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Abstract. A compartmental epidemic model, introduced by Gumel and Moghadas [1], is
considered. The model incorporates a nonlinear incidence rate and an imperfect preventive vaccine
given to susceptible individuals. A bifurcation analysis is performed by applying the bifurcation
method introduced in [2], which is based on the use of the center manifold theory. Conditions
ensuring the occurrence of backward bifurcation are derived. The obtained results are numerically
validated and then discussed from both the mathematical and the epidemiological perspective.
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1 Introduction

Epidemic models have contributed greatly to get insight on transmission dynamics of
infectious diseases in host populations, as well as on how an infectious disease may be
managed, reduced and possibly eradicated (see, e.g., [3–6]). Two of the main aspects
of modelling an infectious disease are: (i) the functional form of the force of infection,
namely the function describing the mechanism of disease transmission; (ii) the description
of the intervention policy to contrast the disease spread (vaccination, treatment, health
campaign, etc.).

In the seventies, V. Capasso and his coworkers [7–9], stressed the importance to
consider nonlinear incidence rates for some specific diseases. Since then, many authors
have proposed several nonlinear forms for the incidence rate (see, e.g., the brief surveys
contained in [10] and [11]). Many studies also deal with epidemic models with general
incidence rates, see, e.g., [12–14].
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For many diseases (pertussis, mumps, influenza, etc.) vaccination of susceptibles
is an effective method for controlling the epidemic spread, and sometimes it has been a
total success (smallpox, polio, measles, . . . ) [3]. When it is included in mathematical
compartmental models, vaccination is often represented by a linear transfer between
the susceptibles and removed compartments. When vaccine is imperfect, i.e., not to-
tally effective or does not offer permanent immunity, then a backward transfer must
be considered because vaccinated individuals may return to be susceptibles or become
directly infected, through the (nonlinear) transmission. When these aspects are included
in the model, a rich dynamical behaviour may arise, including bistability and backward
bifurcation [15–17].

In 2003 Gumel and Moghadas have proposed a compartmental deterministic model,
which incorporates the two aspects mentioned above: a nonlinear incidence rate and
an imperfect preventive vaccine given to susceptible individuals [1]. Their model is
interesting because the structure is simple (it is a generalization of classical SIR models)
so that possible unusual dynamical behaviours may be directly lead back to the coupling
of nonlinear incidence and imperfect vaccine. The authors perform a qualitative analysis
and one of the main results is that the model undergoes a backward bifurcation.

The main reason to investigate the occurrence of backward bifurcations it that they
play a relevant role for disease control and eradication. In fact, it is now well known that
in disease transmission modelling, a classical necessary condition for disease eradication
is that the basic reproductive number R0 [18], must be less than unity. However, when
a backward bifurcation occurs, an endemic equilibria may also exist for R0 < 1. This
means that the occurrence of a backward bifurcation may have important public health
implications. Indeed it might not be sufficient to reduce R0 below 1 to eliminate the
disease. The basic reproductive number must be further reduced in order to avoid endemic
states and guarantee the eradication. Many epidemic spread characterized by backward
bifurcation may be found in the literature, for both generic and specific diseases (see,
e.g., [2, 15, 17, 19, 20]). More recent contributions are given in [21–23]. The bifurcation
analysis is based on the use of the center manifold theory [2, 24, 25].

In [1], even if the qualitative analysis stressed the existence of backward bifurcation,
the related phenomenology was not extensively discussed in terms of bifurcation theory.
We think such a feature is worth to be deeply investigated. For this reason, in this paper
we aim to provide a precise indication of the bifurcation thresholds and, through the
bifurcation method introduced in [2], to derive conditions, expressed in terms of the
parameters of the system, ensuring that either forward or backward bifurcation occurs.

The paper is organized as follows: in Section 2 we describe the model introduced
in [1] and briefly discuss the qualitative analysis performed therein. In Section 3 we
investigate the existence of equilibria and provide some local stability results. In Section 4
we perform the bifurcation analysis: threshold values are determined and sufficient con-
ditions for both forward and backward bifurcation scenarios are derived. In Section 5
we present a detailed numerical verification and compare our findings with the results
obtained in [1]. The epidemiological implications are discussed in Section 6. Concluding
remarks are given in Section 7.
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2 The model

The compartmental deterministic model proposed in [1] is given by:

dS

dt
= π − cβ1IS

1 + I
− ξS + αI − µS,

dV

dt
= ξS − cβ2IV

1 + I
− µV,

dI

dt
=
cβ1IS

1 + I
+
cβ2IV

1 + I
− I(α+ µ),

(1)

where S, V and I denote the size of compartments of susceptible, vaccinated and in-
fective individuals, respectively. The incidence rate is a saturating Michaelis–Menten
functional. All the parameters are positive constants, with the following interpretation:
π is the recruitment rate of susceptibles; β1 and β2 are the transmission probabilities of
susceptibles and vaccinated individuals, respectively; c is the average number of contact
partners; ξ is the vaccination rate of susceptibles; α is the therapeutic treatment rate of
infected individuals; µ is the natural death. The following assumptions are also consid-
ered: (i) β2 < β1, due to the fact that vaccination can reduce or eliminate the incidence of
infection; (ii) the prevalent disease does not kill infected individuals; (iii) treatment does
not offer permanent immunity.

