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Abstract. Estimators of the finite population covariance with severalsystems of weights
are considered. New calibrated estimators of the finite population covariance (variance)
are derived, using two and three weighting systems that are defined by various calibration
equations and loss functions. The expressions of approximate variance for some of these
estimators are presented. The estimators derived are compared by simulation. Finally,
it is shown how the calibrated estimators of the covariance may be applied in regression
estimation of the finite population total.
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1 Introduction

Survey statisticians are always concerned with the improvement of methods for estimation
of the finite population total, mean, proportion and other parameters. Auxiliary informa-
tion may be used for that purpose. The estimators that use auxiliary variables are often
much more accurate than the standard ones. The calibrated estimators belong to this class
of estimators. The idea of the calibration technique for estimating the population totals is
presented in [1].

The estimation of more complicated parameters using the calibration methods is
not widely studied in the literature. The calibrated estimator of the ratio of two totals
is considered by Plikusas [2], Krapavickaitė and Plikusas[3]. Calibration estimation for
quantiles is studied by Harms and Duchesne [4], Rueda et al. [5]. Sitter and Wu [6]
proposed a model-calibrated method to estimate the quadratic finite population functions.
Singh et al. [7] applied the calibration technique in the estimation of variance of the
Horvitz–Thompson estimator.
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A. Plikusas, D. Pumputis

Some calibrated estimators of the finite population covariance are introduced in the
paper [8]. They use one weighting system, which is defined using various calibration
equations and loss functions. In the following section, we recall these estimators and
provide some new estimators with several systems of weights.

An overview of the calibration theory and application of thecalibrated estimators
in survey practice is given by Särndal in [9].

2 Calibrated estimators of the finite population covariance

2.1 Estimators with one system of weights

Consider a finite populationU = {u1, u2, . . . , uN} of N elements. Without loss of
generality, we can assumeU = {1, 2, . . . , N}. Let y and z be two study variables
defined on the populationU , taking real nonnegative valuesy1, . . . , yN andz1, . . . , zN ,
respectively. The values of the variablesy andz are not known.

Let the covariance

Cov(y, z) =
1

N − 1

N∑

k=1

(
yk −

1

N

N∑

k=1

yk

)(
zk −

1

N

N∑

k=1

zk

)

be the parameter of interest.
Denote bys , s ⊂ U , a probability sample set drawn from the populationU , byπk –

the inclusion probability of elementk into the samples , and bydk = 1
πk

– sample design
weight of elementk, k = 1, 2, . . . , N .

In the case of none auxiliary information, we can estimate the population covariance
using the well-known only design based estimator

Ĉov(y, z) =
1

N − 1

∑

k∈s

dk

(
yk −

1

N

∑

k∈s

dkyk

)(
zk −

1

N

∑

k∈s

dkzk

)
. (1)

It is considered in Särndal, Swensson and Wretman’s book [10, p. 187].
The weightsdk of estimator (1) may be modified using auxiliary variables and

calibration approach to obtain estimators with smaller variance. Denote the auxiliary
variables taking valuesa1, . . . , aN andb1, . . . , bN by a andb. It should be noted that, de-
pending on the calibration equations used, in addition to the values of auxiliary variables
for sampled elements, only the covariance of auxiliary variables, or covariance and totals
of these auxiliary variables are needed for the construction of calibrated estimators. In the
paper [8], we apply the calibration technique to modify the design weightsdk, provided
that the auxiliary variables are given. We consider here thecalibrated estimator of the
covariance of the following shape

Ĉov1w(y, z) =
1

N − 1

∑

k∈s

wk

(
yk −

1

N

∑

k∈s

wkyk

)(
zk −

1

N

∑

k∈s

wkzk

)
. (2)
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Estimation of the finite population covariance using calibration

The new (calibrated) weightswk are defined under the following conditions:

a) The weightswk satisfy some calibration equation;

b) The distance between the weightsdk and wk is minimal according to some loss
functionL(w, d).

Conditions a) and b) can be specified in different ways. The following calibration
equations are used in the paper:

I.
1

N − 1

∑

k∈s

wk(ak − µ̂aw)(bk − µ̂bw) = Cov(a, b), (3)

µ̂aw =
1

N

∑

k∈s

wkak, µ̂bw =
1

N

∑

k∈s

wkbk.

II.
1

N − 1

∑

k∈s

wk(ak − µa)(bk − µb) = Cov(a, b), (4)

µa =
1

N

N∑

k=1

ak, µb =
1

N

N∑

k=1

bk,

III.
∑

k∈s

wkak =

N∑

k=1

ak,
∑

k∈s

wkbk =

N∑

k=1

bk. (5)

The loss function

L1(w, d) =
∑

k∈s

(wk − dk)2

dkqk

(6)

and some other ones are applied in the final specification of calibrated weightswk. Here
qk, k ∈ U , are free additional positive constants or additional weights. The calibrated
estimators can be modified by choosingqk.

