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Abstract. This work deals with analytical investigation of local qualitative temporal
behavior around inner equilibrium point of a model for three species food chain, studied
earlier by Hastings and Powel and others. As an initial step towards the spectral analysis
of the model, the governing equations have been split into linear and nonlinear parts
around arbitrary equilibrium point. The explicit parameter dependence of eigenvalues of
Jacobi matrix associated to the linear part have been derived. Analyzing these expressions
in conjunction with some pedagogical analysis, a lot of predictions on stable, unstable or
chaotic change of species have been highlighted. Agreement of predictions of this work
with available numerical or semi-analytical studies suggest the utility of analytical results
derived here for further investigation/analysis of the model as desired by earlier works.

Keywords: Hastings and Powell’s model, spectral analysis, local stability, bifurcation
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1 Introduction

One aspect to study the dynamics of ecological community is its food web and the
interaction among constituent species. Field and laboratory studies are hard to design their
evolution. As a consequence, dynamical behavior of food web are studied with the help of
mathematical models governed mostly by nonlinear differential or difference equations.
Theoretical studies of food webs in ecology begins with the study of ditrophic food chains
after the pioneering work of Lotka and Volterra [1,2]. However, an ecological system with
only two interacting species can account for only a small number of phenomena that are
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commonly exhibited in nature. In order to explain more and more new observations,
such model thus extended subsequently by introducing additional number of variables
as well as varieties of nonlinear interaction terms coupled with some parameters which
control the evolution of the system. Following this spirit, Maity et al. [3], Upadhyay
and his coworkers [4, 5] recently studied the stability and bifurcation behavior of models
describing evolution of three species food chain consist of Holling type response func-
tions. From these study it appears that the presence of increasing number of variables and
the additional parameters raise considerable problems for analysis of the model, both for
the experimenter and theoretician. Nonetheless, such models need to be analyzed in detail
since those models are found to be efficient to explain more exotic process of food web. At
the begining of nineties, Hastings and Powell (HP) [6] produced an example of a chaotic
system in a three species food chain modelled with type II functional responses and found
to be most widely accepted [7–13] for defining the movement of aquatic ecosystem from
its equilibrium state to chaotic states.

On the other hand Chattopadhyay and Sarkar [14] modified HP model [6] by in-
troducing extra mortality term in one of the three species and showed that the chaotic
behavior less likely occurs in a real food chain dynamics. In their works the solutions of
the nonlinear equations governing the time development of three species are determined
numerically by choosing some initial values. The choice of the initial value settles-down
to a steady state solution depicting a situation which is at the limit cycle oscillation of the
system around an equilibrium point.

In the recent past, Lonngren, Bai and Ahmet [15] showed that the system described
by the HP model can be treated as the “master” in the synchronization with another
“food chain” system, commonly known as “slave”, that is described with a similar set
of equations but containing a different set of model parameters. In their investigation
they used both the systems have an identical form with one of the numerical parameters
that appears in the model assuming a different value and noted that, the results would
critically depend upon the values that were chosen. Their final observation was that,
the dynamical behavior of the model needs to be investigated further in order to gain
a complete understanding and control of the chaotic behavior.

The present work is the first step in the direction of complete understanding of the
temporal behavior of the model as desired by Longrenn et al. [15] and to carry out the
investigations which are yet to be explored as pointed out by Klebanoff and Hastings
in their work [11], viz., desireness of the extension of their partial analysis around the
equilibrium point on the plane face of the positive quadrant to inner equilibrium points
and for wide range in parameter space which may support to describe other food webs,
although the algebraic manipulation become more complex.

Starting from the HP model in terms of dimensionless variables and parameters,
local qualitative behavior of the system around the inner equilibrium point has been
studied rigorously and compared with results obtained by numerical methods in Section 2.
The theoretical prediction of Sil’nikov chaos in certain domain in parameter space and its
comparison with the result obtained by numerical methods are discussed in Section 3.
The last section deals with the conclusion of this work.
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2 Behaviors of the solution of the system around inner equilibrium
point (x0 > 0, y0 > 0, z0 > 0)

The basic mathematical model to be studied here is a system of three first order coupled
nonlinear ordinary differential equations with non-polynomial vector field describing the
temporal changes of three species of food chain. In the dimensionless units, the HP
model [6] is given by

ẋ = x(1− x)− a1xy

1 + b1x
, (1a)

ẏ =
a1xy

1 + b1x
− a2yz

1 + b2y
− d1y, (1b)

ż =
a2yz

1 + b2y
− d2z, (1c)

where the definition of dimensionless variables x, y, z; parameters a1, a2, b1, b2, d1, d2;
even the equilibrium points of the system of Eq. (1) are discussed rigorously by Klebanoff
and Hastings [11].