In [1] the existence of endemic equilibria is performed by using a vaccination
function ξ = ξ(I), given by:

ξ(I) =
[cβ2I + µ(1 + I)]{(µ+ α)[cβ1I + µ(1 + I)]− cβ1(π + αI)}

{cβ2(π + αI)− (µ+ α)[cβ2I + µ(1 + I)]}(1 + I)
, (2)

which can be obtained by the algebraic system of equilibria coming from (1). It can be
shown that the existence and the number of endemic equilibria depends on the mono-
tonicity of (2) in the neighbourhood of I = 0, i.e., by the sign of ξ

′
(0):

ξ
′
(0) =

(cβ2 + µ)[(µ+ α)µ− cβ1π]

cβ2π − (µ+ α)µ
+
µ[(µ+ α)(cβ1 + µ)− cβ1α]

cβ2π − (µ+ α)µ

− µ[(µ+ α)µ− cβ1π][cβ2α− (µ+ α)(cβ2 + µ)]

[cβ2π − (µ+ α)µ]2
− µ[(µ+ α)µ− cβ1π]

cβ2π − (µ+ α)µ
.

Precisely, a threshold value ξc exists such that the following result may be stated [1]:
if ξ

′
(0) > 0, then an unique endemic equilibrium exists for ξ < ξc, whereas two endemic

equilibria may coexist if ξ > ξc. If ξ
′
(0) ≤ 0, then only one endemic equilibrium may

exist. In other words, the model undergoes a backward bifurcation when ξ
′
(0) > 0 and a

forward bifurcation when ξ
′
(0) ≤ 0.

However, the stability properties in the backward bifurcation scenario are only
sketched. Hence, in the next section we will discuss such phenomenology in terms of
bifurcation theory.
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3 Equilibria: existence and local stability

In this section we provide some preliminary results concerning with threshold values for
the existence of endemic equilbria. We begin by observing that system (1) admits the
disease-free equilibrium

E0 =

(
π

µ+ ξ
,

πξ

µ(µ+ ξ)
, 0

)
.

Endemic equilibria E = (S∗, V ∗, I∗) are such that

S∗ =
(π + α I∗)(1 + I∗)

cβ1 I∗ + (ξ + µ)(1 + I∗)
,

V ∗ =
ξ (π + α I∗)(1 + I∗)2

[cβ1 I∗ + (ξ + µ)(1 + I∗)][cβ2I∗ + µ(1 + I∗)]
,

where I∗ is given by the real positive solutions of the equation,

AI∗2 +BI∗ + C = 0,

where

A = −µ
(
µ2 + ξµ+ αcβ2 + c2β1β2 + cβ1µ+ ξcβ2 + µcβ2 + αξ + αµ

)
,

B =
(
c2β1β2 + ξcβ2 + cβ1µ

)
π

− µ
(
2ξµ+ αcβ2 + cβ1µ+ 2µ2 + 2αξ + µcβ2 + 2αµ+ ξcβ2

)
,

C = (β1µ+ ξβ2)cπ − µ(µ+ α)(µ+ ξ).

Note that the coefficient A is always negative. Hence if C > 0 then ∆ = B2−4AC > 0.
By applying the Descartes’ rule of signs, one positive and one negative real equilibria
exist, whatever is the sign of B. It follows that the coefficient C is required to be negative
in the range R0 < 1 in order to be in line with the backward bifurcation scenario.

If C < 0, then by adding the conditions B > 0 and ∆ > 0, we get two positive real
equilibria and the condition ∆ = 0 provides the critical value for the saddle node bifur-
cation, which is related with the appearence/disappearence of the two positive equilibria
in the backward bifurcation framework. To get an insight on this aspect, we inspect more
closely the condition ∆ > 0, observing that

∆ > 0 ⇐⇒ A1c
2 +B1c+ C1 > 0,

where

A1 = β2
1π

2β2
2 ,

B1 = −2β1β2π
[
µ2(β2 − β1) + µ(αβ2 − πβ1)− β2ξ(µ+ π)

]
,

C1 = (β1 − β2)2µ4 − 2µ3(β1 − β2)(−β1π + ξβ2 + αβ2)

+ µ2
[
β2

2(α+ ξ)2 + β1π(β1π − 2αβ2) + 2β2ξ(πβ2 − 2αβ1)
]

− 2µξβ2π(−αβ2 + 2αβ1 − β1π − ξβ2) + ξ2β2
2π

2.

