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Abstract. Here the velocity field and the associated tangential stress corresponding to the
rotational flow of a generalized second grade fluid within an infinite circular cylinder are
determined by means of the Laplace and finite Hankel transforms. At time t = 0 the fluid
is at rest and the motion is produced by the rotation of the cylinder around its axis with a
time dependent angular velocity Ωt. The solutions that have been obtained are presented
under series form in terms of the generalized G-functions. The similar solutions for the
ordinary second grade and Newtonian fluids, performing the same motion, are obtained
as special cases of our general solution.
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1 Introduction

Many materials such as drilling mud, certain oils and greases, blood and many emulsions
have been used as non-Newtonian fluids. Amongst the many models which have been
treated as non-Newtonian behavior, the fluids of differential type have received special
attention [1–3]. The second-grade fluids, which are a subclass of the differential type
fluids, have been successfully studied in various kinds of flows by different researchers
[4–9]. One of the recent advances in the theoretical studies in rheology is the development
of one-dimensional fractional derivative models. The simplicity of their form and the fact
that they can be used to study shear-thinning, have opened the way for the solution to
a series of engineering problems. Furthermore, the one-dimensional fractional derivative
Maxwell model has been found very useful in modeling the linear viscoelastic response of
polymer solutions and melts. Generally speaking, the fractional calculus has encountered
much success in the description of viscoelasticity. Bagley [10], Friedrich [11], He et
al. [12], Huang et al. [13], Xu and Tan [14, 15], Xu [16], Tan et al. [17–19] and Haitao
and Hui [20] have sequentially introduced the fractional calculus approach. Fractional
derivatives are quite flexible in describing viscoelastic behavior.
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The aim of this note is to establish exact solutions for the velocity field and the
shear stress corresponding to the unsteady rotational flow of a generalized second grade
fluid due to an infinite straight circular cylinder about its axis with an angular velocityΩt.
Using the fractional calculus approach, the governing equations of motion are fractional
order partial differential equations. The velocity and adequate shear stress, obtained by
means of the finite Hankel and Laplace transforms, are presented under series form in
terms of the generalized G-functions. The similar solutions for the ordinary second grade
and Newtonian fluids, performing the same motion, are obtained as special cases of our
general solution.

2 Governing equations

The flows to be here considered have the velocity v and the extra-stress S of the form [20]

v = v(r, t) = w(r, t)eθ, S = S(r, t), (1)

where eθ is the unit vector in the θ-direction of the cylindrical coordinates system r,
θ and z. For such flows, the constraint of incompressibility is automatically satisfied.
Furthermore, if the fluid is at rest up to the moment t = 0, then

v(r, 0) = 0. (2)

The governing equations, corresponding to such motions for second grade fluid, are
[21, 22]

τ(r, t) =

(
µ+ α1

∂

∂t

)(
∂

∂r
− 1

r

)
w(r, t), (3)

∂w(r, t)

∂t
=

(
ν + α

∂

∂t

)(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
w(r, t), (4)

where µ is the dynamic viscosity of the fluid, α1 = αρ is a material constant (one of
the two material moduli which define a second grade fluid), ν = µ/ρ is the kinematic
viscosity of the fluid (ρ being its constant density), and τ(r, t) = Srθ(r, t) is the shear
stress which is different of zero.

The governing equations corresponding to an incompressible generalized second
grade fluid, performing the same motion, are obtained by replacing the inner time deriva-
tives with respect to t from Eqs. (3) and (4), by the fractional differential operator [23]

Dβ
t f(t) =

{
1

Γ(1−β)
d
dt

∫ t
0

f(τ)
(t−τ)β

dτ, 0 ≤ β < 1,

d
dtf(t), β = 1,

where Γ(·) is the Gamma function. Consequently, the governing equations to be used
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here are

τ(r, t) =
(
µ+ α1D

β
t

)( ∂

∂r
− 1

r

)
w(r, t), (5)

∂w(r, t)

∂t
=
(
ν + αDβ

t

)( ∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
w(r, t), (6)

where the new material constants α and α1 (although we keep the same notation) reduce
to the previous ones for β → 1. In the following the fractional differential equations with
appropriate initial and boundary conditions will be solved by means of finite Hankel and
Laplace transforms.

