

̂̂
Y ∗

G = G∗
(
yPS , xT

PS , δ̂T
0

)
, (23)

whereG∗
(
yPS , xT

PS , δ̂T
0 ) is a function of(yPS , xT

PS , δ̂T
0 ) such that:

G∗
(
Y , X

T
, δT

)
= Y ,

∂G∗(·)

∂yPS

∣∣∣∣(
Y ,X

T
,δT

) = 1,

∂G∗(·)

∂xPS

∣∣∣∣(
Y ,X

T
,δT

) = δ0 = −D−1A,

∂G∗(·)

∂δ̂0

∣∣∣∣(
Y ,X

T
,δT

) = 0.

(24)

Under (24) the class of estimators
̂̂
Y ∗

G at (23) is expected to have, to the first order of
approximation, the conditional and unconditional variances respectively as

Var
(̂̂
Y ∗

G

∣∣n
)

= min.Var
(
Ŷ

∗

G

∣∣n
)

=
(
1 − R2

)
S∗2

0 (25)

and

Var
(̂̂
Y ∗

G

)
= min.Var

(
Ŷ

∗

G

)
=

(
1 − R∗2

)
S∗∗2

0 . (26)

3 Comparison with corresponding unstratified multivariate estima-
tors

We assume that information onp auxiliary variatesx1, x2, . . . , xp is available. A simple
random sample of sizen is drawn from the given finite population of sizeN . Let yi and
xi denote the values of the variatesy andxk of thei-th unit of the sample,k = 1, 2, . . . , p;
i = 1, 2, . . . , n. Defining:

y =
1

n

n∑

i=1

yi, xk =
1

n

n∑

i=1

xki, Y =

N∑

i=1

yi, Xk =
1

N

N∑

i=1

xki,

S2
0 =

1

N − 1

N∑

i=1

(
yi − Y

)2
, S2

k =
1

N − 1

N∑

i=1

(
xki − Xk

)2
,

S0k =
1

N − 1

N∑

i=1

(
yi − Y

)(
xki − Xk

)
.
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Furtherρ0k andρkl denote the correlation coefficients between the variatesy andxk and
between thexk andxl.

DefinexT = (x1, x2, . . . , xk), ε∗0 = (y − Y ) andε∗k = (xk − Xk) such that:

E(ε∗0) = 0, E(ε∗k) = 0 for all k = 1, 2, . . . , p,

E(ε∗20 ) =
1 − f

n
S2

0 , E(ε2
k) =

1 − f

n
S2

k,

E(ε∗0ε
∗

k) =
1 − f

n
bk, E(ε∗kε∗l ) =

1 − f

n
qkl,

where(kl) = 1, 2, . . . , p, bk = S0k = ρ0kS0Sk, qkl = ρklSkSl.
Putting the above results in matrix notations, we have

E(ε∗0) = 0, E(ε∗0ε
∗) =

1 − f

n
b, E(ε∗0ε

∗T ) =
1 − f

n
Q,

where,bT = (b1, b2, . . . , bp), Q = [qkl]p×p.

LetX
T

= (X1, X2, . . . , Xp) denote the row vector ofp elementsX1, X2, . . . , Xp.
Whatever be the sample chosen, let(y, xT ) assume values in a closed convex sub-

set,W , of the(p+1) dimensional real space containing the point(Y , X
T
). Following [21]

one may define a class of estimator of population meanY as

Ŷ
(1)

G = G
(
y, xT

)
= G

(
y, x1, x2, . . . , xp

)
, (27)

whereG(y, xT ) is a function ofy, x1, x2, . . . , xp such that

G
(
Y , X

T )
= Y , for all Y

and such that it satisfies the following conditions:

1. The functionG(y, xT ) is continuous and bounded inW .

2. The first and second order partial derivatives of the function G(y, xT ) exist and are
continuous and bounded inW .

To the first degree of approximation, the variance ofŶ
(1)

G is given by

Var
(
Ŷ

(1)

G

)
=

1 − f

n

[
S2

0 + 2bT G(1)
(
Y , X

T )

+
(
G(1)

(
Y , X

T ))T
Q

(
G(1)

(
Y , X

T ))]
(28)

which is minimized when

G(1)
(
Y , X

T )
= −Q−1b = η0 (say), (29)
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whereG(1)(Y , X
T
) denotes thep elements column vector of the partial derivatives of

G(y, xT ) with respect toxT about the point(Y , X
T
).