The calibrated estimators with one weighting system are denoted byĈov
(non)
1w (y, z),

Ĉov
(lin)
1w (y, z), Ĉov

(tot)
1w (y, z), depending on the calibration equation used: (3), (4), (5).

For example,̂Cov
(non)
1w (y, z) denotes the estimator whose weightswk satisfy the calibra-

tion equation (3) and minimize the loss function (6).
Next, we extend the definitions, given in this subsection, tothe case of multiple

weighting systems.

2.2 Estimators with several systems of weights

Let us consider some other, more general estimators of the finite population covariance,
which are constructed using several weighting systems. Thenew calibrated estimators of
the covariance are of the following shape:

Ĉovmw(y, z) =
1

N − 1

∑

k∈s

w
(1)
k

(
yk −

1

N

∑

l∈s

w
(2)
l yl

)(
zk −

1

N

∑

l∈s

w
(3)
l zl

)
. (7)
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Several calibration equations may be used for definition of the calibrated weights
w

(1)
k , w

(2)
k , w

(3)
k . Let us consider some of them.

Case 1.The nonlinear calibration equation

Ĉovmw(a, b) = Cov(a, b). (8)

Case 2.The systems of weightsw(1)
k , w

(2)
k , w

(3)
k are defined by calibration equations:

1

N − 1

∑

k∈s

w
(1)
k (ak − µa)(bk − µb) = Cov(a, b), (9)

∑

k∈s

w
(2)
k ak =

N∑

k=1

ak,
∑

k∈s

w
(3)
k bk =

N∑

k=1

bk. (10)

Case 3.The first system of weightsw(1)
k is defined by the nonlinear calibration equation

(3). Calibration equations (10) define the other two systemsof the weightsw(2)
k andw

(3)
k .

Case 4.We can consider the estimator of covariance which uses two systems of weights:

Ĉovmw(y, z) =
1

N − 1

∑

k∈s

w
(1)
k

(
yk −

1

N

∑

l∈s

w
(2)
l yl

)(
zk −

1

N

∑

l∈s

w
(2)
l zl

)
. (11)

The first system of weightsw(1)
k is defined by equation (9), whereas the second

systemw
(2)
k satisfies the following equations

∑

k∈s

w
(2)
k ak =

N∑

k=1

ak,
∑

k∈s

w
(2)
k bk =

N∑

k=1

bk. (12)

Case 5. We can use another combination of two systems of calibrated weights: the first
onew

(1)
k satisfies nonlinear calibration equation (3), where the systemw

(2)
k is defined by

(12).

Case 6. The system of weightsw(1)
k satisfies equation (9), whereas the systemw

(2)
k is

obtained using nonlinear calibration equation (3).
The following loss function may be used for final definition ofcalibrated weights:

L(w, d) =
∑

i∈r

∑

k∈s

(w
(i)
k − dk)2

dk qk

, (13)

wherer = {1, 2, 3}, if the estimators with three weighting systems are considered, and
r = {1, 2}, in the case of two weighting systems.
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Estimation of the finite population covariance using calibration

The first case is most complicated analytically, the expressions for the approximate
iterative solutions of calibration equation (8) are cumbersome.

The following proposition defines the weightsw
(1)
k , w

(2)
k , w

(3)
k of estimator (7) for

all the six cases mentioned in this subsection.
Let us introduce some additional notation:

µ̂(i)
aw =

1

N

∑

k∈s

w
(i)
k ak, µ̂

(i)
bw =

1

N

∑

k∈s

w
(i)
k bk, N̂ (i)

w =
∑

k∈s

w
(i)
k , i = 1, 2, 3.

Proposition 1. The weightsw(i)
k , k ∈ s , i = 1, 2, 3, which satisfy calibration equation(8)

and minimize loss function(13), satisfy the equationw(i)
k = dku

(i)
k . Hereu

(i)
k = 1 +

λqkc
(i)
k ,

c
(1)
k =

(
ak − µ̂(2)

aw

)(
bk − µ̂

(3)
bw

)
,

c
(2)
k = −ak

(
µ̂

(1)
bw −

N̂
(1)
w

N
µ̂

(3)
bw

)
,

c
(3)
k = −bk

(
µ̂(1)

aw −
N̂

(1)
w

N
µ̂(2)

aw

)
,

λ = Â

(∑

k∈s

dkqk

(
akbkc

(1)
k + c

(2)
k − c

(3)
k

))−1

,

Â = (N − 1)Cov(a, b) + Nµ̂
(3)
bw

(
µ̂(1)

aw −
N̂

(1)
w

N
µ̂(2)

aw

)

+ Nµ̂(2)
awµ̂

(1)
bw + N̂ (2)

w − N̂ (3)
w −

∑

k∈s

dkakbk.

