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Abstract. We establish the existence of a nontrivial solution for inhomogeneous
quasilinear elliptic systems:

−∆pu = λa(x)u|u|γ−2 + α
α+β

b(x)u|u|α−2|v|β + f in Ω,

−∆qv = µd(x)v|v|γ−2 + β
α+β

b(x)|u|αv|v|β−2 + g in Ω,

(u, v) ∈W 1,p
0 (Ω)×W 1,q

0 (Ω).

Our result depending on the local minimization.

Keywords: elliptic systems, Nehari manifold, Ekeland variational principle, local
minimization.

1 Introduction

In this paper we deal with the nonlinear elliptic system
−∆pu = λa(x)u|u|γ−2 + α

α+β b(x)u|u|α−2|v|β + f in Ω,

−∆qv = µd(x)v|v|γ−2 + β
α+β b(x)|u|αv|v|β−2 + g in Ω,

(u, v) ∈W 1,p
0 (Ω)×W 1,q

0 (Ω),

(1)

where 1 < p, q < N and Ω is a regular set of RN , N ≥ 3, α > 0, β > 0, λ and
µ are positive parameters, functions a(x), b(x) and d(x) ∈ C(Ω) are smooth functions
with change sign on Ω, we assume here that 1 < γ < min(p, q), γ < α + β, α + β >
max(p, q) and α/p + β/q = 1. For p ≥ 1 ∆pu is the p-Laplacian defined by ∆pu =

div(|∇u|p−2∇u) and W 1,p
0 (Ω) is the closer of C∞0 (Ω) equipped by the norm ‖u‖1,p :=

‖∇u‖p, where ‖.‖p represent the norm of Lebesgue space Lp(Ω). The Lebesgue integral
in Ω will be denote by the symbol

∫
whenever the integration is carried out over all Ω.

Let p′ be the conjugate to p,W−1,p′

0 (Ω) is the dual space toW 1,p
0 (Ω) and we denote

by ‖.‖−1,p′ its norm. We denote by 〈x∗, x〉X∗,X the natural duality paring betweenX and
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X∗. The problem
−∆pu = u|u|α−1|v|β+1 + f in Ω,

−∆qv = |u|α+1v|v|β−1 + g in Ω,

u = v = 0 on ∂Ω,

whereΩ is a bounded domain, f ∈ D−1,p′

0 (Ω), g ∈ D−1,q′

0 (Ω) has been studied in [1] for
p 6= q and in a recent paper [2] for p 6= q on arbitrary domains with lack of compactness.

Let us define X = W 1,p
0 (Ω) × W 1,q

0 (Ω) equipped with the norm ‖(u, v)‖X =
‖u‖1,p + ‖v‖1,q and (X, ‖.‖) is a reflexive and separable Banach space.

Definition 1 (Weak solution). We say that (u, v) ∈ X is a weak solution of (1) if:∫
|∇u|p−2∇u.∇w1 dx

= λ

∫
a(x)u|u|γ−2w1 dx+

α

α+ β

∫
b(x)u|u|α−2|v|βw1 dx+

∫
fw1 dx,∫

|∇v|q−2∇v.∇w2 dx

= µ

∫
d(x)v|v|γ−2w2 dx+

β

α+ β

∫
b(x)|u|αv|v|β−2w2 dx+

∫
gw2 dx.

for all (w1, w2) ∈ X .

It is clear that problem (1) has a variational structure.
It is well known if the Euler function φ is bounded below and φ has a minimizer

on X , then this minimizer is a critical point of φ. However, the Euler function φ(u, v),
associated with the problem (1), is not bounded below on the whole space X , but is
bounded on an appropriate subset, and has a minimizer on this set (if it exists) which
gives rise to solution to (1). Clearly, the critical points of φ are the weak solutions of
problem (1).

The associated Euler–Lagrange functional to system (1) φ : X → R is defined by

φ(u, v) =
1

p
‖u‖p1,p +

1

q
‖v‖q1,q −

1

γ

[
λ

∫
a(x)|u|γ + µ

∫
d(x)|v|γ

]
− 1

α+ β

∫
b(x)|u|α|v|β − 〈f, u〉 − 〈g, v〉. (2)

Consider the Nehari manifold associated to problem (1) given by

Λ =
{

(u, v) ∈ X \ {(0, 0)}; φ′(u, v)(u, v) = 0
}
, m1 = inf

(u,v)∈Λ
J(u, v).