Thus the resulting minimum variance ofŶ
(1)

G is given by

min.Var
(
Ŷ

(1)
G

)
=

1 − f

n

(
1 − R∗∗2

)
S2

0 , (30)

whereR∗∗2 = (bT Q−1b)/S2
0 andR∗∗ is the multiple correlation coefficient betweeny

and(x1, x2, . . . , xp).
Following [18], and from (18) and (23) it can be shown that theproposed class

of estimatorsŶ G in post-stratified sampling in unconditionally more efficient than the

corresponding unstratified class of estimatorsŶ
(1)

G .

Remark 2. In practice, the exact optimum valueη0 of G(1)(Y , X
T
) at (29) is not known,

it is available to replace it by its consistent estimate ofη0 from the sample data at hand.
Thus following the procedure outlined in [21], we define a class of estimators for popula-
tion meanY (based on estimated optimum values) as:

̂̂
Y

(1)
G = G

(
y, xT , η̂T

0

)
, (31)

where

η̂0 = −Q̂−1b̂ with Q̂ = [q̂kl]p×p, q̂kl = skl, b̂ = (̂b1, b̂2, . . . , b̂k), b̂k = s0k,

s0k =
1

n − 1

n∑

i=1

(
yi − y

)(
xki − xk

)
, skl =

1

n − 1

n∑

i=1

(
xki − xk

)(
xli − xl

)
.

Now G(y, xT , η̂T
0 ) is a function of(y, xT , η̂T

0 ) such that:

G
(
Y , X

T
, ηT

0

)
= Y ,

∂G(·)

∂y

∣∣∣∣(
Y ,X

T
,ηT

0

) = 1,

∂G(·)

∂xPS

∣∣∣∣(
Y ,X

T
,ηT

0

) = η0,

∂G(·)

∂η̂0

∣∣∣∣(
Y ,X

T
,ηT

0

) = 0.

(32)

Under the condition (32), it can be shown to the first degree ofapproximation that the

variance of
̂̂
Y

(1)
G is

Var
(̂̂
Y

(1)
G

)
= min.Var

(
Ŷ

(1)
G

)
=

1 − f

n

(
1 − R∗∗2

)
S2

0 . (33)
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From (26) and (33), we

Var
(̂̂
Y ∗

G

)
< Var

(̂̂
Y

(1)
G

)
,

if

(
1 − R∗2

)
S∗∗2

0 =
1 − f

n

(
1 − R∗∗2

)
S2

0 . (34)

Thus the proposed class of estimators
̂̂
Y ∗

G based on estimated optimum values in post-
stratified sampling would be better than the corresponding non-stratified class of esti-

mators
̂̂
Y

(1)
G based on estimated optimum values in simple random samplingwithout

replacement (SRSWOR), if the condition (34) holds true.

4 Empirical study

In the empirical study, we consider the relative efficiency of the post-stratified sampling

estimatorŶ G (= θ̂1, say) and non-stratified estimatorŶ
(1)
G (= θ̂2, say) with respect to

the simple sample mean estimator without using an auxiliaryinformationy = 1
n

∑n
i=1 yi

(= θ̂0, say). The percent relative efficiency of the estimatorθ̂j , j = 1, 2 with respect to
the estimator̂θ0 is computed as:

RE
(
θ̂0, θ̂j

)
=

V (θ̂0)

V (θ̂j)
× 100 % = RE(0, j), (say). (35)

We consider the problem of estimation of Forced Expiratory Volume (FEV) of the
Pulmonary Disease persons, based on a dataset of654 persons available on the CD with
the book by [22], by using their age and height at the estimation stage, and using the other
variables gender and smoking status as post-stratificationvariables. Thus the population
of 654 persons has been divided into four post-strata. Post-stratum 1 consists of non-
smoking females(0, 0), post-stratum2 consists of non-smoking males(0, 1), post-stratum
3 consists of smoking females(1, 0), and post-stratum4 consists of smoking males(1, 1).
The descriptive parameters of the three variables:FEV , Age andHeight (HT ) in the
four post-strata are given in Table 1. The population correlation coefficients between the
three variables in the four post-strata are given in Table 2.

In order to have a closer look at the data structure in four different post-strata, we
have also devoted Fig. 1 to display the three variables.