3 Flow through a circular cylinder

Suppose that an incompressible generalized second grade fluid (GSGF) is situated at rest
in an infinite circular cylinder of radius R (> 0). At time t = 0+ the cylinder suddenly
begins to rotate about its axis with an angular velocity Ωt. Owing to the shear the inner
fluid is gradually moved, its velocity being of the form (1). The governing equations are
given by Eqs. (5) and (6), while the appropriate initial and boundary conditions are

w(r, 0) = 0, r ∈ [0, R], (7)
w(R, t) = RΩt, t ≥ 0, (8)

where Ω is a constant.
The partial differential equation (6), also containing fractional derivatives, can be

solved in principle by several methods, the integral transforms technique representing
a systematic, efficient and powerful tool. In the following we shall use the Laplace
transform to eliminate the time variable and the finite Hankel transform for the spatial
variable. However, in order to avoid the burdensome calculations of residues and contour
integrals, we shall apply the discrete inverse Laplace transform method.

3.1 Calculation of the velocity field

Applying the Laplace transform to the Eqs. (6) and (8), we get

qw(r, q) =
(
ν + αqβ

)( ∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
w(r, q), (9)

w(R, q) =
ΩR

q2
, (10)

wherew(r, q) andw(R, q) are the Laplace transforms of the functionsw(r, t) andw(R, t),
respectively.

We denote by [23]

wH(r1n, q) =

R∫
0

rw(r, q)J1(rr1n) dr, (11)
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the finite Hankel transform of the function w(r, q), and the inverse Hankel transform of
wH(r1n, q) is given by

w(r, q) =
2

R2

∞∑
n=1

J1(rr1n)

J2
2 (Rr1n)

wH(r1n, q).

In view of [24, Eq. (59)], we have

R∫
0

r

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
w(r, q)J1(rr1n) dr

= Rr1nJ2(Rr1n)w(R, q)− r2
1nwH(r1n, q), (12)

r1n being the positive roots of the equation J1(Rr) = 0 and Jp(·) is the Bessel function
of the first kind of order p.

From Eqs. (9), (10) and (12), we find that

wH(r1n, q) =
(
ν + αqβ

)
ΩR2r1nJ2(Rr1n)

1

q2(q + νr2
1n + αqβr2

1n)
. (13)

It can be also written in the suitable form

wH(r1n, q) = w1H(r1n, q) + w2H(r1n, q), (14)

where

w1H(r1n, q) =
ΩR2J2(Rr1n)

r1n

1

q2
, (15)

w2H(r1n, q) = −ΩR
2J2(Rr1n)

r1n

1

q(q + νr2
1n + αqβr2

1n)
. (16)

Applying the inverse Hankel transform to Eqs. (15) and (16), and using the known formula

R∫
0

r2J1(rr
1n

) dr =
R2

r1n
J2(Rr1n)

we get

w1(r, q) =
Ωr

q2
, (17)

w2(r, q) = −2Ω

∞∑
n=1

J1(rr1n)

r1nJ2(Rr1n)

1

q(q + νr2
1n + αqβr2

1n)
. (18)

Using the identity

1

q(q + νr2
1n + αqβr2

1n)
=

∞∑
k=0

(−νr2
1n)kq−βk−β−1

(q1−β + αr2
1n)k+1

,
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Eq. (18) can be written as

w2(r, q) = −2Ω

∞∑
n=1

J1(rr1n)

r1nJ2(Rr1n)

∞∑
k=0

(−νr2
1n)kq−βk−β−1

(q1−β + αr2
1n)k+1

. (19)

After taking the inverse Hankel transform of Eq. (14), and using Eqs. (17) and (18), it
leads to

w(r, q) =
Ωr

q2
− 2Ω

∞∑
n=1

J1(rr1n)

r1nJ2(Rr1n)

∞∑
k=0

(−νr2
1n)kq−βk−β−1

(q1−β + αr2
1n)k+1

. (20)

Now taking the inverse Laplace transform of Eq. (20), the velocity fieldw(r, t) is given by

w(r, t) = Ωrt−2Ω

∞∑
n=1

J1(rr1n)

r1nJ2(Rr1n)

