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Visual analysis of self-organizing maps

Pavel Stefanovič, Olga Kurasova
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Abstract. In the article, an additional visualization of self-organizing maps (SOM) has been
investigated. The main objective of self-organizing maps is data clustering and their graphical
presentation. Opportunities of SOM visualization in four systems (NeNet, SOM-Toolbox, Data-
bionic ESOM and Viscovery SOMine) have been investigated. Each system has its additional tools
for visualizing SOM. A comparative analysis has been made for two data sets: Fisher’s iris data set
and the economic indices of the European Union countries. A new SOM system is also introduced
and researched. The system has a specific visualization tool. It is missing in other SOM systems. It
helps to see the proportion of neurons, corresponding to the data items, belonging to the different
classes, and fallen in the same SOM cell.

Keywords: multidimensional data visualization, self-organizing map (SOM), visualization of
SOM, u-matrix, SOM systems.

1 Introduction

A visualization of multidimensional data is a powerful tool helpful to analyze data, to
interpret the results of the analysis, and to draw conclusions on a structure of the data
analyzed. Two strategies for visualizing of multidimensional data can be distinguished:
direct visualization methods and projection methods based on the reduction of dimen-
sion. Some projection methods can be based on artificial neural networks. Each feature,
characterizing multidimensional data, is presented in a visual form by direct visualization
methods. The methods can be classified into geometric techniques (scatter plots, Andrews
curves, parallel coordinates, etc.), iconographic displays (Chernof faces, stars, etc.), and
hierarchical techniques (dimensional stacking, “trellis” display, hierarchical parallel coor-
dinates, etc.) [1]. Dimension reduction methods allow us to transform the points (vectors),
corresponding to multidimensional data, to a space of lower (2 or 3) dimension, and to
visualize two or three dimensional points in a scatter plot. The most popular methods
are the principal component analysis, the linear discriminant analysis, multidimensional
scaling [2], and locally linear embedding [3].

The artificial neural network (ANN) analysis tends to be an increasingly important
branch of computer science. ANN’s are helpful in solving various problems: classifica-
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tion, forecasting, pattern recognition, etc. They are also used in search of multidimen-
sional data projection onto a space of smaller dimension. ANN’s realize some dimension
reduction (projection) methods [4]. More popular methods are curvilinear component
analysis (CCA), auto-associative neural networks, neural scales, SAMANN, and self-
organizing maps (SOM). The CCA is a self-organizing neural network that performs two
tasks: vector quantization of the submanifold in the data set (input space) and nonlinear
projection of these quantizing vectors towards the output space, providing a revealing
unfolding of the submanifold. After learning, the network acquires the ability to contin-
uously map any new point from one space into another: forward mapping of new points
in the input space, or backward mapping of an arbitrary position in the output space [5].
Auto-associative neural networks are feed-forward neural networks trained to produce
an approximation of the identity mapping between network inputs and outputs using
back-propagation or similar learning procedures. The key feature of an auto-associative
network is a dimensional bottleneck between input and output [6]. Neural scales are based
on radial basis function (RBF) neural networks. The implementation of this principle by
a neural network is very simple. The RBF neural network is utilized to predict the coordi-
nates of the data point in the transformed feature space. The locations of the feature points
are indirectly determined by adjusting the weights of the network. The transformation is
determined by optimizing the network parameters in order to minimize a suitable error
measure that embodies the topographic principle [7]. Mao and Jain [8] have suggested a
neural network implementation of Sammon’s mapping as a method of multidimensional
scaling. A specific back-propagation learning rule has been developed to allow a normal
feed forward neural network to learn Sammon’s mapping in an unsupervised way, called
SAMANN.

The self-organizing maps as one type of the neural networks are commonly used for
visualizing of multidimensional data, too. The SOM is applied not only to visualize, but
also to cluster the data. Self-organizing maps can be combined with dimension reduction
methods as a multidimensional scaling [9, 10]. The self-organizing maps are applied in
various areas: medicine, financial, ecological, military, engineering, law enforcement,
and other fields. For example in the financial area, if we analyze historical data, we
can forecast the future stock prices. If we know the company or individual financial
capabilities, the networks decide to give them credit or not [11]. Also SOM can be used
for prediction of changes of bankruptcy classes [12].