To investigate various situations, we apply power transformations on the study
variable in all the four strata asYi = (FEV )T for different choice of values ofT in
the range of0.1 to 2.5 with a step of0.1. The other two variables:X1i = (Age) and
X2i = (Height) were used at the estimation stage. We decided to select a sample
of size being 10 % of the total population size, and later we post-stratified the sample
based on gender and smoking status into four different homogeneous groups. A total of
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sample sizen = 65.4 (can be rounded to65) was selected from the entire population of
N = 654 persons. Out of65.4 persons,27.9 persons were found to be from stratum-1,
3.9 persons were from stratum-2,31.0 persons were from stratum-3 and2.6 persons were
from stratum-4. We used R-code given in the Appendix to produce the results shown in
Table 3.

Table 1. Descriptive parameters ofFEV , Age andHT .

Stra- St. Mini- Maxi- Skew- Kur-
Nh Mean Q1 Median Q3tum Dev mum mum ness tosis

FEV

1 279 2.3792 0.6393 0.7910 1.8770 2.4170 2.8660 3.8160 −0.07 −0.69
2 39 2.9659 0.4229 2.1980 2.6770 3.0740 3.2080 3.8350 −0.25 −0.39
3 310 2.7344 0.9741 0.7960 1.9565 2.5475 3.3578 5.7930 0.70 −0.13
4 26 3.7430 0.8890 1.6940 3.3420 3.878 4.4300 4.8720 −0.89 0.13

Age

1 279 9.366 2.693 3.00 8.00 9.00 11.00 18.00 0.42 0.48
2 39 13.256 2.245 10.00 11.00 13.00 15.00 19.00 0.65 0.42
3 310 9.687 2.778 3.00 8.00 10.00 11.00 19.00 0.43 0.33
4 26 13.923 2.465 9.00 12.00 14.00 16.00 18.00 −0.13 −0.78

HT

1 279 59.605 4.739 46.00 57.00 60.50 63.00 71.00 −0.60 −0.10
2 39 64.551 2.291 60.00 63.00 65.00 66.00 69.50 0.09 −0.68
3 310 61.519 6.268 47.00 57.00 61.00 67.00 74.00 −0.11 −0.90
4 26 68.058 3.232 58.00 67.00 68.00 69.75 72.00 −1.63 3.86

Table 2. Pearson correlation coefficient values for four strata.

Correlations Stratum-1(0, 0) Correlations Stratum-2(0, 1)

FEV Age FEV Age

Age 0.767 — Age −0.047 —
HT 0.843 0.776 HT 0.251 −0.092

Stratum-3(1, 0) Stratum-4(1, 1)

0.822 — Age 0.394 —
HT 0.883 0.842 HT 0.750 0.352

Table 3. Relative efficiency of the post-stratified and non-stratified estimators
with respect to the sample mean estimator.

T Correlations Stratum-1 Stratum-2 Stratum-3 Stratum-4RE(0, 1) RE(0, 2)

0.2 ρyx1
0.76839 −0.05719 0.82536 0.42073

ρyx2
0.85847 0.24024 0.90837 0.78591 558.13 514.11

ρx1x2
0.77642 −0.09219 0.84230 0.35209
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T Correlations Stratum-1 Stratum-2 Stratum-3 Stratum-4RE(0, 1) RE(0, 2)