For the spectral analysis of the system around an arbitrary equilibrium point
(x0, y0, z0), we translate the origin of the variables (x, y, z) to (x0, y0, z0) through the
transformation

x = (x0 + ξ), (2a)
y = (y0 + η), (2b)
z = (z0 + ζ) (2c)

and get the equations for new variables ξ, η, ζ as


ξ̇
η̇

ζ̇


 = J



ξ
η
ζ


+



fNL

1 (ξ, η, ζ)
fNL

2 (ξ, η, ζ)
fNL

3 (ξ, η, ζ)


 (3)

with

J =



J11 J12 J13

J21 J22 J23

J31 J32 J33


 , (4)

and

fNL
1 (ξ, η, ζ) =

(a1b1y0 − φ3)ξ2 − a1φξη − b1φ2ξ3

φ2(φ+ b1ξ)
, (5a)

fNL
2 (ξ, η, ζ) =

−a1b1y0ξ
2 + a1φξη

φ2(φ+ b1ξ)
+

a2b2z0η
2 − a2(1 + b2y0)ηζ

(1 + b2y0)2(1 + b2y0 + b2η)
, (5b)

fNL
3 (ξ, η, ζ) = − a2b2z0η

2 + a2(1 + b2y0)ηζ

(1 + b2y0)2(1 + b2y0 + b2η)
. (5c)
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Here,

J11 = 1− 2x0 +
a1b1x0y0

(1+b1x0)2
− a1y0

1+b1x0
, J12 = − a1x0

1+b1x0
, J13 = 0,

J21 =
a1y0

(1+b1x0)2
, J22 = −d1+

a1x0

1+b1x0
− a2z0

(1+b2y0)2
, J23 = − a2y0

1+b2y0
,

J31 = 0, J32 =
a2z0

(1+b2y0)2
, J33 = −d2+

a2y0

1+b2y0

and φ = (1 + b1x0).
Eqs. (3)–(5) describe the behavior of the dynamical system, Eqs. (1), around the

equilibrium point (x0, y0, z0) irrespective of any restriction on parameter space R6.
The inner equilibrium point of the dynamical system described by Eq. (1) is E∗ =

(− p
2b1
, d2

q ,
r

b1(2−p)q ) with

p =

{
1− b1 −

√
(1 + b1)2 − 4a1b1d2

a2 − b2d2

}
, (6a)

q = a2 − b2d2, (6b)
r = b1d1(p− 2)− a1p. (6c)

In order to study the behavior of the system around the inner equilibrium point, E∗,
we first note that this point will be ecologically meaningful if the parameters satisfy the
conditions

1 + 2b1 + b21 +
4a1b1d2

−a2 + b2d2
≥ 0,

(a1 + b2)d2 < a2,

a2 > b2d2,

a1|p| > b1d1

(
|p|+ 2

)
.

(7)

The Jacobi matrix at E∗ is given by

J∗ =




(p−2)2q(p+b1)−4a1b1d2

q(p−2)2b1

a1p
2b1(1−p/2) 0

4a1d2

q(p−2)2
−b2d2r

a2b1(p−2) −d2

0 −qr
a2b1(p−2) 0


 . (8)

To find the eigenvalues of J∗ we recast the characteristic equation for it in the form

λ3 + 3A1(a1, a2, b1, b2, d1, d2)λ2 + 3A2(a1, a2, b1, b2, d1, d2)λ

+A3(a1, a2, b1, b2, d1, d2) = 0, (9)
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where the coefficients A1, A2, A3 are given by

A1 =
1

3

{
rb2d2

(p− 2)a2b1
− (p− 2)2q(p+ b1)− 4a1b1d2

q(p− 2)2b1

}
, (10a)

A2 =
1

3

{
2pa2

1d2

(1− p
2 )(p− 2)2qb1

+
qrd2

(p− 2)a2b1

+
rb2d2((p− 2)2q(p+ b1)− 4a1b1d2)

q(p− 2)3a2b21

}
, (10b)

