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Abstract. We study how predator behavior influences community dynamics of predator-
prey systems. It turns out that predator behavior plays a dominant role in community
dynamics. The hybrid model studied in this paper reveals that period-doubling
and period-doubling reversals can generate short-term recurrent chaos (STRC), which
mimics chaotic dynamics observed in natural populations. STRC manifests itself when
deterministic changes in a system parameter interrupt chaotic behavior at unpredictable
intervals. Numerical results reinforce an earlier suggestion that period-doubling reversals
could control chaotic dynamics in ecological models. In ecological terms, the prey and
intermediate predator populations may go to extinction in the event of a catastrophe.
The top predator is always a survivor. In contrast to this, this is not the case when the
constituent populations are interacting through Holling type II functional response. Even
this top predator can go to extinction in the event of such catastrophes.

Keywords: dynamical complexity, hybrid model, Crowley–Martin functional response,
short-term recurrent chaos, period-doubling bifurcation.

1 Introduction

Understanding ecosystem’s dynamics is one of the most challenging tasks. The biotic part
of the ecosystem comprises living entities known as species. These species are spread
over space. The key to understanding of ecosystem dynamics is population systems. The
populations are groups of individuals of different speciesspread over a given geographical
area. When population densities are high enough, one may regard the interaction of
food chain species as “well-mixed”; at such densities, lawsof chemical kinetics govern
population dynamics. In what follows, we discuss how such population dynamic models
are designed.

The population dynamic models are assembled by combining functional and nume-
rical responses of predators in a suitably chosen scheme. Two such schemes (formulations
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of predator-prey interaction) are in vogue; (i) Volterra scheme (ii) Leslie scheme. The
former assumes that the predator population dies out exponentially in the absence of
its lone food; latter is based on the premise that the per capita growth of the predator
population is limited by the per capita availability of prey. We present a model, which is
designed using Volterra scheme. The model system employs Holling type II functional
response for the first predator. The top predator’s functional response is modeled by
Crowley–Martin (CM) function.

The first predator-dependent model was given by Hassell and Varley [1], who pro-
posed that the attack rate should decrease with increasing predator density. They proposed
the functional response in the form

p(X, Y ) = P
(

X/Y m

)

=
aX

bX + Y m

, m ∈ (0, 1].

Parameterm can be interpreted as an interference coefficient. This viewis also plausible
biologically [2]. Whenm = 0 or Y = 1, the Hassell–Varley functional response reduces
to Holling type II functional response. Holling type II response function assumes that the
predator spends some time searching for prey and some time for processing each captured
prey item. The instantaneous per capita feeding rate of the predator is given by

f1(N, P ) =
aN

1 + bN
,

whereN is the prey density. This response function assumes that there exists no interfer-
ence among individuals of predators and that depletion of prey causes competition among
predators for food [3]. Beddington–DeAngelis (BD) functional response assumes that
individual predator allocates time not only to searching for prey, but also to engaging in
encounters with other predators. The instantaneous per capita feeding rate is given by

f2(N, P ) =
aN

1 + bN + c(P − 1)
,

whereP is the predator’s density andc is a positive constant describing the magnitude of
interference among predators. The underlying assumption of BD model is that handling
and interfering are exclusive activities. The CM model allows for interference among
individuals of predators engaged in handling or searching at a given instant of time. The
CM model adds an additional term in the denominator

f3(N, P ) =
aN

1 + bN + c(P − 1) + bcN(P − 1)
,

(P − 1) is replaced byP when predator’s interference is modeled as continuous variable
or other mechanisms of predator dependence such as prey behavior that depends upon
predator’s density. The basic difference between these twofunctional responses is that
the BD model predicts that the effects of predator interference become negligible at high
prey densities. While the CM model maintains that the interference effects on feeding
rate remain important at all densities.
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Predators behave differently in different situations theyare foraging. In space-
limited situations where predators can move freely but can only encounter prey in a region
of limited size, predator interference effects are produced by spatial mechanisms [2].
Common examples of space-limited situations arise when predators could only encounter
prey at the edge of a prey refuge or if the prey were only exposed to predation in gaps
in protective cover. It is expected that natural food chainscould be better represented
by models, which incorporate both Holling type II and CM functional responses. The
latter assumes that the per capita feeding rate of the predators is a function of predator
interference effects. In this paper, we explore dynamical complexities (attractors and
their basins, bifurcations, etc.) of such a hybrid food chain model. Upadhyay and Naji [4]
studied the local and global stability of this hybrid model system and also established the
persistence criteria.

