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A note on “Taylor–Couette flow of a generalized second
grade fluid due to a constant couple”
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Abstract. In this brief note, we show that the unsteady flow of a generalized second
grade fluid due to a constant couple, as well as the similar flowof Newtonian and
ordinary second grade fluids, ultimately becomes steady. For this, a new form of the
exact solution for velocity is established. This solution is presented as a sum of the
steady and transient components. The required time to reachthe steady-state is obtained
by graphical illustrations.
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1 Introduction

In a recent paper [1], the exact solutions corresponding to the flow of a generalized second
grade fluid (GSGF) between two infinite coaxial cylinders, the inner one being subject to a
constant couple, have been established using Laplace and finite Hankel transforms. These
solutions, presented under integral and series form in terms of the generalizedGa,b,c(·, t)
functions, have been easy specialized to give the similar solutions for Newtonian and
ordinary second grade fluids performing the same motion. Thelast solutions, presented
as a sum between the steady and transient solutions, describe the motion of the fluid some
time after its initiation. After that time, when the transients disappear, they tend to the
steady solutions which are independent of the initial conditions.

The aim of this note is to show that the unsteady flow of a GSGF, ultimately
becomes steady. In order to prove that, the exact solution corresponding to the velocity
field is also presented as a sum between the steady and transient solutions. Finally, the
required time to reach the steady-state for generalized fluids is determined by graphical
illustration: This time, as it results from Fig. 1, is increasing with respect toβ.
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Fig. 1. The time after which the diagrams ofw(r, t) are almost identical to those of
ws(r), for f = −2, R1 = 0.3, R2 = 0.5, ν = 0.001188, µ = 1.05, α = 0.002,

β = 0.5 and0.9.

2 Statement and solution of the problem

According to equations (8a), (9) and (10) from [1], we must solve the problem
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wherew(r, t) is the velocity of the fluid,ν is the kinematic viscosity,ρ the constant
density,α a material constant andDβ

t (0 ≤ β < 1) is the Riemann–Liouville operator.
Applying the Laplace and finite Hankel transforms to equations (1a)–(1c) and using
equation (16) from [1] we find that
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where rn (n = 1, 2, 3, . . .) are the positive roots of the transcendental equation
B(R2r) = 0, wH(rn, q) is the mixed transform ofw(r, t) and

B(rrn) = J1(rrn)Y2(R1rn) − J2(R1rn)Y1(rrn). (3)

Writing wH(rn, q) under the equivalent forms
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and applying the inverse transforms, we find the velocity field under the simple and
suitable form
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where the generalizedGa,b,c(·, t) functions are defined by [1, Eq. (22)] or [2, Eq. (101)].
Makingβ → 1 into the last relation and using equation (A3) from [1], we recover

the solution (cf. [1, Eq. (36)])
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corresponding to a second grade fluid. Of course, by letting now α → 0 into above
relation, the velocity field for a Newtonian fluid is recovered. Furthermore makingt → ∞
into equation (6), the last term which represents the transient solution tends to zero and
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3 Numerical results and conclusions

The exact solutionw(r, t), as well asw
SG

(r, t), is presented as a sum of two terms. Its
first term, which is independent oft, is just the steady solutionw

s
(r). In order to prove

that the unsteady motion of a GSGF, as well as that of an ordinary fluid becomes steady,
it is sufficient to show that the diagrams ofw(r, t) tend to superpose over those ofw

s
(r)

if t increases. Furthermore, by graphical illustrations, we can also determine the required
time after which the fluid is flowing according to the steady solution. This time, as it
results from Fig. 1, decreases if the fractional parameterβ increases. Consequently, the
required time to reach the steady-state for a generalized fluid, as it was to be expected, is
greater in comparison with an ordinary fluid (10 s for the Newtonian fluid and15 s for a
second grade fluid with the same values of common parameters).
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