0.3 ρyx1
0.76675 −0.05889 0.82367 0.42475

ρyx2
0.85921 0.23834 0.91010 0.79138 557.63 518.16

ρx1x2
0.77642 −0.09219 0.84230 0.35209

0.4 ρyx1
0.76623 −0.05933 0.82311 0.42574

ρyx2
0.85923 0.23785 0.91040 0.79273 556.72 518.43

ρx1x2
0.77642 −0.09219 0.84230 0.35209

0.5 ρyx1
0.76604 −0.05947 0.82291 0.42607

ρyx2
0.85931 0.23768 0.91048 0.79317 556.34 518.44

ρx1x2
0.77642 −0.09219 0.84230 0.35209

0.6 ρyx1
0.76597 −0.05953 0.82283 0.42620

ρyx2
0.85931 0.23762 0.91051 0.79335 556.17 518.44

ρx1x2
0.77642 −0.09219 0.84230 0.35209

0.7 ρyx1
0.76593 −0.05956 0.82279 0.42626

ρyx2
0.85931 0.23759 0.91053 0.79343 556.10 518.44

ρx1x2
0.77642 −0.09219 0.84230 0.35209

0.8 ρyx1
0.76592 −0.05957 0.82278 0.42628

ρyx2
0.85931 0.23757 0.91054 0.79347 556.06 518.43

ρx1x2
0.77642 −0.09219 0.84230 0.35209

0.9 ρyx1
0.76591 −0.05957 0.82277 0.42630

ρyx2
0.85931 0.23757 0.91054 0.79348 556.05 518.43

ρx1x2
0.77642 −0.09219 0.84230 0.35209

1.0 ρyx1
0.76591 −0.05957 0.82277 0.42630

ρyx2
0.85931 0.23757 0.91054 0.79348 556.05 518.43

ρx1x2
0.77642 −0.09219 0.84230 0.35209

1.1 ρyx1
0.76592 −0.05957 0.82277 0.42629

ρyx2
0.85931 0.23757 0.91053 0.79347 556.06 518.43

ρx1x2
0.77642 −0.09219 0.84230 0.35209

1.2 ρyx1
0.76593 −0.05956 0.82279 0.42626

ρyx2
0.85931 0.23758 0.91053 0.79344 556.09 518.44

ρx1x2
0.77642 −0.09219 0.84230 0.35209

1.3 ρyx1
0.76598 −0.05954 0.82281 0.42622

ρyx2
0.85931 0.23760 0.91052 0.79339 556.14 518.44

ρx1x2
0.77642 −0.09219 0.84230 0.35209

1.4 ρyx1
0.76599 −0.05951 0.82285 0.42616

ρyx2
0.85931 0.23764 0.91050 0.79330 556.23 518.44

ρx1x2
0.77642 −0.09219 0.84230 0.35209

1.5 ρyx1
0.76606 −0.05946 0.82293 0.42604

ρyx2
0.85930 0.23770 0.91047 0.79313 556.37 518.44

ρx1x2
0.77642 −0.09219 0.84230 0.35209

1.6 ρyx1
0.76618 −0.05936 0.82306 0.42582

ρyx2
0.85929 0.23780 0.91042 0.79284 556.63 518.44

ρx1x2
0.77642 −0.09219 0.84230 0.35209
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T Correlations Stratum-1 Stratum-2 Stratum-3 Stratum-4RE(0, 1) RE(0, 2)