Hybrid ecological models do not have pristine history. Upadhyay and Rai [5]
proposed and studied a hybrid food chain model to understandwhy deterministic chaos
is rarely observed in natural populations. These models were designed by combining
two formulations of predator-prey dynamics: Volterra and Leslie–Gower schemes. The
former describes the population dynamics of a specialist predator and the latter that of a
generalist predator. The authors have been successful in their attempt to develop a theory
of ecological chaos based on these new classes of models [6, 7]. The present study is
based on numerical computations. Stability analyses can beperformed for simple sys-
tems of differential equations describing trophic structures. It is impossible to determine
analytically the nature of unstable dynamics (regular vs chaotic oscillations). Recently,
Gross et al. [8] proposed a method to investigate the potential for chaotic dynamics in
general food chain models of variable length. It would be beneficial if this approach,
based on bifurcations of higher co-dimension as indicatorsof chaos, could be extended to
food web architectures.

2 Model system

We consider the following system as a model representing a tritrophic food chain. The
model employs both Holling type II and CM type of functional responses. It is described
by following system of differential equation, whereX(T ) is the population density of the
lowest trophic level species (prey) at timeT . Y (T ) is the population density of the middle
trophic level species (intermediate predator) at timeT andZ(T ) is the population density
of highest trophic level species (top predator) at timeT . The intermediate predatorY
feeds on the preyX according to the Holling type II functional response, however the top
predator (Z) feeding rate onY varies according to the CM type functional response [4].

dX

dT
= a1X

(

1 −
X

K

)

−
wXY

X + D
, (1a)

dY

dT
= −a2Y +

w1XY

X + D
−

w2Y Z

1 + dY + bZ + bdY Z
, (1b)

dZ

dT
= −a3Z +

w3Y Z

1 + dY + bZ + bdY Z
. (1c)
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The preyX grows with intrinsic per capita growth ratea1 and carrying capacity
K in the absence of predation.D measures the extent to which the environment pro-
vides protection to preyX . w is the maximum value which per capita reduction rate
of X can attain,w1/w represents the conversion rate of an eaten prey. The constants
w2, w3, b, andd are the saturating CM type functional response parameters,in which
b measures the magnitude of interference among predator. Further,a2 is the death rate
of the intermediate predator anda3 is the death rate of the top predator. All the model
parameters are assuming only positive values. Obviously, model system (1) is a three
species simple food chain involving a hybrid type of prey-dependent and a predator-
dependent functional response.

The model system is rendered dimensionless using the following variables and
parameters:

t = a1T, x =
X

K
, y =

wY

a1K
, z =

ww2Z

a2
1dK

,

w4 =
D

K
, w5 =

a2

a1

, w6 =
w1

a1

, w7 =
w3

a1d
, (2)

w8 =
a1b

w2

, w9 =
a2
1bdK

ww2

, w10 =
w

a2
1dK

, w11 =
a3

a1

.

The model equations in dimensionless form are:

dx

dt
= x

[

(1 − x) −
y

x + w4

]

= xg1(x, y, z), (3a)

dy

dt
= y

[

−w5 +
w6x

x + w4

−
z

y + (w8 + w9y)z + w10

]

= yg2(x, y, z), (3b)

dz

dt
= z

[

−w11 +
w7y

y + (w8 + w9y)z + w10

]

= zg3(x, y, z). (3c)

Clearly, the non-dimensional system (3) has eight parameters in all. Obviously the right
hand sides of system (3) are continuous smooth functions onR3

+ = {(x, y, z) ∈ R3:
x ≥ 0, y ≥ 0, z ≥ 0}. Indeed, they are Lipschizian onR3

+ and then the solution of the
system (3) exists and is unique.

3 Methodology

Computer simulations were performed on MATLAB 7.0. Model system (3a)–(3c) is inte-
grated numerically using the fourth-order Runge–Kutta method with time step size 0.001.
We explore dynamical complexities of the proposed model system in two-dimensional
parameter spaces. Bifurcation diagrams are computed by treating crucial parameters
of the model system as bifurcation parameters. Non-linear dynamical systems exhibit
dynamical complexities, which are either of deterministicor of stochastic origin. 2D scans
help us to examine the former and the latter which are investigated by computing basin
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boundary diagrams. We also generate phase portraits and time series of the model system
for certain parameter sets.