Consequently, for every (u, v) ∈ Λ, (2) becomes

φ|Λ(u, v) = A(p)‖u‖p1,p +A(q)‖v‖q1,q −A(γ)

[
λ

∫
a(x)|u|γ + µ

∫
d(x)|v|γ

]
−A(1)〈f, u〉 −A(1)〈g, v〉,
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where for all t > 0, A(t) = 1/t− 1/(α+ β).
We introduce the operators J1, J2, D1, D2, B1, B2 : X → X∗ in the following way

〈
J1(u, v), (w, z)

〉
X

:=

∫
|∇u|p−2∇u∇w,〈

J2(u, v), (w, z)
〉
X

:=

∫
|∇v|q−2∇v∇z,〈

D1(u, v), (w, z)
〉
X

:=

∫
a(x)|u|γ−2uw,〈

D2(u, v), (w, z)
〉
X

:=

∫
d(x)|v|γ−2vz,〈

B1(u, v), (w, z)
〉
X

:=

∫
b(x)|u|α−2|v|βuw,〈

B2(u, v), (w, z)
〉
X

:=

∫
b(x)|u|α|v|β−2vz.

2 Main results

Our main result is the following:

Theorem 1. Suppose that (f, g) ∈ W−1,p′

0 (Ω)×W−1,q′

0 (Ω), non of the functions f and
g is identically to zero on Ω and:

(a) 1 < γ < min(p, q), (b) γ < α+ β, (c) α+ β > max(p, q).

Then, there exists a pair (u∗, v∗) ∈ Λ such that the sequence (un, vn) converges
strongly to (u∗, v∗) in X , Moreover, (u∗, v∗) is a solution of system (1) satisfies the
property φ(u∗, v∗) < 0.

Definition 2. We say that φ satisfies the Palais–Smale condition (PS)c if every sequence
(um, vm) ⊂ X such that φ(um, vm) is bounded and φ′(um, vm)→ 0 in X∗ as m→∞,
is relatively compact in X .

Lemma 1. The operators Ji, Di, Bi, i = 1, 2, are well defined. Also Ji, i = 1, 2, are
continuous and the operators Di, Bi, i = 1, 2, are compact.

Proof. This lemma is proved in [3].

Lemma 2. Let (un, vn) be a bounded sequence in X such that φ(un, vn) is bounded and
φ′(un, vn)→ 0 as n→∞. Then (un, vn) has a convergent subsequence.

Proof. Since the sequence (un, vn) is bounded in X , we may consider that there is a
subsequence (denote again by (un, vn)), which is weakly convergent in X .
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Moreover, we have that〈
φ′(un, vn)− φ′(um, vm), (un − um, vn − vm)

〉
=

∫ (
|∇un|p−2∇un − |∇um|p−2∇um

)
(∇un −∇um)

+

∫ (
|∇vn|q−2∇vn − |∇vm|q−2∇vm

)
(∇vn −∇vm)

− λ
∫
a(x)

(
|un|γ−2un − |um|γ−2um

)
(un − um)

− µ
∫
d(x)

(
|vn|γ−2vn − |vm|γ−2vm

)
(vn − vm)

− α

α+ β

∫
b(x)

(
|un|α−2|vn|βun − |um|α−2|vm|βum

)
(un − um)

− β

α+ β

∫
b(x)

(
|un|α|vn|β−2vn − |um|α|vm|β−2vm

)
(vn − vm)

−
∫ (

f(xn)− f(xm)
)
(un − um)−

∫ (
g(xn)− g(xm)

)
(vn − vm).

Since (un, vn) converges strongly in Lp(Ω) × Lq(Ω), it is a Cauchy sequence in
Lp(Ω)×Lq(Ω). Using Holder inequality (since α/p+β/q = 1 and (α−1)/α+1/α = 1)
we have∫

b(x)|un|α−2|vn|βun(un − um)

≤ ‖b‖∞
∫
|un|α−1|vn|β |un − um|

≤ ‖b‖∞
[ ∫ (

|un|α−1|un − um|
) p
α

]α
p
[ ∫ (

|vn|β
) q
β

] β
q

≤ ‖b‖∞
[
|un|

(α−1)p
α |un − um|

p
α

]α
p

‖vn‖βq

≤ ‖b‖∞
[ ∫ (

|un|
(α−1)p
α

) α
α−1

]α
p×

α−1
α
[ ∫
|un − um|

p
α×α

]α
p×

1
α

‖vn‖βq

= ‖b‖∞‖un‖α−1
p ‖un − um‖p‖vn‖βq → 0.

Similarly∫
b(x)

(
|un|α|vn|β−2vn − |um|α|vm|β−2vm

)
(vn − vm)→ 0.