1.7 ρyx1
0.76640 −0.05919 0.82329 0.42542

ρyx2
0.85927 0.23800 0.91031 0.79230 557.05 518.38

ρx1x2
0.77642 −0.09219 0.84230 0.35209

1.8 ρyx1
0.76681 −0.05884 0.82373 0.42463

ρyx2
0.85920 0.23839 0.91007 0.79123 557.73 518.11

ρx1x2
0.77642 −0.09219 0.84230 0.35209

1.9 ρyx1
0.76755 −0.05814 0.82451 0.42301

ρyx2
0.85897 0.23918 0.90946 0.78903 558.47 516.96

ρx1x2
0.77642 −0.09219 0.84230 0.35209

2.0 ρyx1
0.76878 −0.05666 0.82574 0.41945

ρyx2
0.85810 0.24082 0.90766 0.78420 557.30 511.93

ρx1x2
0.77642 −0.09219 0.84230 0.35209

2.1 ρyx1
0.76992 −0.05338 0.82653 0.41105

ρyx2
0.85451 0.24439 0.90143 0.77282 542.98 490.27

ρx1x2
0.77642 −0.09219 0.84230 0.35209

2.2 ρyx1
0.76560 −0.04576 0.81962 0.38930

ρyx2
0.83905 0.25223 0.87710 0.74336 471.43 410.63

ρx1x2
0.77642 −0.09219 0.84230 0.35209

2.3 ρyx1
0.72779 −0.02781 0.76664 0.32980

ρyx2
0.77699 0.26831 0.78138 0.66352 296.36 247.49

ρx1x2
0.77642 −0.09219 0.84230 0.35209

2.4 ρyx1
0.57491 0.00564 0.55799 0.20157

ρyx2
0.59403 0.28686 0.50344 0.50005 148.39 130.84

ρx1x2
0.77642 −0.09219 0.84230 0.35209

2.5 ρyx1
0.31371 −0.00472 0.28826 0.06937

ρyx2
0.33364 0.26138 0.20492 0.34442 105.93 103.92

ρx1x2
0.77642 −0.09219 0.84230 0.35209

For T = 0.2, the values of the population correlation coefficients betweenFEV
andAge are0.76839,−0.05719,0.82536 and0.42073 in the first, second, third and fourth
post-stratum, respectively. The values of the population correlation coefficients between
FEV andHeight are0.85847, 0.24024, 0.90837 and0.78591 in the first, second, third
and fourth stratum, respectively. In the same way, the values of the populations correlation
coefficients betweenAge andHeight are0.77642, −0.09219, 0.84230 and0.35209 in
the first, second, third and fourth stratum respectively. Inthis particular situation, the
percent relative efficiency of the post-stratified samplingestimatorθ̂1 with respect to
the simple sample mean estimatorθ̂0 remains558.13 % and that of the non-stratified
estimatorθ̂2 remains514.11 %. In the same way, the results in Table 3 are readable for
other values ofT . It is to be noted that so long as the value ofT is less than or equal to
2.0, the percent relative efficiency of the post-stratified estimator remains around557 %
and that of the non-stratified estimator remains around511 %. As soon as the value of
T becomes2.3, the relative efficiency of the post-stratified estimator drastically reduces

248



A family of estimators of population mean using multi-auxiliary variate and post-stratification

to 296.36 % and that of non-stratified estimator reduces to247.49 %. For higher value
of T equal to2.5, the relative efficiency of the post-stratified sampling estimator reduces
to 105.93 % and that of non-stratified sampling estimator reduces to103.92 %. Thus,
we conclude that the proposed post stratified sampling estimator can be used to estimate
population mean of a study variable in the presence of multi-auxiliary variables more
efficiently than a non-stratified sampling estimator.

3D Scatterplot of FEV00 vs AGE00 vs HT00 3D Scatterplot of FEV01 vs AGE01 vs HT01

(a) (b)

3D Scatterplot of FEV10 vs AGE10 vs HT10 3D Scatterplot of FEV11 vs AGE11 vs HT01

(c) (d)

Fig. 1. Pictorial representation of four post-strata: (a) stratum-1 (Female= 0,
Smoking= 0); (b) stratum-2 (Female= 0, Smoking= 1); (c) stratum-3 (Male= 1,

Smoking= 0); (d) stratum-4 (Male= 1, Smoking= 1).