×
∞∑
k=0

(
− νr2

1n

)k
G1−β,−βk−β−1,k+1

(
− αr2

1n, t
)
, (21)

where the generalized function Ga,b,c(· , ·) is defined by [25, Eqs. (97) and (101)]

Ga,b,c(d, t) = L−1

{
qb

(qa − d)c

}
=

∞∑
k=0

dkΓ(c+ k)

Γ(c)Γ(k + 1)

t(c+k)a−b−1

Γ[(c+ k)a− b]
,

Re(ac− b) > 0,

∣∣∣∣ dqa
∣∣∣∣ < 1. (22)

3.2 Calculation of the shear stress

Introducing Eq. (21) into Eq. (5), and using the relation

Dβ
t Ga,b,c(d, t) = Ga,b+β,c(d, t), (23)

we find the shear stress under the form

τ(r, t) = 2Ω

∞∑
n=1

J2(rr1n)

J2(Rr1n)

∞∑
k=0

(
− νr2

1n

)k
×
[
µG1−β,−βk−β−1,k+1

(
−αr2

1n, t
)

+ α1G1−β,−βk−1,k+1

(
−αr2

1n, t
)]
. (24)

4 The special case β → 1

Making β → 1 into Eqs. (21) and (24), we obtain the similar solutions

w(r, t) = Ωrt−2Ω

∞∑
n=1

J1(rr1n)

r1nJ2(Rr1n)

×
∞∑
k=0

(−νr2
1n)kG0,−k−2,k+1(−αr2

1n, t), (25)

441



M. Kamran, M. Imran, M. Athar

and

τ(r, t) = 2Ω

∞∑
n=1

J2(rr1n)

J2(Rr1n)

∞∑
k=0

(
− νr2

1n

)k
×
[
µG0,−k−2,k+1

(
−αr2

1n, t
)

+ α1G0,−k−1,k+1

(
−αr2

1n, t
)]
, (26)

for a second grade fluid performing the same motion.
These solutions can be also simplified to give the simple expressions (see also

Eqs. (A1)–(A2) from Appendix)

w(r, t) = Ωrt− 2Ω

ν

∞∑
n=1

J1(rr1n)

r3
1nJ2(Rr1n)

(
1− exp

(
−νr2

1nt

1 + αr2
1n

))
, (27)

τ(r, t) = 2ρΩ

∞∑
n=1

J2(rr1n)

r2
1nJ2(Rr1n)

[
1− 1

1 + αr2
1n

exp

(
−νr2

1nt

1 + αr2
1n

)]
, (28)

obtained in [26, Eqs.(5.1) and (5.3)] by a different technique.
Making α1 → 0 and then α → 0 into Eqs. (27) and (28), we obtain the velocity

field

w(r, t) = Ωrt− 2Ω

ν

∞∑
n=1

J1(rr1n)

r3
1nJ2(Rr1n)

(
1− exp

(
−νr2

1nt
))
, (29)

and the associated shear stress

τ(r, t) = 2ρΩ

∞∑
n=1

J2(rr1n)

r2
1nJ2(Rr1n)

[
1− exp

(
−νr2

1nt
)]
. (30)

corresponding to a Newtonian fluid performing the same motion.

5 Conclusion

In this paper, the velocity field and the adequate shear stress corresponding to the rota-
tional flow of an incompressible generalized second grade fluid induced by an infinite
circular cylinder have been determined by using finite Hankel and Laplace transforms.
The motion is produced by the circular cylinder that at the moment t = 0+ begins to rotate
around its axis with an angular velocityΩt. The solutions that have been obtained, written
under series form in terms of the generalized G-functions, satisfy both the governing
equation and all the imposed initial and boundary conditions. The similar solutions for the
ordinary second grade and Newtonian fluids, performing the same motion, are obtained
as special cases when β → 1, respectively β → 1 and α1 → 0.
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Appendix

∞∑
k=0

(
− νr2

1n

)k
G0,−k−1,k+1

(
αr2

1n, t
)

=
1

1 + αr2
1n

exp

(
− νr2

1nt

1 + αr2
1n

)
, (A1)

∞∑
k=o

(−νr2
1n)kG0,−k−2,k+1

(
− αr2

1n, t
)

=
1

νr2
1n

[
1− exp

(
− νr2

1nt

1 + αr2
1n

)]
. (A2)
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