(3)
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Under the hypothesis β2 < β1, it is easy to verify that the quantity ∆1 = B2
1 − 4A1C1 is

always positive. In fact,
∆1 = Γ1π

3 + Γ2π
2,

where

Γ1 = 16β1
2β2

3ξµ(−β2 + β1)(µ+ α),

Γ2 = 16β1
2β2

3µ2ξ(−β2 + β1)(µ+ α).

It follows that ∆ > 0 if and only if c < c∗1 or c > c∗2, where

c∗1 =
−B1 −

√
∆1

2A1
, c∗2 =

−B1 +
√

∆1

2A1
.

Taking into account of (3), it follows that B1 > 0, provided β2 < π
αβ1, so that

c∗1 is a negative quantity. Hence, we may conclude that in this case: (i) the inequality
c > c∗2 implies the existence of two real positive equilibria; (ii) when c < c∗2 there are no
feasible equilibria; (iii) c = c∗2 is the critical value of the parameter c, for the saddle-node
bifurcation.

Now, we focus on the disease-free equilibrium E0 and investigate the occurrence
of the transcritical bifurcation at R0 = 1.

The Jacobian matrix of (1) evaluated at the disease-free equilibrium E0 is given by

J(E0) =


−ξ − µ 0 −πcβ1

ξ+µ + α

ξ −µ − ξπcβ2

µ(ξ+µ)

0 0 πcβ1

ξ+µ + ξπcβ2

µ(ξ+µ) − α− µ

 , (4)

so that the eigenvalues λ are real and given by:

λ1 = −ξ − µ, λ2 = −µ, λ3 =
πc(β1µ+ ξβ2)− (ξ + µ)µ(α+ µ)

µ(ξ + µ)
.

Introduce now the basic reproductive number R0,

R0 =
cβ1π

(µ+ α)(µ+ ξ)
+

cβ2πξ

µ(µ+ α)(µ+ ξ)
,

so that: (a) if R0 < 1, then the eigenvalues are all negatives and E0 is locally stable; (b)
if R0 > 1, then two eigenvalues are negative and one is positive, so that E0 is unstable
(saddle point). Observing that

R0 = 1 ⇐⇒ c = c∗ =
(µ+ α)µ(ξ + µ)

π(β1µ+ ξβ2)
,

it follows that the disease-free equilibrium E0 is locally stable when c < c∗, whereas
it looses its stability when c > c∗. As a consequence, the critical value c = c∗ is a
bifurcation value.

Next step is to investigate the nature of the bifurcation involving the disease-free
equilibrium E0 at c = c∗ (or equivalently at R0 = 1). This will be performed in the next
section.
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4 Bifurcation analysis

As mentioned in Section 1, when forward bifurcation occurs, the condition R0 < 1
is usually a necessary and sufficient condition for disease eradication, whereas it is no
longer sufficient when a backward bifurcation occurs. In fact, the backward bifurcation
scenario involves the existence of a subcritical transcritical bifurcation at R0 = 1 and of
a saddle-node bifurcation at R0 = Rsn0 < 1. The backward bifurcation scenario may
be qualitatively described as follows. In the neighborhood of 1, for R0 < 1, a stable
disease-free equilibrium coexists with two endemic equilibria: a smaller equilibrium
(i.e., with a smaller number of infective individuals) which is unstable and a larger one
(i.e., with a larger number of infective individuals) which is stable. These two endemic
equilibria disappear by saddle-node bifurcation when the basic reproductive number R0

is decreased below the critical value Rsn0 < 1.
For R0 > 1, there are only two equilibria: the disease free-equilibrium, which is

unstable, and the larger endemic equilibrium, which is stable. The qualitative bifurcation
diagrams describing the two types of bifurcation at R0 = 1 are depicted in Fig. 1.

(a) (b)

Fig. 1. Qualitative bifurcation diagrams for the forward (a) and backward (b)
bifurcations respectively. The bifurcation parameter is the basic reproductive number

R0. The solid lines (–) denotes stability; the dashed line (- -) denotes instability.