In Cases2, 4,and6, the first system of weightsw(1)
k is defined by the equations:

w
(1)
k = dk

(
1 + qk

(
N∑

l=1

cl −
∑

l∈s

dlcl

)(∑

l∈s

dlqlc
2
l

)−1

ck

)
, (14)

whereck = (ak − µa)(bk − µb).

The equations

w
(i)
k = dk

(
1 + Â

(∑

l∈s

dlqlflalbl

)−1

qkfk

)

define the first system of weightsw
(1)
k in Cases3 and 5, and the systemw(2)

k in Case6.
Here

Â = (N − 1)Cov(a, b) + N

(
2 −

N̂
(i)
w

N

)
µ̂(i)

awµ̂
(i)
bw −

∑

k∈s

dkakbk,
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fk = (ak − µ̂(i)
aw)(bk − µ̂

(i)
bw) −

(
1 −

N̂
(i)
w

N

)(
µ̂

(i)
aw

ak

+
µ̂

(i)
bw

bk

)
akbk, i = 1, 2, 3.

In Cases2 and3, the system of weightsw(2)
k is defined by

w
(2)
k = dk

(
1 + qk

(
N∑

l=1

al −
∑

l∈s

dlal

)(∑

l∈s

dlqla
2
l

)−1

ak

)
, (15)

and the systemw(3)
k is defined by the same equation(15)by replacingak with bk.

In Cases4 and5, the second system of weightsw
(2)
k satisfies these equations:

w
(2)
k = dk

(
1 + qk

(
N∑

l=1

x

′

l −
∑

l∈s

dlx
′

l

)(∑

l∈s

dlqlxlx
′

l

)−1

xk

)
,

wherexk = (ak, bk)
′

.

Proof. Let us take the loss function (13) and calibration equation (8), and define the
Lagrange function

Λ =
∑

i∈{1,2,3}

∑

k∈s

(w
(i)
k − dk)2

dk qk

− λ

(
1

N − 1

∑

k∈s

w
(1)
k

(
ak − µ̂(2)

aw

)(
bk − µ̂

(3)
bw

)
− Cov(a, b)

)
.

By solving the equations

∂Λ

∂w
(i)
k

= 0, i = 1, 2, 3, k ∈ s ,

we get

w
(i)
k = dk

(
1 +

1

2(N − 1)
λqkc

(i)
k

)
. (16)

Hence

w
(1)
k akbk + w

(2)
k − w

(3)
k

= dk

(
akbk +

1

2(N − 1)
λqk(akbkc

(1)
k + c

(2)
k − c

(3)
k )

)
. (17)

Then, summing derived equations (17) over the sample elements and taking into account
the calibration equation (8), we get the expression forλ. Inserting this expression into
(16), we get iterative equations forw

(i)
k , i = 1, 2, 3.

The proof for other cases of calibration equations and the loss function is similar.
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The calibrated estimators of covariance, corresponding tothe cases of calibration
equations mentioned above, are denoted bŷCov

(i)
mw(y, z), i = 1, 2, 3, 4, 5, 6. For exam-

ple, Ĉov
(1)
mw(y, z) denotes the estimator which uses three weighting systems that satisfy

calibration equation (8) and minimize loss function (13).

3 Estimation of variance

The presented calibrated estimators of the covariance are complicated enough, there is no
explicit expression for the calibrated weights in some cases.

Provided calibration equations (4), (5) are used for the definition of calibrated
weights, we get the explicit solution of the calibration problem and the Taylor lineariza-
tion technique may be applied to derive an approximate variance of estimators. The
following proposition gives an approximate variance for the estimator̂Cov

(4)
mw(y, z).