We now mention briefly how basin boundary calculations are performed. First, we
define thebasin of infinity. Let SD denote the diameter of the computer screen. It may
be possible that the point at infinity is an attractor. Since we cannot examine rigorously
whether the trajectory of a point goes to infinity, we conclude that a trajectory diverges
or is diverging if it leaves the computer screen area, that is, it goes to left or to right of
the screen by more than oneSD width of the screen, or goes above or below the screen
area by more than oneSD screen height. The basin of infinity is the set of initial points
whose trajectories are diverging.Maryland Chaos grouphas done pioneering work in
this area and have developed a tool to calculate basin boundary structures. We have used
the research version of the software which accompanied the book entitled “Dynamics:
Numerical Explorations” authored by Nusse and Yorke [9]. Wehave used the BAS (basins
and attractors structure) method for all the computations.This method divides the basin
into the following two groups: (i) The basin of attractionA whose points will be plotted,
(ii) The basinB whose points will not be plotted. A generalized attractor isthe union
of finitely many attractors, and a generalized basin is the basin of a generalized attractor.
The BAS routine does not plot the bowl lying outside. The strategy is to test each grid
point which is the centre of the grid box. In the event that thecentre of a grid box is in
basinA, then the same is plotted (colored). In the default case, basin A is the set of points
whose trajectories are diverging, while basinB is empty. Therefore, BAS routine will plot
a grid box if the trajectory of its centre is diverging. The important aspects of the basin
boundary calculations are to specify the basinsA, B and to find the radiusRA, where
RA stands for radius of attraction for storage vectors which help to specify the basinsA
andB. The value ofRA will be different for different dynamical systems. It must be set
appropriately in order to avoid any misleading basin picture.

4 Numerical simulations

In order to understand the dynamics of the model system (3), we turn to numerical
simulations. It is observed that the model system (3a)–(3c)has a chaotic solution for
the following set of parameter values:

w4 = 0.25, w5 = 0.25, w6 = 0.8, w7 = 0.25,
(4)

w8 = 0.01, w9 = 0.1, w10 = 0.28, w11 = 0.035.

The parameter values are chosen on the basis of our previous studies [4]. Time series
corresponding to the chaotic attractor after transients were died out were recorded for
a typical set of parameter values and are presented in Fig. 1.The chaotic attractor for
the model system (3a)–(3c) is presented in Fig. 1(a). The time series representations for
chaotic dynamics in the model system are presented in Figs. 1(b)–1(d) which shows that
while populationsx andy reach extinction-sized densities, the population densityof the
top-predator,z does not.
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(a) (b)

(c) (d)

Fig. 1. (a) Chaotic attractor for the system (3a)–(3c); (b) temporal evolution (t vs x)
for the chaotic attractor for the system (3a)–(3c); (c) temporal evolution (t vsy) for the
chaotic attractor for the system (3a)–(3c); (d) temporal evolution (t vsz) for the chaotic

attractor for the system (3a)–(3c).

Extensive numerical simulations are carried out for various values of parameters
and for different sets of initial conditions. Two differentcontrol parameters are discussed,
the death rate of intermediate predator scaled to per-capita reproduction rate of its prey,
w5 and scaled death rate of top predatorw11. These values are selected after a thorough
study of the asymptotic dynamics of Kolmogorov subsystem, in particular the system
parameters are chosen in such a way that subsystems perform their journies on stable
limit cycles. The bifurcation diagram of system (3) for the successive maxima of the top
predator populationz as a function ofw11 in the range0 < w11 < 0.1 with step size
0.01, is plotted in Fig. 2. According to this bifurcation diagramthe solution of system
(3) has different type of attracting sets in the range0 < w11 < 0.055 including periodic
and chaotic ones. However, asw11 increases further0.055 < w11 < 0.1 a stable limit
cycle is observed. Moreover, forw11 > 0.1, the top predator populationz declines and
reaches to extinction. It is evident from Fig. 2 that PD and PDR bifurcations take place
when parameterw11 is decreased. Deterministic chaos shows up in(0.01, 0.02).
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Fig. 2. Bifurcation diagram of the system (3), the successive maxima ofz as a function
of w11 is plotted in the range0 < w11 < 0.1 for the parameters given in equation (4).