As a consequence, in the backward bifurcation scenario, ifR0 is nearly below unity,
then the disease control strongly depends on the initial sizes of the various sub-populations
of the models. On the contrary, reducing R0 below the saddle-node bifurcation value
Rsn0 , may result in disease eradication, which is guaranteed provided that the disease free
equilibrium is globally asymptotically stable. Hence, determining the sub-threshold Rsn0
may have a crucial importance in terms of disease control.

In the following we will make use of Theorem A, summarized in the appendix,
which has been obtained in [2] and is based on the use of the center manifold theory [25].
Theorem A prescribes the role of the coefficients a and b of the normal form representing
the system dynamics on the central manifold, in deciding the direction of the transcritical
bifurcation occurring at φ = 0 (see appendix and the notation defined therein). More
precisely, if a < 0 and b > 0, then the bifurcation is forward; if a > 0 and b > 0 then the
bifurcation is backward.
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We apply Theorem A to show that system (1) may exhibit a backward bifurcation
when c = c∗ = (µ+α)µ(ξ+µ)

π(β1µ+ξβ2)
. First of all, observe that the eigenvalues of the matrix,

J(E0, c
∗) =


−ξ − µ 0 − (µ+α)µβ1

β1µ+ξβ2
+ α

ξ −µ − ξ(µ+α)β2

β1µ+ξβ2

0 0 (µ+α)µβ1

β1µ+ξβ2
+ ξ(µ+α)β2

β1µ+ξβ2
− α− µ

 ,
are given by:

λ1 = −ξ − µ; λ2 = −µ; λ3 = 0.

Thus λ3 = 0 is a simple zero eigenvalue and the other eigenvalues are real and negative.
Hence, when c = c∗ (or equivalently when R0 = 1), the disease-free equilibrium E0 is a
nonhyperbolic equilibrium: the assumption (A1) of Theorem A is then verified.

Now denote by w = (w1, w2, w3)T a right eigenvector associated with the zero
eigenvalue λ3 = 0. It follows:

(−ξ − µ)w1 +

[
− (µ+ α)µβ1

β1µ+ ξβ2
+ α

]
w3 = 0,

ξw1 − µw2 −
ξ(µ+ α)β2w3

β1µ+ ξβ2
= 0,[

(µ+ α)µβ1
β1µ+ ξβ2

+
ξ(µ+ α)β2
β1µ+ ξβ2

− α− µ
]
w3 = 0,

so that,

w =

(
−µ2β1 + ξβ2α

(ξ + µ)(β1µ+ ξβ2)
,−ξ(β1µ+ µβ2 + β2α+ ξβ2)

(ξ + µ)(β1µ+ ξβ2)
, 1

)T
. (5)

Furthermore, the left eigenvector v = (v1, v2, v3) satisfying v ·w = 1 is given by:

v1(−ξ − µ) + v2ξ = 0,

−v2µ = 0,

v1

[
− (µ+ α)µβ1

β1µ+ ξβ2
+ α

]
− v2ξ(µ+ α)β2

β1µ+ ξβ2

+v3

[
(µ+ α)µβ1
β1µ+ ξβ2

+
ξ(µ+ α)β2
β1µ+ ξβ2

− α− µ
]

= 0,

with v3 = 1. The left eigenvector v is thus:

v = (0, 0, 1). (6)

The coefficient a and b defined in Theorem A,

a =

3∑
k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(E0, c
∗), b =

3∑
k,i=1

vkwi
∂2fk
∂xi∂c

(E0, c
∗),
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may be now explicitly computed. Taking into account of system (1) and considering only
the nonzero components of the left eigenvector v, it follows that:

a = v3w
2
1

∂2f3
∂S2

(E0, c
∗) + 2v3w1w2

∂2f3
∂S∂V

(E0, c
∗) + 2v3w1w3

∂2f3
∂S∂I

(E0, c
∗)

+ v3w
2
2

∂2f3
∂V 2

(E0, c
∗) + 2v3w2w3

∂2f3
∂V ∂I

(E0, c
∗) + v3w

2
3

∂2f3
∂I2

(E0, c
∗)

and

b = v3w1
∂2f3
∂S∂c

(E0, c
∗) + v3w2

∂2f3
∂V ∂c

(E0, c
∗) + v3w3

∂2f3
∂I∂c

(E0, c
∗),

where

f1 = π − cβ1IS

1 + I
− ξS + αI − µS,

f2 = ξS − cβ2IV

1 + I
− µV,

f3 =
cβ1IS

1 + I
+
cβ2IV

1 + I
− αI − µI.