Proposition 2. The approximate variance of the estimator

Ĉov
(4)

mw(y, z) =
1

N − 1

∑

k∈s

w
(1)
k

(
yk−

1

N

∑

i∈s

w
(2)
i yi

)(
zk−

1

N

∑

i∈s

w
(2)
i zi

)
, (18)

the weightsw(1)
k , w(2)

k of which satisfy the corresponding equations(9), (12)and minimize
the loss functionL(w, d) defined by equation(13), is given by

AVar
(
Ĉov

(4)

mw(y, z)
)

=
1

(N − 1)2

N∑

k=1

N∑

l=1

πkl − πkπl

πkπl

ekel,

whereπkl, k, l = 1, . . . , N , is the inclusion probability of the elementsk and l into the
sample,

ek = (yk − µy)(zk − µz) + Bck,

ck = (ak − µa)(bk − µb), µy =
1

N

N∑

k=1

yk, µz =
1

N

N∑

k=1

zk,

B = t−1
qcc(−tqcyz + µztqyc + µytqcz − µyµztqc),

tqcc =

N∑

k=1

qkc2
k, tqcyz =

N∑

k=1

qkckykzk, tqcy =

N∑

k=1

qkckyk,

tqcz =

N∑

k=1

qkckzk, tqc =

N∑

k=1

qkck.
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Proof. Estimator (18) can be expressed in the following form

Ĉov
(4)

mw(y, z) =
1

N − 1

(∑

k∈s

w
(1)
k ykzk −

1

N

∑

k∈s

w
(1)
k yk

∑

k∈s

w
(2)
k zk

−
1

N

∑

k∈s

w
(1)
k zk

∑

k∈s

w
(2)
k yk

+
1

N2

∑

k∈s

w
(1)
k

∑

k∈s

w
(2)
k yk

∑

k∈s

w
(2)
k zk

)
. (19)

It follows from Proposition 1 that the weightsw(1)
k , w

(2)
k that satisfy the correspon-

ding equations (9), (12) and minimize the loss functionL(w, d), are given by

w
(1)
k = dk

(
1 +

(
N∑

l=1

cl −
∑

l∈s

dlcl

)(∑

l∈s

dlqlc
2
l

)−1

qkck

)
, (20)

w
(2)
k = dk

(
1 +

(
N∑

l=1

x
′

l −
∑

l∈s

dlx
′

l

)(∑

l∈s

dlqlxlx
′

l

)−1

qkxk

)
, (21)

wherexl = (al, bl)
′.

Inserting expressions (20), (21) of weights into (19) we find:

Ĉov
(4)

mw(y, z)

=
1

N − 1

(
t̂yz +

(
tc − t̂c

)
t̂−1
qcct̂qcyz

−
1

N

(
t̂y +

(
tc − t̂c

)
t̂−1
qcct̂qcy

)(
t̂z +

(
t
′

x − t̂
′

x

)
Â

−1

qx t̂qzx
)

−
1

N

(
t̂z +

(
tc − t̂c

)
t̂−1
qcct̂qcz

)(
t̂y + (t

′

x − t̂
′

x)Â
−1

qx t̂qyx
)

+
1

N2

(
N̂ +

(
tc − t̂c

)
t̂−1
qcct̂qc

)(
t̂y +

(
t
′

x − t̂
′

x

)
Â

−1

qx t̂qyx
)

×
(
t̂z +

(
t
′

x − t̂
′

x

)
Â

−1

qx t̂qzx
))

= f
(
t̂yz, t̂c, t̂qcc, t̂qcyz, t̂y, t̂qyc, t̂z, t̂x, Âqx, t̂qzx, t̂qcz, t̂qyx, N̂ , t̂qc

)
. (22)

Here

t̂yz =
∑

k∈s

dkykzk, tc =

N∑

k=1

ck, t̂c =
∑

k∈s

dkck, t̂qcc =
∑

k∈s

dkqkc2
k,

t̂qcyz =
∑

k∈s

dkqkckykzk, t̂y =
∑

k∈s

dkyk, t̂qyc =
∑

k∈s

dkqkckyk, t̂z =
∑

k∈s

dkzk,
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tx =
N∑

k=1

xk, t̂x =
∑

k∈s

dkxk, Âqx =
∑

k∈s

dkqkxkx
′

k, t̂qzx =
∑

k∈s

dkqkzkxk,

t̂qcz =
∑

k∈s

dkqkckzk, t̂qyx =
∑

k∈s

dkqkykxk, N̂ =
∑

k∈s

dk, t̂qc =
∑

k∈s

dkqkck.

The estimatorŝtyz, t̂c, t̂qcc, t̂qcyz, t̂y, t̂qcy, t̂z, t̂x, Âqx, t̂qzx, t̂qcz , t̂qyx, N̂ , t̂qc are Horvitz–
Thompson (or also calledπ) estimators (see e. g. [10, p. 43]), and therefore are unbiased
estimators of the totals

tyz =

N∑

k=1

ykzk, tc =

N∑

k=1

ck, tqcc =

N∑

k=1

qkc2
k, tqcyz =

N∑

k=1

qkckykzk,

ty =

N∑

k=1

yk, tqcy =

N∑

k=1

qkckyk, tz =

N∑

k=1

zk, tx =

N∑

k=1

xk,

Aqx =
N∑

k=1

qkxkx
′

k, tqzx =
N∑

k=1

qkzkxk, tqcz =
N∑

k=1

qkckzk,

tqyx =
N∑

k=1

qkxkyk, N =
N∑

k=1

1, tqc =
N∑

k=1

qkck,

respectively.
It follows from expression (22) that̂Cov

(4)
mw(y, z) is a function of the unbiased

estimators mentioned above. Using the Taylor linearization method, we approximate the
functionĈov

