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Abstract. We formulate a delayed SIR epidemic model by introducing a latent period into
susceptible, and infectious individuals in incidence rate. This new reformulation provides
a reasonable role of incubation period on the dynamics of SIRepidemic model. We
show that if the basic reproduction number, denoted,R0, is less than unity, the disease-
free equilibrium is locally asymptotically stable. Moreover, we prove that ifR0 > 1,
the endemic equilibrium is locally asymptotically stable.In the end some numerical
simulations are given to compare our model with existing model.
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1 Introduction and mathematical models

Epidemic models have been studied by many authors. Most of them are interesting in
the formulation of the incidence rate, i.e., the infection rate of susceptible individuals
through their contacts with infectious (see, for example, [1–5]). In order to model this
disease transmission process several authors employ the following incidence functions:
The first one is the bilinear incidence rateβSI, whereS andI are respectively the number
of susceptible and infective individuals in the population, andβ is a positive constant
[6–10]. The second one is the saturated incidence rate of theform βSI

1+α1S
, whereα1

is a positive constant. The effect of saturation factor (refer toα1) stems from epidemic
control (tacking appropriate preventive measures) [11–14]. The third one is the saturated
incidence rate of the formβSI

1+α2I
, whereα2 is a positive constant. In the last one, the

number of effective contacts between infective and susceptible individuals may saturate
at high infective levels due to crowding of infective individuals or due to the protection
measures by the susceptible individuals [7,15,16].
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In a recent paper [17], we considered a delayed SIR epidemic model with a satu-
rated incidence rate as follows:

dS

dt
= A − µS(t) −

βS(t − τ)I(t − τ)

1 + α1S(t − τ) + α2I(t − τ)
,

dI

dt
=

βS(t)I(t)

1 + α1S(t) + α2I(t)
− (µ + α + γ)I(t),

dR

dt
= γI(t) − µR(t),

(1)

whereS is the number of susceptible individuals,I is the number of infectious individu-
als,R is the number of recovered individuals,A is the recruitment rate of the population,
µ is the natural death of the population,α is the death rate due to disease,β is the
transmission rate,α1 andα2 are the parameter that measure the inhibitory effect,γ is
the recovery rate of the infective individuals, andτ is the incubation period [14,16–18].

In the SIR model (1), the number of the new infective cases produced in the period
(t− τ, t] is neglected in the evolution of the susceptible class, and is taken into considera-
tion in the evolution of the infectious class. However, it may be more realistic to tack this
period into consideration in the evolution of susceptible class, and not in the evolution of
infectious class, because susceptible individuals infected at timet − τ is able to spread
the disease at timet. In this paper, incubation period is introduced into the SIRepidemic
model (1) to formulate a new delayed SIR model as follow:

dS

dt
= A − µS(t) −

βS(t)I(t)

1 + α1S(t) + α2I(t)
,

dI

dt
=

βS(t − τ)I(t − τ)

1 + α1S(t − τ) + α2I(t − τ)
− (µ + α + γ)I(t),

dR

dt
= γI(t) − µR(t).

(2)

The first two equations in system (2) do not depend on the thirdequation, and
therefore this equation can be omitted without loss of generality. Hence, system (2) can
be rewritten as

dS

dt
= A − µS(t) −

βS(t)I(t)

1 + α1S(t) + α2I(t)
,

dI

dt
=

βS(t − τ)I(t − τ)

1 + α1S(t − τ) + α2I(t − τ)
− (µ + α + γ)I(t).

(3)

This model provides a reasonable role of incubation period on the dynamics of
SIR epidemic model. We show that if the basic reproduction number, denoted,R0, is
less than unity, the disease-free equilibrium is locally asymptotically stable, and disease
always dies out. Moreover, we prove that ifR0 > 1, the endemic equilibrium is locally
asymptotically stable, so that the disease, if initially present, will persist at the unique
endemic equilibrium. In the end some numerical simulationsare given to compare our
model with existing model.
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2 Steady state and local stability analysis

In this section, we discuss the local stability of an endemicequilibrium and a disease-
free equilibrium of system (3) by analyzing the corresponding characteristic equations,
respectively [19]. System (3) always has a disease-free equilibrium E1 = (A

µ
, 0). Further,

if

R0 :=
Aβ

(µ + α + γ)(α1A + µ)
> 1,

system (3) admits a unique endemic equilibriumE∗ = (S∗, I∗), where

S∗ =
A[(µ + α + γ) + α2A]

µ[(µ + α + γ)Rc + α2A]
, I∗ =

A(Rc − 1)

(µ + α + γ)Rc + α2A
,

whereRc := A[β−α1(µ+α+γ)]
µ(µ+α+γ) .