A3 =
rd2{(p− 2)2q(p+ b1)− 4a1b1d2}

(p− 2)3a2b21
. (10c)

Transforming λ → ρ = λ + A1, one gets the characteristic equation in the form of
standard cubic as

ρ3 + 3Hρ+G = 0. (11)

The explicit expressions for coefficients H and G in terms of parameters are given by,

H =− 1

9(p− 2)4q2a2
2b

2
1

[
(p− 2)2q2r2b22d

2
2 + a2

2

{
(p− 2)4p2q2

+ b21
{

(p− 2)2q − 4a1d2

}2
+ 2(p− 2)pqb1

{
(p− 2)3q − 4(p− 2)a1d2

+ 6a2
1d2

}}
− (p− 2)qra2d2

{
5(p− 2)2pqb2 + b1

{
3(p− 2)2q2

+ 5b2
(
(p− 2)2q − 4a1d2

)}}]
(12)

and

G =
1

27(p− 2)6a3
2b

3
1

[
−27(p− 2)2ra2

2b1d2

{
(p− 2)2q(p+ b1)

− 4a1b1d2

}
− 1

q2

{
9(p− 2)a2d2

{
(p− 2)2pqrb2

+ b1
(
−4pa2

1a2 + (p− 2)2qr(q + b2)− 4ra1b2d2

)}

×
{
−(p− 2)qrb2d2 + a2

{
(p− 2)2pq + b1

(
q
(
p− 22

)
− 4a1d2

)}}}

+
2

q3

{
−(p− 2)qrb2d2 + a2

{
(p− 2)2pq + b1

(
(p− 2)2q − 4a1d2

)}}]
. (13)

The expression

∆ = G2 + 4H3 (14)

is known as discriminant of the cubic equation, plays the decisive role to determine the
nature of roots of the Eqs. (9) or (11). Following the standard procedure for solving cubic
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equation one can obtain the expression for roots of (9) in terms of parameters through
their presence in H , G, ∆ as

λ1 =

(
−G

2
+

√
∆

2

) 1
3

− H

(−G
2 +

√
∆
2 )

1
3

−A1, (15a)

λ2 =

(
−G

2
+

√
∆

2

) 1
3

ω − H

(−G
2 +

√
∆
2 )

1
3

ω2 −A1, (15b)

λ3 =

(
−G

2
+

√
∆

2

) 1
3

ω2 − H

(−G
2 +

√
∆
2 )

1
3

ω −A1. (15c)

where ω = − 1
2 + i

√
3

2 and ω2 = ω∗ are the cube roots of unity.

2.1 Linear stability analysis

The requirement of the equilibrium point is to be node or saddle is that all the roots of the
characteristic equation, Eq. (9) are to be nonzero real and distinct and, the point is focus
or center if Eq. (9) has a pair of complex roots. From the pedagogical analysis of Eq. (9)
one can thus conclude:

Proposition 1. The equilibrium point E∗ of Eq. (1) is to be node or saddle (focus or
center), i.e., hyperbolic if

(i) the discriminant ∆ of (14) is strictly less (greater) than zero, and,

(ii) the constant term A3 in (10c) is non-zero.

The proof of this proposition can be outlined by mentioning the relation between
roots and the discriminant as: if λ1, λ2, λ3 are three roots of Eq. (9), then

(λ1 − λ2)2(λ2 − λ3)2(λ3 − λ1)2 = −27∆. (16)

From (16), it is clear that if G2 + 4H3 < 0, all the roots are real, distinct and the system
is known as irreducible case of Cardan’s solution. In this case the solutions of Eq. (9) can
be found as

λ1 = r cos θ −A1, (17a)

λ2,3 = r cos

(
θ ± 2π

3

)
−A1 (17b)

with r = 2
√
−H and θ is the solution of cos 3θ = − G

2
√
−H3

.
In addition, condition (ii) ensures non-vanishing of all the roots of Eq. (9). Con-

sequently, the ecologically meaningful equilibrium point E∗ will be node or saddle for
the parameters lying in the domain DNS = {(a1, a2, b1, b2, d1, d2) : G2 + 4H3 < 0 and
A3 6= 0} along with conditions stated in (7). As a corollary one can further conclude that
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Proposition 2. The system of equations in (1) is locally conjugate, i.e, have the same
qualitative behavior) to the linear equation



ξ̇
η̇

ζ̇


 = J



ξ
η
ζ


 (18)

for (a1, a2, b1, b2, d1, d2) ∈ DNS except those points in the parameter space where the
eigenvalues are resonant.