(4)
mw(y, z) by a linear one. The linear part of the Taylor series expansion of

Ĉov
(4)
mw(y, z) at the mean point

(t̂yz , t̂c, t̂qcc, t̂qcyz, t̂y, t̂qcy, t̂z, t̂x, Âqx, t̂qzx, t̂qcz, t̂qyx, N̂ , t̂qc)

= (tyz, tc, tqcc, tqcyz, ty, tqcy, tz, tx, Aqx, tqzx, tqcz, tqyx, N, tqc)

is

Ĉov
(4)

mwL(y, z)

=
1

N − 1

(
−Btc + t̂yz + Bt̂c −

1

N
tz t̂y −

1

N
ty t̂z +

1

N2
tytzN̂

)

=
1

N − 1

(
−Btc +

∑

k∈s

dkykzk + B
∑

k∈s

dkck −
1

N
tz
∑

k∈s

dkyk

−
1

N
ty
∑

k∈s

dkzk +
1

N2
tytz

∑

k∈s

dk

)

=
1

N − 1

(
−Btc +

∑

k∈s

dkek

)
.
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The approximate variance of the estimator̂Cov
(4)
mw(y, z) is equal to

AVar
(
Ĉov

(4)

mw(y, z)
)

= Var
(
Ĉov

(4)

mwL(y, z)
)

=
1

(N − 1)2
Var

(
−Btc +

∑

k∈s

dkek

)
=

1

(N − 1)2
Var

(∑

k∈s

dkek

)
.

The final expression of the approximate variance of the calibrated estimator
Ĉov

(4)
mw(y, z) is obtained using the expression of the variance (see, for example [10])

for the Horvitz–Thompson estimator of the total of the variable yz + Bc − µzy − µyz
+µyµz .

Expressions (14), (15) of the weightsw
(1)
k , w

(2)
k , w

(3)
k for the estimator

Ĉov
(2)

mw(y, z) =
1

N − 1

∑

k∈s

w
(1)
k

(
yk −

1

N

∑

l∈s

w
(2)
l yl

)(
zk −

1

N

∑

l∈s

w
(3)
l zl

)

are also explicit. Thus, the Taylor linearization method may be employed to derive
an approximate variance for this estimator. The solution ispresented by the following
proposition.

Proposition 3. The Taylor linearization approach gives the same approximate variance
for the estimatorŝCov

(2)
mw(y, z) andĈov

(4)
mw(y, z).

The proof is similar to that of Proposition 2.

Remark 1. We propose the estimator

V̂ar(Ĉovmw(y, z)) =
1

(N − 1)2

∑

k∈s

∑

l∈s

(
1 −

πkπl

πkl

)
êk

πk

êl

πl

,

for estimating the variances of the estimatorŝCov
(2)
mw(y, z) and Ĉov

(4)
mw(y, z), because

the approximate variances of these estimators are equal.
The valueŝek are defined by replacing unknown parameterstqcyz , tqcc, tqcy , tqcz,

tqc, µy andµz in the expression ofek, given in Proposition 2, with their estimates:t̂qcyz,
t̂qcc, t̂qcy , t̂qcz, t̂qc, µ̂y = N−1t̂y andµ̂z = N−1t̂z .

Remark 2. Replication methods, such as the jackknife, bootstrap and balanced half-
samples, may be used for the estimation of variances of the estimatorsĈov

(i)
mw(y, z),

i = 1, 3, 5, 6. All these methods are described, for example, in [10]. Somebootstrap
methods for survey sampling are considered in [12].

4 Simulation study

4.1 Influence of different weighting systems on the accuracyof estimation

The simulation study is performed to observe the efficiency of calibrated estimators of the
covariance. The calibrated estimators that use one weighting system and are derived using
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the same calibration equation, are very similar despite theloss function used. This is the
reason, why only three estimatorŝCov

(non)
1w (y, z), Ĉov

(tot)
1w (y, z), Ĉov

(lin)
1w (y, z) that use

one system of weights are included into the simulation.
The subset of a real population of size300 from the Lithuanian Enterprise Sur-

vey is used for the simulation. Two variables (a andb) are the numbers of employees
for a different time period, and the other two variables (y and z) are the profit of the
enterprise at the same periods. The population is stratifiedinto two strata by the size
of the survey variabley. The stratified simple random sample is used as a sample de-
sign. The sample sizen = 100 is allocated to strata, using Neyman’s optimal alloca-
tion. M = 1000 samples were drawn and for each of them the calibrated estimators
Ĉov