Appendix

#R-Code used in the simulation study (File Name: post2.r)
names<-c(0,0,0,0,0);
inp11<-read.fwf("c:\\rc\\out00",c(14,10,8,5,5),head er=FALSE,
sep="\t", as.is=FALSE,skip=0,col.names=names);
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inp10<-read.fwf("c:\\rc\\out01",c(14,10,8,5,5),head er=FALSE,
sep="\t",as.is=FALSE,skip=0,col.names=names);
inp01<-read.fwf("c:\\rc\\out10",c(14,10,8,5,5),head er=FALSE,
sep="\t",as.is=FALSE,skip=0,col.names=names);
inp00<-read.fwf("c:\\rc\\out11",c(14,10,8,5,5),head er=FALSE,
sep="\t",as.is=FALSE,skip=0,col.names=names);
y1<-c(inp11[[1]])
x11<-c(inp11[[2]])
x12<-c(inp11[[3]])
sex11<-c(inp11[[4]])
sk11<-c(inp11[[5]])
y2<-c(inp10[[1]])
x21<-c(inp10[[2]])
x22<-c(inp10[[3]])
sex10<-c(inp10[[4]])
sk10<-c(inp10[[5]])
y3<-c(inp01[[1]])
x31<-c(inp01[[2]])
x32<-c(inp01[[3]])
sex01<-c(inp01[[4]])
sk01<-c(inp01[[5]])
y4<-c(inp00[[1]])
x41<-c(inp00[[2]])
x42<-c(inp00[[3]])
sex00<-c(inp00[[4]])
sk00<-c(inp00[[5]])
np1<-length(y1)
np2<-length(y2)
np3<-length(y3)
np4<-length(y4)
np<-np1+np2+np3+np4
print(c(np1,np2,np3,np4,np))
w1<-np1/np
w2<-np2/np
w3<-np3/np
w4<-np4/np
ns<-0.10 * np
ns1<-ns * np1/np
ns2<-ns * np2/np
ns3<-ns * np3/np
ns4<-ns * np4/np
print(c(ns1,ns2,ns3,ns4,ns))
f1<-(1-ns1/np1)/ns1
f2<-(1-ns2/np2)/ns2
f3<-(1-ns3/np3)/ns3
f4<-(1-ns3/np3)/ns3
t<-0.1
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for (i in 1:25) {
t<-t+0.1
print(c(’t=’,t))
y1<-(y1)ˆt
x11<-(x11)
x12<-(x12)
ry1x11<-cov(y1,x11)/sqrt(var(y1) * var(x11))
ry1x12<-cov(y1,x12)/sqrt(var(y1) * var(x12))
rx11x12<-cov(x11,x12)/sqrt(var(x11) * var(x12))
print(c(’ry1x11=’,ry1x11,’ry1x12=’,ry1x12,’rx11x12= ’,rx11x12))
y2<-(y2)ˆt
x21<-(x21)
x22<-(x22)
ry2x21<-cov(y2,x21)/sqrt(var(y2) * var(x21))
ry2x22<-cov(y2,x22)/sqrt(var(y2) * var(x22))
rx21x22<-cov(x21,x22)/sqrt(var(x21) * var(x22))
print(c(’ry2x21=’,ry2x21,’ry2x22=’,ry2x22,’rx21x22= ’,rx21x22))
y3<-(y3)ˆt
x31<-(x31)
x32<-(x32)
ry3x31<-cov(y3,x31)/sqrt(var(y3) * var(x31))
ry3x32<-cov(y3,x32)/sqrt(var(y3) * var(x32))
rx31x32<-cov(x31,x32)/sqrt(var(x31) * var(x32))
print(c(’ry3x31=’,ry3x31,’ry3x32=’,ry3x32,’rx31x32= ’,rx31x32))
y4<-(y4)ˆt
x41<-(x41)
x42<-(x42)
ry4x41<-cov(y4,x41)/sqrt(var(y4) * var(x41))
ry4x42<-cov(y4,x42)/sqrt(var(y4) * var(x42))
rx41x42<-cov(x41,x42)/sqrt(var(x41) * var(x42))
print(c(’ry4x41=’,ry4x41,’ry4x42=’,ry4x42,’rx41x42= ’,rx41x42))
s02<-f1 * w1ˆ2 * var(y1)+f2 * w2ˆ2 * var(y2)+f3 * w3ˆ2 * var(y3)+
f4 * w4ˆ2 * var(y4)
a<-matrix(0,1,2)
d<-matrix(0,2,2)
a[1]<-f1 * w1ˆ2 * cov(y1,x11)+f2 * w2ˆ2 * cov(y2,x21)+
f3 * w3ˆ2 * cov(y3,x31)+ f4 * w4ˆ2 * cov(y4,x41)
a[2]<-f1 * w1ˆ2 * cov(y1,x12)+f2 * w2ˆ2 * cov(y2,x22)+
f3 * w3ˆ2 * cov(y3,x32)+ f4 * w4ˆ2 * cov(y4,x42)
d[1,1]<-f1 * w1ˆ2 * cov(x11,x11)+f2 * w2ˆ2 * cov(x21,x21)+
f3 * w3ˆ2 * cov(x31,x31)+ f4 * w4ˆ2 * cov(x41,x41)
d[1,2]<-f1 * w1ˆ2 * cov(x11,x12)+f2 * w2ˆ2 * cov(x21,x22)+
f3 * w3ˆ2 * cov(x31,x32)+ f4 * w4ˆ2 * cov(x41,x42)
d[2,1]<-d[1,2]
d[2,2]<-f1 * w1ˆ2 * cov(x12,x12)+f2 * w2ˆ2 * cov(x22,x22)+
f3 * w3ˆ2 * cov(x32,x32)+ f4 * w4ˆ2 * cov(x42,x42)
#print(d)
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#print(a)
invd<-solve(d)
#print(invd)
out<-a% * %invd%* %t(a)
rsq<-out/s02
y<-c(y1,y2,y3,y4)
x1<-c(x11,x21,x31,x41)
x2<-c(x12,x22,x32,x42)
vary<-(1-ns/np) * var(y)/ns
re1<-vary * 100/(s02 * (1-rsq))
print(c("re (post stattification)=",re1))
b<-matrix(0,1,2)
q<-matrix(0,2,2)
b[1]<-cov(y,x1)
b[2]<-cov(y,x2)
q[1,1]<-cov(x1,x1)
q[1,2]<-cov(x1,x2)
q[2,1]<-q[1,2]
q[2,2]<-cov(x2,x2)
#print(q)
#print(b)
invq<-solve(q)
#print(invq)
out1<-b% * %invq%* %t(b)
rsq1<-out1/var(y)
re2<-100/(1-rsq1)
print(c("re (no stratification)=",re2))
}
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