The proof of this proposition follows from Poincaré’s theorem. We have kept the
analysis of the resonant case beyond this work.

Propositions 1 and 2 mentioned above deal with situation when the eigenvalues
of the Jacobi matrix J are distinct and nonzero. In this case the qualitative behavior
of the solution of the system of Eqs. (1) changes smoothly for infinitesimal variation
of parameters. But this feature does not maintained whenever real part of one or more
eigenvalues of J are zero. The smooth variation of parameters around such critical values
of parameters for which eigenvalues of J moves around both sides of imaginary axis,
produces entirely different qualitative behavior of the solution of the system, commonly
known as bifurcation.

2.2 Bifurcation behavior

A bifurcation is said to be a steady state bifurcation (SSB) [20] whenever a eigenvalue of
the Jacobi matrix J∗ at the equilibrium point is real and vanishes and the real part of all
other eigenvalues are non zero.

Proposition 3. The system of equations, Eq. (1) undergo steady state bifurcation around
the equilibrium point E∗ provided the parameters contained in the domain DSSB =
{(a1, a2, b1, b2, d1, d2) ∈ R6 : G2 + 4H3 < 0 or A1, A2 6= 0, and A3 = 0}.

The proof is straightforward since the first inequality constraints the roots are to be
real and distinct and, the second condition suggests that one root must be zero. Fig. 1(a)
demonstrates the variation of a1 and b1 satisfying the conditions A3 = 0 and ∆ < 0 for
the fixed values of a2, b2, d1, d2 at 0.1, 2.0, 0.4, 0.01, respectively.

The Takens–Bagdanov bifurcation [20] is a bifurcation of an equilibrium point of a
system of autonomus ordinary differential equations at which the Jacobi matrix has a zero
eigenvalue of multiplicity two. Following the similar reasoning one can easily state that:

Proposition 4. The system of equations in (1) undergo Takens–Bogdanov bifurcation
(TBB) around the bifurcation point E∗ provided the critical values of the parameters
belongs to the subsetDTBB = {(a1, a2, b1, b2, d1, d2) ∈ R6 : G2+4H3 = 0 (orA1 6= 0,
A2 = 0) and A3 = 0}.

This statement can be proved by using the relation (16) between roots and the
discriminant or putting the values of A2 and A3 into Eq. (9).
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Fig. 1(b) demonstrates the variation of a1 and b1 satisfying the conditions A3 = 0
and A2 = 0 for the fixed values of a2, b2, d1, d2 at 0.1, 2.0, 0.4, 0.01 respectively. From
the acute observation of this figure it reveals that the Takens–Bogdanov bifurcation will
occur for the parameter values a1 = 8 and b1 = 1.0004 in addition to the values of other
parameters as stated above. Consequently, one may predict other values of a1 and b1 for
given other set of parameter values a2, b2, d1, d2 either by solving or plotting the criterion
A3 = 0 and A2 = 0 simultaneously.
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Fig. 1. Locus in parameter space(a1, b1), for the fixed values ofa2, b2, d1, d2 at
0.1, 2.0, 0.4, 0.01 respectively satisfying the conditions: (a)A3 = 0 andA1 6= 0
yielding Steady state-bifurcation points; (b)A3 = 0 andA2 = 0 simultaneously
yielding Takens–Bogdanov bifurcation points, and (c)A3 = 9A1A2 yielding Hopf-

bifurcation points.

The occurrence of Hopf bifurcation (there is a pure imaginary pair of eigenvalues)
of Eq. (1) can be identified from the following proposition:

Proposition 5. The system of equations, Eq.(1) undergo Poincaŕe- Andronov-
Hopf- (Hopf-steady state) bifurcation (PAHB) around the bifurcation pointE∗

whenever the critical parameter values are contained in thedomain DPAHB =
{(a1, a2, b1, b2, d1, d2) ∈ R6 : G2 + 4H3 > 0 andA3 = 9A1A2 6= 0}, (DPAHB =
{(a1, a2, b1, b2, d1, d2) ∈ R6 : G2 + 4H3 > 0 andA1 = A3 = 0, A2 > 0}).