The magnified bifurcation diagrams of Fig. 2 are blown up in Fig. 3(a) and 3(b).
A typical long-term attracting set of system (3) is drawn in Figs. 4(a)–4(d). The blown up
bifurcation diagram Fig. 3, and the attracting sets given inFig. 4 show clearly the route
to chaos through the cascade of periodic-doubling bifurcations. In fact for the range of
0 < w11 < 0.055, the solution of system (3) has rich dynamics generated by period-
doubling and period-halving bifurcations. For the same parameters given by equation (4),
if we fix w5 = 0.25, the strange chaotic attractor given in Fig. 4(d), revealedvia a period-
doubling cascade the diagram of which is given by Fig. 3(a). This phenomenon of period-
doubling can suddenly break down and reverse, giving rise toperiod-halving bifurcations
(cf. Fig. 3(b)) leading to stable limit cycles.

(a) (b)

Fig. 3. (a) Magnified bifurcation diagram of Fig. 2 in the range 0.02 < w11 < 0.035;
(b) magnified bifurcation diagram of Fig. 2 in the range0.035 < w11 < 0.045.
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(a) (b)

(c) (d)

Fig. 4. Phase portraits inXY Z plane for system (3) showing the transition from chaos
to limit cycle and to strange attractor via period halving and period-doubling route:
(a) chaos atw11 = 0.01, (b) period-2 atw11 = 0.022, (c) period-4 atw11 = 0.025,

(d) chaos atw11 = 0.035.

It is observed that forw11 = 0.01, 0.022, 0.025 and0.035 the solution of system (3)
approaches to chaotic attractor, period-2 attractor, period-4 attractor and chaotic attractor
respectively.

Two bifurcation diagrams of system (3) for the successive maxima of the interme-
diate predator populationy as a function of scaled death rate of intermediate predatorw5

in the range0.15 < w5 < 0.5, keeping other parameters as given in equation (4) with
w11 = 0.03, are drawn in Fig. 5(a). The bifurcation diagram given in Fig. 5(a) shows
that the solution of system (3) is very sensitive to the deathrate of intermediate predator
in the range0.18 < w5 < 0.44. This figure shows clearly the presence of the cascade of
periodic doubling bifurcations leading to chaos.

Similar bifurcation diagrams are drawn in Fig. 5(b), as those in Fig. 5(a), for the
parameter values given in equation (4) with0.25 < w5 < 0.5 andw11 = 0.06. Although
the food chain system has rich dynamics including chaos, an increase in the death ratew11

from0.03 to 0.06, causes the reduction in the zones of chaos and extension in the periodic
windows in the range0.28 < w5 < 0.44. Finally, from Figs. 5(a) and 5(b), it is easy to
check that forw5 = 0.375 with the rest of parameters given by equation (4), the solution
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of system (3) approach to chaotic attractor atw11 = 0.03 while it approaches to a periodic
attractor forw11 = 0.06. Fig. 5(a) shows that PD bifurcations appear as parameterw5

is increased. The system displays chaotic dynamics when this parameter takes a value
more than0.3. The system does not support either regular or chaotic dynamics beyond
0.35 and below0.4 (cf. Fig. 5(b)). Fig. 6(a) shows that the system dynamics shuttles
between regular and chaotic motion. This shuttling is caused by changes in either of the
two parameters (w5 andw11).

(a) (b)

Fig. 5. Bifurcation diagram of the system (3). The successive maxima ofy as a
function of w5 for the parameters given in equation (4) with (a)w11 = 0.03 and

0.15 < w5 < 0.5; (b) w11 = 0.06 and0.25 < w5 < 0.5.

The size of the chaotic attractor increases with the decrease in parametersw5 and
w11. The basin boundary of this chaotic attractor with that of the attractor shown in blue
is complex. The other attractors have basins riddled with basins of several co-existing
attractors. The complexity of the basin boundary structuredecreases as one move to the
bottom-left point in the 2D parameter scan (Fig. 6(a)). Fig.6(b) suggests that a change in
parameterw5 affects a transition in the dynamical behavior of the system. Basin bound-
aries shown in Fig. 8 suggest that the system dynamics is sensitive to changes in initial
conditions. This implies that stochastic external influences dictate the dynamical behavior
of this hybrid system. Since chaotic dynamics exists in a narrow strip (cf. Fig. 6(c)),
w5 andw6 are two sensitive parameters of this model system. The size of the chaotic
attractor decreases when values of both the parameters slide down. Number of co-existing
attractors is diminished for the top-middle point (Fig. 9(b)). The dynamical behavior of
this system under the influence of exogenous factors may be unpredictable as intertwined
basin boundaries are common.