In view of (5) and (6), we then get:

a = −2
a0(µ+ α)

(β1µ+ ξβ2)2π
and b =

π(β1µ+ ξβ2)

µ(ξ + µ)
, (7)

where a0 = ξµβ2(β2 − β1)α+ (π + µ)
(
β1

2µ2 + ξ2β2
2
)

+ β2ξµ
(
µ(β1 + β2) + 2β1π

)
.

The coefficient b is always positive so that, according to Theorem A, it is the sign of the
coefficient a – and hence the sign of the quantity a0 – which decides the local dynamics
around the disease-free equilibrium for c = c∗.

In the following, we investigate the role specifically played by vaccination (ξ),
treatment (α) and transmission (β1, β2) parameters in the occurrence of backward or
forward bifurcations. For our convenience, we introduce the parameter β = β1 − β2.
In this way,

a0 = Aβ2 +Bβ + C,

where

A = (π + µ)µ2,

B = µβ2
(
2µ2 + ξµ+ 2πµ+ 2ξπ − ξα

)
,

C = (µ+ ξ)2(π + µ)β2
2 .

Both A and C are positive coefficients, whereas B is always positive provided that
α < µ+2π. On the contrary, if α > µ+2π, thenB > 0 if and only if ξ < ξ∗ = 2µ(µ+π)

α−µ−2π .

Introducing ∆ = B
2 − 4A C > 0, i.e.,

∆ = µ2(α+ µ)β2
2ξ
(
ξα− 4ξπ − 3ξµ− 4µ2 − 4πµ

)
,
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one gets that: (i) if α < 3µ + 4π, then ∆ < 0; (ii) if α > 3µ + 4π, then ∆ > 0 if and
only if ξ > ξ = 4µ(µ+π)

α−3µ−4π .
Now, by applying Theorem A, we may conclude that if a0 = Aβ2 +Bβ + C < 0,

a backward bifurcation occurs, whereas if a0 > 0, system exhibits a forward bifurcation.
We discuss these two cases separately.
Backward bifurcation. It is easy to verify that a0 < 0 if ∆ > 0 and B < 0. Hence, the
following conditions allow the existence of a backward bifurcation at c = c∗:

α > 3µ+ 4π,

ξ > ξ =
4µ(µ+ π)

α− 3µ− 4π
,

βa < β < βb,

(8)

where βa and βb are the real positive roots of the equation Aβ2 +Bβ + C = 0, namely

βa =
−B −

√
∆

2A
, βb =

−B +
√

∆

2A
.

Forward bifurcation. In this case it is easy to check that a0 is always positive if (i)
α < 3µ + 4π or (ii) α > 3µ + 4π and ξ < ξ = 4µ(µ+π)

α−3µ−4π . Furthermore, if (iii) ∆ > 0

and B < 0, then a0 > 0 if and only if β < βa or β > βb. More explicitly, each of the
following conditions allows the existence of a forward bifurcation at c = c∗:

α < 3µ+ 4π (9)

or

α > 3µ+ 4π,

ξ < ξ =
4µ(µ+ π)

α− 3µ− 4π

(10)

or


α > 3µ+ 4π,

ξ > ξ =
4µ(µ+ π)

α− 3µ− 4π
,

β < βa or β > βb.

(11)

5 Numerical verification

In this section we aim to provide a numerical verification of the above results and to show
their agreement with the ones obtained by Gumel and Moghadas, regarding the existence
of the endemic equilibria and their stability properties. We also put into evidence that the
bifurcation analysis may offer a unifying perspective of their results.

We consider the same parameter values used in [1]: π = 700, β2 = 0.000003, µ =
0.03. Then, in order to satisfy the inequalities (8) we take α > 3µ + 4π = 2800.09, i.e.,
α = 3150; these parameter values imply ξ = 0.24, so that we choose ξ = 0.6. According
to (8), we have a backward bifurcation at c = c∗, for βa = 0.000037 ≤ β ≤ βb =

www.lana.lt/journal



On the backward bifurcation of a vaccination model with nonlinear incidence 39

0.000106. This backward scenario implies a range in the bifurcation parameter for which
both the disease free equilibrium and the endemic equilibrium with the larger I value are
stable. In terms of the bifurcation parameter c, bistability occurs for c ∈ B, where B =
[c∗2, c

∗]. It is interesting to observe how the size of such bistability region B depends on the
value of β. As shown in Fig. 2, for the chosen parameter values, the maximum of the func-
tion f(β) = c∗(β)− c∗2(β) occurs for β ≈ 0.00006, which in turn corresponds to largest
range B. In order to make B as small as possible, one should take, for example, β ≈ βb.