Remark 1. (i) The basic reproduction number,R0 representing how many secondary
infectious result from the introduction of one infected individual into a population of
susceptible [20].

(ii) R0 > 1 is equivalent toRc > 1.

Now let us start to discuss the local behavior of the system (3) of the equilibrium
pointsE1 = (A

µ
, 0), andE∗ = (S∗, I∗). At the equilibriumE1, characteristic equation is

(λ + µ)

[

λ + (µ + α + γ) −
βA

µ + α1A
exp(−λτ)

]

= 0. (4)

We have the following result

Proposition 1. If R0 < 1, then the disease free equilibrium E1 is locally asymptotically
stable. And if R0 > 1, then the equilibrium point E1 is unstable.

Proof. Forτ = 0, the equation (4) reads to

(λ + µ)

[

λ −
µ(µ + α + γ)(Rc − 1)

µ + α1A

]

= 0. (5)

Obviously, (5) has two rootsλ1 = −µ < 0, andλ2 = µ(µ+α+γ)(RC−1)
µ+α1A

. Hence, if
Rc < 1, then the disease free equilibriumE1 is locally asymptotically stable forτ = 0.
By Corollary 2.4 in Ruan and Wei [21, p. 867], it follows that if instability occurs for a
particular value of the delayτ , a characteristic root of (4) must intersect the imaginary
axis. Suppose that (4) has a purely imaginary rootiω, with ω > 0. Then, by separating
real and imaginary parts in (4), we have

{

µ + α + γ = βA
µ+α1A

cos(ωτ),

ω = −
βA

µ+α1A
sin(ωτ).

(6)
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Hence,

ω2 =
µ(µ + α + γ)(Rc − 1)

µ + α1A

[

(µ + α + γ) +
βA

µ + α1A

]

. (7)

ForRc < 1, equation (7) has no positive solution. Thus from Remark 1, if R0 < 1, then
the disease free equilibriumE1 is locally asymptotically stable for allτ ≥ 0.

If Rc > 1, then the disease free equilibriumE1 is unstable forτ = 0. By Kuang’s
theorem [22, p. 77], it follows thatE∗ is unstable for allτ ≥ 0. This concludes the proof.

Let x = S − S∗ andy = I − I∗. Then by linearizing system (3) aroundE∗, we
have

dx

dt
=

[

−µ −
βI∗(1 + α2I

∗)

(1 + α1S∗ + α2I∗)2

]

x(t) −
βS∗(1 + α1S

∗)

(1 + α1S∗ + α2I∗)2
y(t),

dy

dt
=

βI∗(1 + α2I
∗)

(1 + α1S∗ + α2I∗)2
x(t − τ) +

βS∗(1 + α1S
∗)

(1 + α1S∗ + α2I∗)2
y(t − τ)

− (µ + α + γ)y(t).

(8)

The characteristic equation associated to system (8) is

λ2 + pλ + sλ exp(−λτ) + r + q exp(−λτ) = 0, (9)

where

p = µ + (µ + α + γ) +
βI∗(1 + α2I

∗)

(1 + α1S∗ + α2I∗)2
, s = −

βS∗(1 + α1S
∗)

(1 + α1S∗ + α2I∗)2
,

r =

[

µ +
βI∗(1 + α2I

∗)

(1 + α1S∗ + α2I∗)2

]

(µ + α + γ), q = −
µβS∗(1 + α1S

∗)

(1 + α1S∗ + α2I∗)2
.

The local stability of the steady stateE∗ is a result of the localization of the roots of the
characteristic equation (9). In order to investigate the local stability of the steady state, we
begin by considering the case without delayτ = 0. In this case the characteristic equation
(9) reads as

λ2 + (p + s)λ + r + q = 0, (10)

where

p + s = µ +
α2µ(µ + α + γ)2(Rc − 1)

β[(µ + α + γ) + α2A]
+

µ2(µ + α + γ)2Rc(Rc − 1)

βA[(µ + α + γ) + α2A]
,

r + q =
α2µ

2(µ + α + γ)2(Rc − 1)

β[(µ + α + γ) + α2A]
+

µ2(µ + α + γ)3Rc(Rc − 1)

βA[(µ + α + γ) + α2A]
.

hence, according to the Hurwitz criterion and Remark 1, we have the following proposi-
tion.
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Proposition 2. For τ = 0, the equilibrium E∗ is locally asymptotically stable if and only
if R0 > 1.