The proof of this statement follows from the fact that the first condition, viz., the
inequality confirms the existence of pair of complex roots. However, the real part of that
pair may not necessarily vanish. The non-vanishing of the coefficientsA1, A2, A3 as well
as the discriminant ensure the existence of a non-zero real root. Finally, the equation
A3 = 9A1A2 ensures the vanishing of the real part of pair of complex eigenvalues
which can be justified by comparing the coefficients of like powers ofλ in the product
(λ− δ)(λ − iω)(λ+ iω) with the L.H.S. of Eq. (9).

Fig. 1(c) exhibits partially regionDPAHB of critical values ina1 − b1 space for
parametersa2, b2, d1, d2 fixed at(0.1, 2.0, 0.4, 0.01)and variable parametersa1, b1 within
the limit 0 < a1 < 8, 0 < b1 < 6. From this figure it is evident that whenever0 < a1 <
5.75, curve of bifurcation points in parameter space consists oftwo branches whereas for
5.75 < a1 < 8, it consists of four branches. So with the help of equationA3 = 9A1A2

one can easily extract the critical values of parameters associated to the bifurcation points
in the codimension two parameter space aroundE∗.
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To illustrate the utility of analytical results derived here representative of some of
our theoretical predictions of node, saddle, focus, center etc., of HP model are summa-
rized in Table 1 in some domain in the parameter space. For comparison of our result with
the existing results obtained by numerical techniques we fix the parameters (a2, b2, d1, d2)
at (1.0, 2.0, 0.4, 0.01), change b1 discretely by 0.5, 2.2,and 3.0 and vary a1 continuously
in appropriate range depending upon the choice of b1. From Table 1 it appears that for
b1 = 0.5, the domain of a1 is (0.62229 ≤ a1 ≤ 7.777) and six bifurcation points within
this domain in the parameter space. Out of them two are SSB points and the other four
are PAHB points. Depending upon the sign of the real part of the eigenvalues as obtained
from (15), the nature of the equilibrium points have been predicted as: it is stable nodes
in (0.6223 ≤ a1 ≤ 0.8897) and saddle within (0.8897 ≤ a1 ≤ 1.5650) and so on.

Till now we have investigated the qualitative behavior of deterministic nature of
temporal evolution around E∗ of species described by HP model. Observing the ap-
pearance of their chaotic change in the earlier semi-analytical studies [11–13] around
the equilibrium point on the plane face of the positive quadrant of the state space, we
will continue our spectral analysis for investigating the chaotic motion around the inner
equilibrium point E∗.

3 Prediction of chaos from spectral analysis

The characteristics of chaos and its presence in nature are much discussed in ecology
[6, 7, 16–18]. The most important mathematical attribute of chaos is the absence of any
stable equilibrium point or any stable limit cycle in system dynamics, for which the pattern
never repeat themselves. Recent developments in dynamical system theory consider
chaotic fluctuations of a dynamical system as highly desirable because fluctuations allow
such a system to be easily controlled. We now intend to show that one can identify the
domain in the parameter space for which the HP model may exhibits chaotic change in its
state space for any choice of the parameter in that identified region.

The Sil’nikov criterion for the existence of chaotic motion (known as Sil’nikov
chaos) [19, 20] is: if the equilibrium point xe of the system is a saddle focus and the
eigenvalues γ and α± iβ satisfy the Sil’nikov inequalities:

β 6= 0, γα < 0, |γ| > |α| ≥ 0 (19)

then the system may have Sil’nikov chaos in some neighbourhood of equilibrium point
xe. Using expressions (15), the conditions in (19) can be restated as

Proposition 6. The motion of the system of equations Eq. (1) is (Sil’nikov) chaotic in some
neighbourhood of the inner equilibrium point E∗ if the parameters satisfy the conditions:

(i) ∆ > 0, (20a)

(ii)
(
−G

2
+

√
∆

2

) 1
3

+
H

(−G
2 +

√
∆
2 )

1
3

6= 0, (20b)
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(iii)
(
−G

2
+

√
∆

2

) 1
3

− H

(−G
2 +

√
∆
2 )

1
3

+ 2A1 ≷ 0, for A3 ≶ 0, (20c)

and

(iv)
∣∣∣∣
(
−G

2
+

√
∆

2

) 1
3

− H

(−G
2 +

√
∆
2 )

1
3

∣∣∣∣ > 4|A1|, (20d)

where H , G and ∆ are given in (12)–(14).