4 5 6 7 8 9 10

x 10
−5

0

5

10

15

20

25

β

f(
β
)

β
a
 β

b
 

(a)

4 5 6 7 8 9 10

x 10
−5

−1

−0.5

0

0.5

1

1.5

2
x 10

6

β

f’ (β
)

β
a
 

β
b
 

(b)

Fig. 2. β-dependence of the difference between the transcritical bifurcation threshold c∗

and the saddle-node bifurcation threshold c∗2. (a) Plot of the function f(β) = c∗(β) −
c∗2(β) versus β. (b) Plot of the function f

′
(β) versus β.

Setting β = 0.000097, system (1) exhibits a backward bifurcation at c = c∗ =
17718.9187; the saddle-node bifurcation value is c∗2 = 17716.8243, Fig. 3(a). By choos-
ing instead β < βa or β > βb, a forward bifurcation occurs as stated by condition (11).
Fig. 3(b) illustrates the phenomenology related to the case β = 0.00002 < βa whereas
Fig. 3(c) shows the case β = 0.00012 > βb.

Furthermore, according to condition (9), a forward bifurcation occurs at c = c∗ =
14062.6687 by choosing α < 3µ + 4π = 2800.09 (i.e., α = 2500) and taking for the
other parameters the same values as before, Fig. 4(a).

Moreover, condition (10) is numerically validated in Fig. 4(b): choosing α > 3µ+
4π = 2800.09 (i.e., α = 3150) and ξ < ξ = 0.24 (i.e., ξ = 0.1) and keeping the other
parameter values as before, one gets a forward bifurcation at c = c∗ = 5318.2324.

We can now compare our findings with the results obtained in [1], where two sets
of parameter values are considered, leading to different dynamical situations.

Parameter set I: π = 700; β1 = 0.0001, β2 = 0.000003, µ = 0.03, c = 4,
α = 0.7, ξ = 0.6. In correspondence to these values, system (1) admits the disease-free
equilibrium as the only attractor [1].

Parameter set II: π = 700; β1 = 0.0001, β2 = 0.000003, µ = 0.03, c = 4,
α = 0.7, ξ = 0.3. In correspondence to these values, system (1) admits a unique stable
endemic equilibrium. Moreover, the disease-free equilibrium is unstable [1].
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Our bifurcation analysis allows to state that both these parameter sets fall into the
same bifurcation framework. In fact, in both these cases, condition (9) is verified (i.e.,
α = 0.7 < 3µ + 4π = 2800.09), allowing a forward bifurcation to occur. Moreover the
qualitative phenomenology related to this bifurcation framework can give direct indication
on the stability properties of the equilibria involved. For example, for the parameter set II,
the forward bifurcation value is c = c∗ = 2.6472. Hence, being c = 4 > c∗, it is possible
to conclude that, for this value of c, the disease free-equilibrium is unstable and the
endemic equilibrium E∗ is the only attractor for the system. Fig. 5 depicts this situation.
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Fig. 3. Bifurcation diagram in the plane (c, I∗). The solid lines (–) denote stability; the
dashed lines (- -) denote instability. (a) The case α > 3µ+4π, ξ > ξ and βa < β < βb:
α = 3150, ξ = 0.6, β = 0.000097. The numerical values for the other parameters
are as in [1]: π = 700, β2 = 0.000003, µ = 0.03. At c = c∗ = 17718.9187,
system (1) exhibits a backward bifurcation. (b) The case α > 3µ + 4π, ξ > ξ and
β < βa: α = 3150, ξ = 0.6, β = 0.00002. The other parameters are fixed as in
(a). At c = c∗ = 34156.9518, system (1) exhibits a forward bifurcation. (c) The case
α > 3µ + 4π, ξ > ξ and β > βb: α = 3150, ξ = 0.6, β = 0.00012. The other
parameters are fixed as in (a). At c = c∗ = 15491.9508, system (1) exhibits a forward

bifurcation.
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Fig. 4. Bifurcation diagram in the plane (c, I∗). The solid lines (–) denote stability;
the dashed lines (- -) denote instability. (a) The case α < 3µ + 4π: α = 2500. The
numerical values for the other parameters are as in Fig. 2(a): π = 700, β2 = 0.000003,
µ = 0.03, ξ = 0.6, β = 0.000097. At c = c∗ = 14062.6687, system (1) exhibits
a forward bifurcation. (b) The case α > 3µ + 4π, ξ < ξ = 0.24: α = 3150,
ξ = 0.1. The numerical values for the other parameters are as in Fig. 2(a): π = 700,
β2 = 0.000003, µ = 0.03, β = 0.000097. At c = c∗ = 5318.2324, system (1)

exhibits a forward bifurcation.
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Fig. 5. Bifurcation diagram in the plane (c, I∗). The solid lines (–) denote stability; the
dashed lines (- -) denote instability. The numerical values for the parameters are as in
parameter set II: π = 700; β1 = 0.0001, β2 = 000003, µ = 0.03, ξ = 0.3, α = 0.7.