From the compactness of the operators Bi, Di (i = 1, 2), [4], continuity of f and g, we
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obtain (passing to a subsequence, if necessary) that∫ (
|∇un|p−2∇un − |∇um|p−2∇um

)
(∇un −∇um)

+

∫ (
|∇vn|q−2∇vn − |∇vm|q−2∇vm

)
(∇vn −∇vm)→ 0

which implies (see [5]) that (un, vn) converges strongly in X .

Lemma 3. Let c ∈ R. Then the functional φ(u, v) satisfies the (PS)c condition.

Proof. According to Lemma 2, it sufficient to prove that the sequence (un, vn) is bounded
in X . We have

Let (un, vn) be such a sequence, that is

φ(un, vn) = c+ on(1) and φ′(un, vn) = on
(∥∥(un, vn)

∥∥
X

)
,

then

φ(un, vn)− 1

α+ β

〈
φ′(un, vn), (un, vn)

〉
= A(p)‖un‖p1,p +A(q)‖vn‖q1,q −A(γ)

[
λ

∫
a(x)|un|γ + µ

∫
b(x)|vn|γ

]
−A(1)〈f, un〉 −A(1)〈g, vn〉

= c+ on
(
‖(un, vn)‖X

)
+ on(1).

Using successively the Holder’s inequality and the Young inequality on the terms 〈f, un〉
and 〈g, vn〉, we can write[

A(p)‖un‖p1,p −
A(1)

p
θp‖un‖p1,p − λA(γ)‖un‖γ1,p

]
+

[
A(q)‖vn‖q1,q −

A(1)

q
νq‖vn‖q1,q − µA(γ)‖vn‖γ1,q

]
≤ A(1)

p′
θ−p

′
‖f‖p

′

−1,p′ +
A(1)

q′
ν−q

′
‖g‖q

′

−1,q′ + c+ on
(
‖(un, vn‖

)
+ on(1).

Since the real numbers θ and ν being arbitrary, a suitable choose of θ and ν assure the
boundedness of the sequence (un, vn).

Lemma 4. The critical value of φ on Λ, m1 = inf(u,v)∈Λ φ(u, v), has the following
property:

m1 < min

[
−
‖f‖p

′

−1,p′

p′
,−
‖g‖q

′

−1,q′

q′

]
.
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Proof. Let ufbe the unique solution of the Dirichlet problem{
−∆pu = f in Ω,

u = 0 on ∂Ω,

and let vg be the unique solution of the problem{
−∆qv = g in Ω,

v = 0 on ∂Ω.

It is clear that (uf , 0), (0, vg) are two elements of Λ and we have

m1 ≤ φ(uf , 0) =

[
1

p
‖∇uf‖pp − 〈f, uf 〉

]
= −

(
1− 1

p

)
‖∇uf‖pp = − 1

p′
‖∇uf‖pp,

m1 ≤ φ(0, vg) =

[
1

q
‖∇vg‖qq − 〈g, vg〉

]
= −

(
1− 1

q

)
‖∇vg‖qq = − 1

q′
‖∇vg‖qq.

Similarly to proof of J. Velin [13, 4.2], we can show that

‖f‖p
′

−1,p′ = ‖∇uf‖pp,

‖g‖q
′

−1,q′ = ‖∇vg‖qq.

Then

m1 ≤ min

[
− 1

p′
‖f‖p

′

−1,p′ ,−
1

q′
‖g‖q

′

−1,q′

]
.

Thus, the Lemma is proved.

3 Proof of the Theorem 1

We show that φ is bounded below on Λ. Let (u, v) be an arbitrary element in Λ. We have

φ|Λ(u, v) ≥
[
A(p)‖u‖p1,p −

A(1)

p
θp‖u‖p1,p

]
+

[
A(q)‖v‖q1,q −

A(1)

q
νq‖v‖q1,q

]
− A(1)

p′
θ−p

′
‖f‖p

′

−1,p′ +
A(1)

q′
ν−q

′
‖g‖q

′

−1,q′ .

This inequality follows from a(x), d(x) are sign chaining functions and we can
choose (u, v) ∈ X with these properties that supu ⊆ Ω1 = {x ∈ Ω; a(x) < 0} and
sup v ⊆ Ω2 = {x ∈ Ω; d(x) < 0}.

We choose θ = {pA(p)/A(1)}1/p and ν = {qA(q)/A(1)}1/q . Consequently, we
have, for every (u, v) ∈ Λ

φ(u, v) ≥ −A(1)

p′
θ−p

′
‖f‖p

′

−1,p′ −
A(1)

q′
ν−q

′
‖g‖q

′

−1,q′ .

Hence, we have shown that φ is bounded blow on Λ. Then Ekeland variational
principle [6] imply the existence of a solution of (1), such that φ(u∗, v∗) < 0.
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