(non)

1w (y, z), Ĉov
(tot)
1w (y, z), Ĉov

(lin)
1w (y, z) that use one weighting system, the estima-

tors Ĉov
(i)
mw(y, z), i = 1, 2, 3, 4, 5, 6, that use two or three weighting systems, and the

design based estimator̂Cov(y, z) were computed. As it has been shown, the calibrated
estimators contain free additional constants. In the sequel it is assumedqk = 1 for all
k ∈ U . The empirical relative bias (RB), variance (Var), relative root mean square error
(RRMSE), and the coefficient of variation (cv) for each estimator and for some different
sets of auxiliaries, having different correlationρ with the study variables, are presented in
Table1. For any estimator̂θ of the finite population parameterθ, all these characteristics
of accuracy are defined by the following equations:

RB
(
θ̂
)

=
1

M

M∑

i=1

θ̂i − θ

θ
, Var

(
θ̂
)

=
1

M

M∑

i=1

(
θ̂i −

1

M

M∑

j=1

θ̂i

)2

,

RRMSE
(
θ̂
)

=
1

θ

√√√√ 1

M

M∑

i=1

(
θ̂i − θ

)2
, cv(θ̂) =

√
Var(θ̂)

1
M

∑M

i=1 θ̂i

,

whereθ̂i is the estimate ofθ computed from theith simulated sample.

Table 1. The main estimated characteristics of accuracy forthe estimators of the finite
population covariance (sample size:n = 100).

Estimator RB Var × 10−13 RRMSE cv

ρ(y, a) = 0.81 ρ(z, b) = 0.90 ρ(y, b) = 0.63 ρ(z, a) = 0.60

dCov
(non)

1w (y, z) −0.0495 2.7493 0.0935 0.0835

dCov
(tot)

1w (y, z) −0.0796 5.3133 0.1360 0.1198

dCov
(lin)

1w (y, z) −0.0065 2.2129 0.0715 0.0716

dCov
(1)

mw(y, z) −0.0019 2.1657 0.0704 0.0705

dCov
(2)

mw(y, z) −0.0049 2.1194 0.0698 0.0700

dCov
(3)

mw(y, z) −0.0510 2.8040 0.0950 0.0844

dCov
(4)

mw(y, z) −0.0046 2.1211 0.0698 0.0700

dCov
(5)

mw(y, z) −0.0505 2.7920 0.0946 0.0842
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dCov
(6)

mw(y, z) −0.0050 2.1078 0.0696 0.0698
dCov(y, z) −0.0735 10.3861 0.1708 0.1665

ρ(y, a) = 0.21 ρ(z, b) = 0.90 ρ(y, b) = 0.63 ρ(z, a) = 0.15

dCov
(non)

1w (y, z) −0.0635 6.7417 0.1395 0.1327

dCov
(tot)

1w (y, z) −0.0743 5.2115 0.1321 0.1180

dCov
(lin)

1w (y, z) −0.0858 9.4940 0.1706 0.1613

dCov
(1)

mw(y, z) −0.0792 9.8254 0.1696 0.1629

dCov
(2)

mw(y, z) −0.0814 9.3788 0.1676 0.1595

dCov
(3)

mw(y, z) −0.0643 6.7424 0.1399 0.1328

dCov
(4)

mw(y, z) −0.0784 9.2041 0.1650 0.1575

dCov
(5)

mw(y, z) −0.0619 6.6470 0.1380 0.1315

dCov
(6)

mw(y, z) −0.0805 9.4446 0.1677 0.1599
dCov(y, z) −0.0738 9.7766 0.1668 0.1615

ρ(y, a) = 0.23 ρ(z, b) = 0.31 ρ(y, b) = 0.19 ρ(z, a) = 0.16

dCov
(non)

1w (y, z) −0.0627 12.1333 0.1781 0.1778

dCov
(tot)

1w (y, z) −0.0703 10.2911 0.1688 0.1651

dCov
(lin)

1w (y, z) −0.0767 10.2916 0.1716 0.1663

dCov
(1)

mw(y, z) −0.0764 10.2927 0.1715 0.1662

dCov
(2)

mw(y, z) −0.0763 10.2829 0.1714 0.1661

dCov
(3)

mw(y, z) −0.0666 11.4251 0.1749 0.1733

dCov
(4)

mw(y, z) −0.0757 10.3007 0.1712 0.1662

dCov
(5)

mw(y, z) −0.0660 11.4427 0.1748 0.1733

dCov
(6)

mw(y, z) −0.0722 10.3695 0.1702 0.1661
dCov(y, z) −0.0730 10.2602 0.1698 0.1654

In the case of a highly correlated auxiliary variables (ifρ(y, a) = 0.81 andρ(z, b) =
0.90), the combination of linear and nonlinear calibration gives the best results, i.e., the
most accurate estimator iŝCov