With this choice c∗ = 2.6472.

We are thus in perfect accordance with the existence and stability results presented
in [1]. The above examples also suggest how the bifurcation analysis may be considered,
in this context, a useful and rich qualitative tool, since different cases related to specific
parameter sets (as parameter set I and parameter set II), may be read in the unified
perspective of the same bifurcation scenario.
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6 Epidemiological aspects of the results

The bifurcation analysis performed in the previous section deserves a deep discussion un-
der the epidemiological point of view. In fact, conditions (8)–(11), which are summarized
in Table 1, allow to answer two important questions. First, which are the mechanisms
responsible for the occurrence of a certain bifurcation scenario, i.e., forward or backward?
Second, inside each scenario, how can we act in way to eradicate the disease or eventually
to prevent disease outbreaks?

Table 1. Synoptic table of conditions (8)–(11).

Treatment Vaccination Transmission Bifurcation at c = c∗

α < 3µ+ 4π Forward
α > 3µ+ 4π ξ < ξ Forward
α > 3µ+ 4π ξ > ξ β < βa or β > βb Forward
α > 3µ+ 4π ξ > ξ βa < β < βb Backward

We begin by answering at the former. Our results show that the occurrence of
a certain kind of bifurcation critically depends on the interplay among three biological
mechanisms explicitly included in the model: vaccination, treatment and transmission.

Vaccines, as disease-control tools, aim to reduce the degree of susceptibility of
a healthy susceptible individual against a particular infection. Vaccination is mainly
characterized in terms of (i) vaccination rate, i.e., the rate at which susceptible individuals
are immunized (ii) efficacy, i.e., the percentage of susceptibles left unprotected even
if vaccinated. Both these features are included in model (1): the vaccination rate is
represented by the parameter ξ whereas the efficacy of vaccine is hidden in the preliminary
assumption β2 < β1, so that β2 = σβ1 where 0 < σ < 1 is the efficacy parameter.

Treatment of infected is represented through the parameter α and, according to
the model assumptions, treatment of infected individuals does not offer here permanent
immunity. Transmission mechanisms are related to the parameters β1 and β2.

Our analysis shows that – inside a fixed bifurcation framework – disease control
(eradication or prevention) may be obtained by suitably acting on the contacts c with
infected individuals. In model (1) the dependence of the basic reproductive number R0

on the parameter c may be obtained by observing that

dR0

dc
=

π(β1µ+ β2ξ)

µ(µ+ α)(µ+ ξ)
> 0

so that R0 is an increasing function of c: reducing the average number of contacts c,
causes the decreasing of R0.

Hence, in order to eradicate the disease or to prevent disease outbreaks, one has to
identify the critical contact value c∗ necessary to reduce R0 below 1. However, in the
presence of multiple endemic equilibria (as it may happen in the backward bifurcation
scenario), this might not be sufficient to eliminate the disease. For this reason, it is partic-
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ularly important to elucidate those mechanisms that can control or avoid such backward
situations.

Our analysis suggests that a key role in distinguishing between forward or backward
scenario, is played in primis by the therapeutic treatment α of infected individuals. If the
treatment α is kept below a certain threshold α∗ = α∗(µ, π) = 3µ + 4π, a forward
bifurcation occurs at c = c∗, or equivalently at R0 = 1.

If the therapeutic treatment α is above such threshold α∗, then it is the vaccination
rate level ξ to prescribe the occurrence of a backward or a forward scenario. If ξ is below
the critical value ξ, then a forward bifurcation occur at R0 = 1.

Finally, if the treatment α is above α∗ and the vaccination rate ξ is higher than
ξ, then the transmission parameters decide between the two bifurcation scenario. More
precisely, if β = β1−β2 is sufficiently small or sufficiently large (i.e., β < βa or β > βb),
then a forward bifurcation occurs. On the contrary, if β = β1 − β2 remains limited in a
certain range (i.e., βa < β < βb), then a backward bifurcation will occur.

In all the cases of forward bifurcation scenario, disease control may be performed
by reducing c below the transcritical bifurcation value c = c∗, so as to lower R0 below 1.

In the case of backward bifurcation scenario, disease control is not so smooth. Two
threshold values have in fact to be kept in mind: the critical value c = c∗ (equivalent to
R0 = 1) and the critical value c = c∗2 (equivalent toR0 = Rsn0 ) related to the saddle-node
bifurcation which causes the disappearing of the two (respectively stable and unstable)
endemic equilibria in the rangeR0 < 1. Disease eradication may be obtained by lowering
c below c∗2 so that R0 < Rsn0 : in this way, the disease free equilibrium will be the only
attractor for the system.