We also present 2D scan diagrams in various parameter spaces(see Figs. 6(a)–6(c))
and the basin boundary calculations for chaotic attractorsof the model system (3) with
respect to various parameter spaces (see Figs. 7–9). In mostof the figures we have
presented theyz-view and in some figures thexz-view of the basin boundary structure of
chaotic attractor (shown in yellow color). The basin boundary calculations are performed
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using the basins and attractors structure (BAS) routine developed byMaryland Chaos
group. We have used the dynamics software package of Nusse and Yorke [9] for all the
basin boundary calculations. It is clear from these figures that basin boundaries of the
chaotic attractor are fractal which show the dynamical complexities of the hybrid model
system (3). It is also seen that basin of attraction of different attractors are intermixed. The
encroachment into the basin of chaotic attractor by basin ofattractor at infinity (shown
in green color) can be observed in Figs. 7, 8 and 9. It appears between the first attractor
(shown in green color) and its basin (shown in sky blue color). The interesting feature in
the model system (3) is that the riddled basin with fractal boundary lies in the basin of
repeller which has many rectangular and square holes created by chaotic attractor. This
complicated basin boundary structure suggests that the system dynamics may have loss
of even qualitative predictability in the case of external disturbances.

(a) (b)

                               (c)

Fig. 6. 2D scan diagram of the system (3) in (a)(w5, w11), (b) (w5, w4), (c) (w5, w6)
parameter space. The parameter values of the other parameter are given in equation (4)

except forw11 = 0.07.

Distribution of points in the parameter space (c.f. Fig. 6(a)) suggests that for model
system (3) displays STRC. It is characterized by chaotic bursts repeated at unpredictable
intervals. The reason for existence of chaos at discrete isolated parameter values is that
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chaotic dynamics is abruptly terminated by period-doubling reversals. Figs. 7(a)–7(c)
show that attractors with different geometries coexist at the same set of parameter values.
This is known asmulti-stability in non-linear dynamics. Basin boundaries are riddled.
This suggests that the system loses qualitative predictability if it interacts with external
stochastic influences.

(a) (b)

(c)

Fig. 7. Basin boundary structure for system (3) computed at different points in Fig. 6(a)
for the chaotic attractor at (a) the top-right corner point(w5 = 0.4, w11 = 0.1) in
the domain−5 ≤ y, z ≤ 7; (b) the middle-top point(w5 = 0.3, w11 = 0.06) in
the domain−5 ≤ y ≤ 5.63, −5 ≤ z ≤ 7; (c) the bottom-left corner point(w5 =
0.2, w11 = 0.004) in the domain−5 ≤ y ≤ 5.323, −6 ≤ z ≤ 7. The meanings of
the different colors are as follows: Green: color of first attractor, Sky Blue: basin of
first attractor, Red: color of second attractor, Maroon: basin of second attractor, Brown:
color of third attractor, White: basin of third attractor, Dark Blue: color of points that

diverges from the screen area, Yellow: color of the chaotic attractor.
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Chaotic dynamics is confined to a wedge-shaped region in the parameter space
(cf. Fig. 6(c)). This is certainly not a manifestation of STRC. The robust chaos is
localized to a narrow region of the parameter space. The system switches to other kinds
of attractors (mainly periodic) once the parameter values move outside the narrow region.
Figs. 9(a) and 9(c) present more complex basin boundary structures. The complexity of
the basin boundaries is reduced at the parameter value, which lies in the middle of the
wedge shaped region. External stochastic perturbations would have reduced effect on the
system’s dynamics in this case.

(a) (b)

(c)

Fig. 8. Basin boundary structure for system (3) computed at different points in Fig. 6(b)
for the chaotic attractor at (a) the bottom-right corner point (w5 = 0.4, w4 = 0.3) in
the domain−5 ≤ y ≤ 6.2, −5 ≤ z ≤ 6.2; (b) the middle-top point(w5 = 0.25, w4 =
1.6) in the domain−2 ≤ y ≤ 3, −3 ≤ z ≤ 2; (c) the bottom-left corner point
(w5 = 0.1, w4 = 1.6) in the domain−3 ≤ y, z ≤ 3. The meanings of the different

colors are same as given in Fig. 7.
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(a) (b)

(c)

Fig. 9. Basin boundary structure for system (3) computed at different points in Fig. 6(c)
for the chaotic attractor at (a) top-right corner point(w5 = 1, w6 = 1.94) in the
domain−1 ≤ y, z ≤ 1; (b) the middle-top point(w5 = 0.55, w6 = 1.15) in the
domain−2 ≤ y, z ≤ 2; (c) the bottom-left corner point(w5 = 0.07, w6 = 0.2) in
the domain−3 ≤ y, z ≤ 3. The meanings of the different colors are same as given in

Fig. 7.