(6)
mw. The first system of weightsw(1)

k of this estimator is
defined by the linear equation (9), while the second systemw

(2)
k satisfies the nonlinear

equation (3).
If the first system of weights is defined by the nonlinear equation and the two

additional systems satisfy the traditional equations (5),we get the estimatorŝCov
(3)
mw and

Ĉov
(5)
mw, a relative root mean square error of which is larger than that of some calibrated

estimators which use one weighting system. The reason is that the estimatorŝCov
(3)
mw and

Ĉov
(5)
mw have higher relative bias. The accuracy of estimatorŝCov

(1)
mw, Ĉov

(2)
mw, Ĉov

(4)
mw

is similar to that ofĈov
(6)
mw. The estimator̂Cov

(1)
mw has the lowest relative bias.

In the case of one well correlated auxiliary variable (ifρ(y, a) = 0.21 andρ(z, b) =
0.90) the estimatorŝCov

(3)
mw andĈov

(5)
mw are most accurate among those that use several

systems of weights. The accuracy characteristics of these estimators are close to that of the
estimatorĈov

(non)
1w . This may be explained by the fact that the same nonlinear equation
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is used for the definition of the first weighting systemw(1)
k of the estimatorŝCov

(3)
mw and

Ĉov
(5)
mw. The accuracy of other estimators that use several systems of weights is similar

to that of the estimator̂Cov
(lin)
1w which uses one weighting system defined by a linear

calibration equation. In the case of estimatorŝCov
(2)
mw, Ĉov

(4)
mw andĈov

(6)
mw this may be

explained by the linear calibration equation (9) that is used to define the first weighting
systemw

(1)
k .

In the case of low correlated auxiliary variables, all the calibrated estimators and
the standard estimator (1) are of a similar quality. The standard estimator has a simple
analytical form and all its characteristics of accuracy areclose to that of the calibrated
estimators. We can suggest to use it for estimating the finitepopulation covariance, when
no correlated auxiliary variables are available.

4.2 The performance of the variance estimator proposed

The empirical study of the quality of the variance estimatorproposed in Remark 1 is
presented in Table 2. The same data and the same sample designis used for simulation.
Note that this variance estimator is applicable only to the estimatorsĈov

(2)
mw(y, z) and

Ĉov
(4)
mw(y, z). The mean value of the variance estimators of1000 samples is given in

the fourth column of Table 2. It seems that the proposed variance estimators slightly
underestimate the empirical variance (EmpVar). The approximate variance (AVar) is
given in the second column.

Table 2. The main estimated characteristics of accuracy of the variance estimators of the
finite population covariance (true value of covariance:Cov(y, z) = 66083066, sample

size:n = 100).

Estimator AVar × 10−13 EmpVar × 10−13 dVar × 10−13

ρ(y, a) = 0.81 ρ(z, b) = 0.90 ρ(y, b) = 0.63 ρ(z, a) = 0.60

dCov
(2)

mw(y, z) 1.9112 2.1194 1.9394

dCov
(4)

mw(y, z) 1.9112 2.1211 1.9394

ρ(y, a) = 0.21 ρ(z, b) = 0.90 ρ(y, b) = 0.63 ρ(z, a) = 0.15

dCov
(2)

mw(y, z) 10.1780 9.3788 7.4862

dCov
(4)

mw(y, z) 10.1780 9.2041 7.4862

ρ(y, a) = 0.23 ρ(z, b) = 0.31 ρ(y, b) = 0.19 ρ(z, a) = 0.16

dCov
(2)

mw(y, z) 10.4471 10.2829 7.5708

dCov
(4)

mw(y, z) 10.4471 10.3007 7.5708

5 New regression estimators of the population total

An important question is “how the calibrated estimators of covariance may be applied in
survey sampling?” In this section, we present how they can beapplied to estimate the
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finite population total.
Consider a finite populationU = {u1, u2, . . . , uN} of N elements. Assume, in this

section,y to be a study variable and variablesz, a, b to be known auxiliary variables. Let
a population total

ty =
N∑

k=1

yk

be a parameter of interest. In the presence of a multivariateauxiliary variable, the ge-
neralized regression estimator (GREG) (see, for example, [10, p. 219–244],) is mainly
used for the estimation of the finite population total. In ourcase, we denote the auxiliary
vector, attributed to the elementk, by xk, k = 1, . . . , N , and putxk = (1, zk, ak, bk)′.
The GREG estimator is expressed as follows:

t̂yGREG =
∑

k∈s

dkyk +

(
N∑

k=1

xk −
∑

k∈s

dkxk

)′

B̂,

where

B̂ =

(∑

k∈s

dkxkx
′
k

)−1∑

k∈s

dkxkyk.