We now return to the study of equation (9) withτ > 0.

Theorem 1. If R0 > 1, then the steady state E∗ is locally asymptotically stable for all
τ ≥ 0.

Proof. From the hypothesisR0 > 1, the characteristic equation (9) has negative real parts
for τ = 0 (see Proposition 2). By Corollary 2.4 in Ruan and Wei [21, p. 867], it follows
that if instability occurs for a particular value of the delay τ , a characteristic root of (9)
must intersect the imaginary axis. Suppose that (9) has a purely imaginary rootiω, with
ω > 0. Then, by separating real and imaginary parts in (9), we have

{

r − ω2 − sω sin(ωτ) + q cos(ωτ) = 0,

pω + sω cos(ωτ) − q sin(ωτ) = 0.
(11)

Hence,

ω4 + (p2
− s2

− 2r)ω2 + r2
− q2 = 0. (12)

From the expressions ofr andq, we haver − q > 0 and from hypothesisRc > 1, we
deduce thatr2 − q2 > 0.

Evaluatingp2 − s2 − 2r,

p2
− s2

− 2r =
α2µ(µ+α+γ)2(Rc−1)

β[(µ+α+γ)+α2A]

[

(µ+α+γ) +
βS∗(1+α1S

∗)

(1+α1S∗+α2I∗)2

]

+

[

µ +
βI∗(1+α2I

∗)

(1+α1S∗+α2I∗)2

]2

.

Since forRc > 1, we havep2 − s2 − 2r > 0.
Thus from Remark 1, equation (12) has no positive solution for R0 > 1. This

concludes the proof.

3 Numerical application

Let’s compare the principal results of systems (1) and (2) bya numerical illustration.
Consider the following parameters:

α1 = 0.01, α2 = 0.01, A = 0.94, β = 0.1, µ = 0.05, α = 0.5, γ = 0.5.

System (1) and (2) has the positive equilibriumE∗ = (11.771, 0.334, 3.347). It follows
from Theorem 3.1 in [17], that for system (1), as the delay cross some critical valueτ0 =
2.8465, E∗ loses its stability and a family of periodic solutions with periodP = 38.0965
bifurcating fromE∗ occurs (see Fig. 1). However, for system (2),E∗ is asymptotically
stable for allτ ≥ 0 (see Fig. 2).

303



A. Kaddar

10 12 14
0

0.5

S(t)

I(
t)

0 500
10

12

14

t

S
(t

)

0 500
0

0.5

t

I(
t)

10 12 14
0

0.5

1

S(t)

I(
t)

0 500
10

12

14

t

S
(t

)

0 500
0

0.5

1

t

I(
t)

−20 0 20
0

5

10

S(t)

I(
t)

0 500
0

5

10

t

I(
t)

0 500
0

5

10

t

I(
t)

Fig. 1. Forτ = 0, the solutions (S(t), I(t),R(t)) of system (1) are asymptotically
stable and converge to the equilibriumE∗ (top). Whenτ = 2.8465, a Hopf bifurcation
occurs and periodic solutions appear, with same periodT (0) = 38.0965 (middle). For

τ = 4, the equilibriumE∗ of system (1) is unstable (bottom).
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Fig. 2. Forτ = 0; τ = 2.8465; τ = 4, the solutions (S, I, R) of system (2) are
asymptotically stable and converge to the equilibriumE∗.
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4 Concluding remarks and future research

In this paper, we considered a delayed SIR model with a modified saturated incidence
rate βSI

1+α1S+α2I
, and a constant recruitment,A. We showed that the local stability of the

endemic equilibrium point,E∗, depend on the basic reproduction number,R0, and doesn’t
change with respect to time delay,τ , (the incubation period); IfR0 < 1, the disease-
free equilibrium,E1, is locally asymptotically stable so the disease dies out. Moreover,
we prove that ifR0 > 1, the disease-free equilibrium,E1, is unstable and the endemic
equilibrium,E∗, is locally asymptotically stable for allτ ≥ 0 (the disease approaches
the endemic valueE∗). In the end some numerical simulations are given to illustrate the
theoretical analysis and to compare our model with existingmodel in [17].

For the future research, we consider a delayed SIR model witha saturated incidence
rate of the form βSI

1+α1S+α2I
and a logistic growth. In this case we show that the local

stability of the endemic equilibrium point,E∗, depend on time delay,τ .
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