In conclusion, the above results indicate that a backward bifurcation scenario may
be encouraged by the standing of all these features: (a) sufficiently high therapeutic
treatment, i.e., higher than a certain threshold, only depending on natural death and
recruitment; (b) sufficiently high vaccination rate; (c) difference of transmission terms,
β1 − β2 bounded in a certain range.

Under the point of view of the disease control campaigns, public policy makers
might thus move on two fronts. First, try to avoid or to prevent the dangerous backward
scenario, by which disease endemicity could persist also under the classic threshold
R0 < 1. At this aim, they may act by keeping suitably low the therapeutic treatments
of infected individuals or the vaccination of the susceptible individuals. In this case the
disease control may straightly follow the classic road of reducing R0 below 1.

Second, if the backward scenario cannot be avoided, public policy makers have to
be particularly careful since simply keeping R0 < 1 may still result in endemicity of
the disease: in fact, in this case a reduction of the basic reproduction number below the
subthreshold Rsn0 is required in order to avoid the dangerous range [Rsn0 , 1]. This goal
may be obtained by reducing c under the threshold c∗2, through aimed public education
programs which, affecting individual behaviors, can act to properly reduce the contacts
and hence the disease transmission.
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7 Concluding remarks

In this paper we apply the bifurcation method introduced in [2] and based on the use of
the center manifold theory [25], to derive conditions – written in terms of the parame-
ters of the system – ensuring that either forward or backward bifurcation occurs for the
vaccination model introduced in [1]. Moreover, we provide a precise indication of the
bifurcation thresholds.

Through the qualitative analysis of the vaccination function (2), Gumel and Mogha-
das derived the condition ξ

′
(0) > 0 for the occurrence of the backward bifurcation. Our

conditions are different from this one mainly for two aspects: (i) They look as more feasi-
ble control conditions, since they clearly elucidate the role of vaccination, treatment and
transmission parameters for the occurrence of backward or forward bifurcation. This may
be particularly useful, since most of the related parameters (ξ, α, β1, β2) are likely to be
used as control parameters by public policy makers. (ii) Such quantitative conditions may
suggest more directly the qualitative biological mechanisms responsible for the backward
bifurcation.

Appendix

Let us consider a general system of ODEs with a parameter φ:

ẋ = f(x, φ), f : Rn ×R→ Rn, f ∈ C2(Rn ×R). (A1)

Without loss of generality, we assume that x = 0 is an equilibrium for (A1).

Theorem A. Assume:

(I) A = Dxf(0, 0) is the linearization matrix of system (A1) around the equilibrium
x = 0 with φ evaluated at 0. Zero is a simple eigenvalue of A and all other
eigenvalues of A have negative real parts;

(II) Matrix A has a (nonnegative) right eigenvector w and a left eigenvector v corre-
sponding to the zero eigenvalue.

Let fk denotes the kth component of f , and

a =

n∑
k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(0, 0), b =

n∑
k,i=1

vkwi
∂2fk
∂xi∂φ

(0, 0).

Then the local dynamics of system (A1) around x = 0 are totally determined by a and b.

(i) a > 0, b > 0. When φ < 0, with |φ| � 1, x = 0 is locally asymptotically stable and
there exists a positive unstable equilibrium; when 0 < φ � 1, x = 0 is unstable
and there exists a negative and locally asymptotically stable equilibrium;

(ii) a < 0, b < 0. When φ < 0, with |φ| � 1, x = 0 is unstable; when 0 < φ � 1,
x = 0 is locally asymptotically stable and there exists a positive unstable equilib-
rium;
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(iii) a > 0, b < 0. When φ < 0, with |φ| � 1, x = 0 is unstable and there exists
a locally asymptotically stable negative equilibrium; when 0 < φ � 1, x = 0 is
stable and a positive unstable equilibrium appears;

(iv) a < 0, b > 0. When φ changes from negative to positive, x = 0 changes its stability
from stable to unstable. Correspondently, a negative unstable equilibrium becomes
positive and locally asymptotically stable.

Proof. See [2].

Remark. Taking into account of Remark 1 in [2], we observe that if the equilibrium of
interest in Theorem A is a non negative equilibrium x0, then the requirement that w is
non negative is not necessary. When some components in w are negative, one can still
apply the theorem provided that w(j) > 0 whenever x0(j) = 0; instead, if x0(j) > 0,
then w(j) need not to be positive. Here w(j) and x0(j) denote the jth component of w
and x0 respectively.
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