In the case of one auxiliary variable, sayz, the regression estimator of the totalty is

t̂yr =
∑

k∈s

dkyk +

(
N∑

k=1

zk −
∑

k∈s

dkzk

)
Ĉov(y, z)

Ŝ2
z

,

where Ĉov(y, z) is standard estimator (1) of the covariance;Ŝ2
z = Ĉov(z, z) is an

estimator of the variance of the variablez of the same type. Note that actually we know
the true varianceS2

z = Cov(z, z). Despite this fact, the estimator̂Cov(y, z)/Ŝ2
z of the

regression coefficientCov(y, z)/S2
z is used in statistical theory and practice. In most

cases, it is more stable and has lower variance.
Now we shall modify the estimator̂tyr, using calibrated estimators of the covari-

ance considered in the paper, and introduce three new estimators of the totalty:

t̂(1)yrw =
∑

k∈s

dkyk +

(
N∑

k=1

zk −
∑

k∈s

dkzk

)
Ĉov

(lin)

1w (y, z)

Ĉov
(lin)

1w (z, z)
, (23)

t̂(2)yrw =
∑

k∈s

dkyk +

(
N∑

k=1

zk −
∑

k∈s

dkzk

)
Ĉov

(6)

mw(y, z)

Ĉov
(6)

mw(z, z)
, (24)

t̂(3)yrw =
∑

k∈s

dkyk +

(
N∑

k=1

zk −
∑

k∈s

dkzk

)
Ĉov

(2)

mw(y, z)

Ĉov
(2)

mw(z, z)
. (25)
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These estimators are obtained using the estimatorŝCov
(lin)
1w , Ĉov

(6)
mw, Ĉov

(2)
mw of the

covariance that employ one, two, and three weighting systems, respectively.
A short simulation study is performed to compare these estimators of total. We

employ the same data of Section 4 from the Lithuanian Enterprise Survey.
The variablez is used to define the initial regression estimator, the variablesa and

b serve as the auxiliaries for the variablesy and z, respectively, when estimating the
covarianceCov(y, z) and varianceS2

z in (23), (24) and (25). The population is stratified
into two strata by the size of the survey variabley. The stratified simple random sample
is used as a sample design. The sample sizen = 30 is allocated to strata, using Neyman’s
optimal allocation.1000 samples were drawn and the average of the estimates is taken.

In Tables 3 and 4, the relative empirical bias, variance, relative root mean square
error and coefficient of variation for the regression estimators are presented. The results
of Table 4 are obtained from a modified data set which was produced from the initial
data set by replacing the values of the variabley with the values of the variablea. The
regression estimators that are obtained using the calibrated estimators of covariance are at
least of the same accuracy (Table 3) or more accurate (Table 4) as compared to the GREG.
A simple regression estimator that uses one auxiliary variable can also be more effective
in comparison with GREG, which uses three auxiliaries.

Consequently, more accurate estimators of the covariance may be useful for esti-
mating the finite population total or mean.

Table 3. The main estimated characteristics of accuracy forthe regression estimators of
the population total (sample size:n = 30).

Estimator RB Var × 10−13 RRMSE cv

ρ(y, z) = 0.70 ρ(y, a) = 0.81 ρ(z, b) = 0.90

t̂yGREG 0.0446 0.4031 0.0655 0.0460
t̂yr −0.0126 1.6011 0.0965 0.0969

t̂
(1)
yrw 0.0061 0.6894 0.0631 0.0624

t̂
(2)
yrw 0.0028 0.7490 0.0655 0.0653

t̂
(3)
yrw 0.0027 0.7536 0.0657 0.0655

Table 4. The main estimated characteristics of accuracy forthe regression estimators of
the population total (sample size:n = 30).

Estimator RB Var RRMSE cv

ρ(a, z) = 0.54 ρ(y, a) = 0.81 ρ(z, b) = 0.90

t̂yGREG −0.0234 70151 0.1096 0.1096
t̂yr −0.0156 54841 0.0959 0.0962

t̂
(1)
yrw 0.0038 37226 0.0781 0.0777

t̂
(2)
yrw −0.0010 36293 0.0770 0.0771

t̂
(3)
yrw −0.0002 35796 0.0765 0.0765
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