5 Discussion and conclusion

In an attempt to understand difficulties in detecting chaos in natural populations, present
authors have proposed a theory [6, 7]. These authors discovered that deterministic chaos
manifests itself as short-term recurrent chaos. The chaotic behavior is interrupted by
non-chaotic dynamics at unpredictable intervals and we thought that a special kind of
bifurcation process was responsible for STRC [10]. Period-doubling (PD) and period-
doubling reversing (PDR) bifurcations generate and terminate chaotic dynamics in this
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system (cf. Figs. 5(a) and 5(b)). Fig. 5(a) shows that sustained chaos exists in the range
w5 ∈ (0.31, 0.39). Short-term recurrent chaos exists in the range(0.225, 0.255). Fig. 5(b)
establishes that PD and PDR bifurcations are responsible for STRC. PD bifurcations
initiate chaos and period reversing bifurcations terminate it in ecological time. It is
surprising that PD and PDR are capable of generating this behavior for realistic parameter
values. The results reinforce an earlier suggestion that period-doubling reversals could
control chaotic dynamics in ecological models. Stone [11] has studied dynamics of
logistic map in the presence of immigration and found that period-doubling reversals are
responsible for suppression of chaotic dynamics. Fig. 7 suggests that chaotic dynamics is
sensitive to value of the ratio of per capita death rate of theintermediate predator to the
value of the per capita growth rate of the prey. Figs. 7(b) and7(c) present less complex
basin boundary structure. Figs. 7(a)–7(c) give an idea of complexity of basin boundaries
of different attractors. Basin boundaries are riddled and interwoven. This gives rise to
unpredictability in system’s dynamics. Basin Boundaries presented in Figs. 7–9 confirm
that a dominant source of unpredictability in this model system is external influences.

In [7], we have studied the model system in which both the intermediate and top
predators have Holling type II functional response. The chaotic dynamics is sensitive
to changes in both the parameters: per capita death rate of the intermediate predator
and the per capita intrinsic growth and death rate of the top predator. In case of the
present model system in which the top predator has a CM functional response, the chaotic
dynamics is distributed over larger regions of the parameter spaces (Figs. 6(a)–6(c)). In
these figures the involved system parameters have the following meanings:w5 is the
ratio of the specific death rate of the intermediate predatorto the per capita rate of
the self-reproduction of the prey.w4 is the ratio of the half-saturation constant to the
carrying capacity of the environment for the prey. In ecological terms, chaotic dynamics
for the present system means that prey and intermediate predator populations may go to
extinction in the event of a catastrophe. The top predatorz is always a survivor (cf. Fig. 1).
In contrast to this, this is not the case when the constituentpopulations are interacting
through Holling type II functional response. Even this predator can go to extinction in the
event of such catastrophes.

The present study suggests that deterministic changes in system parameters can
cause transitions between ordered and chaotic system states (Figs. 6(a)–6(c)). Ordered
states are represented by stable foci and stable limit cycleattractors. The ratio of the per
capita death rate of the intermediate predator to per capitagrowth rate of its prey is a
crucial parameter of this model system. Another sensitive parameter is the ratio of per
capita death rate of the top-predator to per capita growth rate of the prey. Another source
of dynamical complexity is abrupt changes in initial conditions of the system, which might
be brought in by ecological catastrophes (e.g., forest fires, flood, drought, etc.).

Non-linear dynamics and disturbance ecology have unraveled a suite of behaviors
including multiple equilibria, basins of attraction and transient dynamical behavior. An-
alyzing a data set accumulated over a period of twelve years subsequent to catastrophic
disturbance of a rain forest located on the western seaboardof Nicaragua, Vandermeer
et al. [12] concluded the existence of multiple basins of attraction and non- equilibrium
community structure in this forest system. The post-succession dynamics of a forest can
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be studied quantitatively. One measure which is particularly useful in disturbance ecology
is resilience.Resilience of a system consists in the magnitude of a perturbation the system
can receive without changing its structure and function.
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