Proof. (i) The condition for the equilibrium point xe to saddle focus is that Eq. (9) must
has a pair of complex root and a non zero real root. Consequently, relation (16) ensures
that ∆ > 0.

(ii) Substitution of explicit expression for ω (= − 1
2 + i

√
3

2 ) and ω2 (= ω∗) in
expressions (15) and separation into real and imaginary parts gives the imaginary part
complex eigenvalues around xe as (−G

2 +
√

∆
2 )

1
3 + H/(−G

2 +
√

∆
2 )

1
3 . Therefore, the

condition (ii) of Sil’nikov criterion yields the condition (ii) of Proposition 6.
(iii) If γ and α + iβ being the real and complex roots of Eq. (9) respectively, then

from the relation between roots and coefficients of Eq. (9) one gets,

γ + 2α = −3A1 (21a)

and

γ(α2 + β2) = −A3. (21b)

Multiplying both sides of (21a) by γ one gets,

αγ = −1

2
γ(γ + 3A1).

So, αγ < 0 if γ(γ + 3A1) > 0. But from (21b), sign of γ is opposite to sign of A3.
Therefore, the inequality αγ < 0 changes to whenever A3 > 0; γ < 0 and γ + 3A1 < 0,
and, whenever A3 < 0; γ > 0 and γ + 3A1 > 0. Substitution of explicit expression for γ
in terms of G and ∆ into above inequalities give condition (iii) stated above.

(iv) With the help of (15a) and (21a), the absolute value of the real part of the
complex roots of Eq. (9) can be written as

|α| = 1

2
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Now,

|γ| − |α| =
∣∣∣∣
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Therefore, |γ| − |α| ≥ 0 implies the condition (iv) stated in Proposition 6.

For the parameter values (a1, a2, b1, b2, d1, d2) = (5.0, 3, 0.1, 2.0, 0.4, 0.01) the
eigenvalues (15a)–(15c) of the system at E∗ are (−0.61121, 0.03868 + 0.07481i,
0.03868−0.07481i). These satisfy the Sil’nikov criterion as stated in (19). Therefore for
this set of parameter values one can expect theoretically the occurrence of Sil’nikov chaos
around the equilibrium point E∗(0.819, 0.125, 9.808). Interestingly, this prediction is in
full conformity with the result obtained by solving Eq. (1) numerically with the help of
Runga–Kutta method as illustrated in Fig. 2.
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Fig. 2. Phase portrait of system showing Sil’nikov chaos in the neighbourhood
of equilibrium point E∗ for the parameter values(a1, b1, a2, b2, d1, d2) =

(5.0, 3.0, 0.1, 2.0, 0.4, 0.01).

4 Conclusion

In the process of study of the qualitative behavior of temporal evolution around the inner
equilibrium point of a three species food chain described byHP model, we have first
derived the dependence of eigenvalues of Jacobi matrix on the parameters involved in
the system. From the judicial analysis of the conditions on parameters presented in
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Propositions 1 to 5, the domain in the parameter space can be identified for desired
temporal evolution around the equilibrium point of the system. In particular, Proposi-
tions 1 and 2 help to choose parameters for which the system of nonlinear Eqs. (1) is
conjugate (topologically equivalent) to linear one around the equilibrium point. The set of
parameters for which the system undergoes bifurcation behavior can be identified through
the conditions presented in Proposition 3 to 5. Our predictions have been summarized
in Table 1 and compared for a selective set of parameters for which the behavior of the
system have been studied by using numerical techniques. Agreement of results for such
parameter values suggest, condition on parameters derived here can be utilized for the
prediction of the qualitative behavior of the temporal evolution of the species for other
domain in parameter space. Furthermore, the domain in the parameter space for the
Sil’nikov chaotic motion of the system can be identified from the conditions on parameters
derived in Proposition 6. The reliability of our prediction has been tested by numerical
solution of the system of Eqs. (1). Consequently, a knowledge provided here may be
quite helpful in risk management of complex and highly interdependent system found
in an environment. One may further initiate the systematic studies of the normal form
reduction [22], limit cycle and other exotic behaviors like synchronization of chaos of HP
model around inner equilibrium point from the results reported here.
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