The investigation of this article is focused on the opportunities to visualize the self-
organizing maps. In the simplest case, a table is created by the SOM. Each cell cor-
responds to a neuron of the SOM. The SOM table requires an additional visualization
because the simple table does not show how far the vectors, corresponding to the cells, are
in the input multidimensional space. The possibilities to visualize the SOM table in four
systems (NeNet, SOM-Toolbox, Databionic ESOM, and Viscovery SOMine) are analyzed
here. We introduce a new SOM system, which has a specific visualization way. As the
target of the SOM is data clustering and visualization, the systems are assessed according
to their ability to cluster and visualize data correctly. Each system investigated has its own
visualization way, so the main research object is to show various opportunities of the SOM
visualization and to introduce a new system, having a new specific visualization tool.
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2 Self-organizing maps

T. Kohonen began to explore self-organizing maps (SOM) in 1982. Almost thirty years
have passed since that time, but SOM not lose their popularity. New extensions and
modifications are developed constantly. The main objective of the SOM is to preserve the
topology of multidimensional data, i. e., to get a new set of the data from the input data
such that the new set preserves the structure (clusters, relationships, etc.) of the input data.
The SOM is applied to cluster and visualize the data. The self-organizing map is a set of
nodes, connected to one another via a rectangular or hexagonal topology. The rectangular
topology of SOM is presented in Fig. 1. Here a circle represents a node. The connections
between the inputs and the nodes have weights, so a set of weights corresponds to each
node. The set of weights forms a vector Mij , i = 1, . . . , kx, j = 1, . . . , ky that is usually
called a neuron or a codebook vector. In a rectangular SOM, kx is the number of rows, and
ky is the number of columns. Usually the self-organizing map is called a self-organizing
neural network. The dimension of the codebook vector is the same as that of the number
of inputs, Mij = {m1

ij ,m
2
ij , . . . ,m

n
ij} [13].

Fig. 1. Two-dimensional SOM (rectangular topology)

A self-organizing map (neural network) learns in an unsupervised manner. The learn-
ing starts from the components of the vectors Mij initialized at random. If n-dimensional
vectors X1, X2, . . . , Xm are needed to map, the components of these vectors x1, x2, . . . ,
xn are passed to the network as the inputs, where m is the number of the vectors, n
is the number of components of the vectors. At each learning step, an input vector
Xp ∈ {X1, X2, . . . , Xm} is passed to the neural network. The vector Xp is compared
with all the neurons Mij . Usually the Euclidean distance ‖Xp −Mij‖ between the input
vector Xp and each neuron Mij is calculated. The vector (neuron) Mc with the minimal
Euclidean distance to Xp is designated as a winner. The components of neurons are
adapted according to the learning rule:

Mij(t+ 1) =Mij(t) + hcij(t)
(
Xp −Mij(t)

)
. (1)

Here t is a number of iterations. The learning is repeated until the maximum number of
iterations is reached.
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After training the SOM network, its quality must be evaluated. Usually two errors
(quantization and topographic) are calculated. The quantization error EQE shows how
well neurons of the trained network adapt to the input vectors. Quantization error (2) is
the average distance between the data vectors Xp and their neuron-winners Mc(p).

EQE =
1

m

m∑
p=1

‖Xp −Mc(p)‖. (2)

The topographic error ETE shows how well the trained network keeps the topography of
the data analyzed. The topographic error (3) is calculated by the formula:

ETE =
1

m

m∑
p=1

u(Xp). (3)

If the neuron-winner of vector Xp is near the neuron, the distance from Xp to it is the
smallest one, disregarding to the neuron-winner, then u(Xp) = 0, otherwise, u(Xp) = 1.

When the network is trained, all the input vectors are passed to the network once
more and a set of the neurons-winners is found. Each neuron-winner corresponds to
one or more input vectors, i.e., the input vectors are distributed among the elements of
the map. In the simplest case, a table (grid) is created by the SOM (Table 1), the order
numbers of the input vectors, labels of classes that they belong to, or other information
about the input vectors are marked in the cells that correspond to their neurons-winners.
Thus, multidimensional data are transformed to some discrete structure in the SOM. This
fact can be regarded as a distribution of multidimensional data on the plane. Nodes of the
grid (the number of rows and columns) indicate a location of data on the plane. Table 1 is
obtained, when the iris data set, described in Subsection 3.1, is mapped in the SOM.

Table 1. Simple SOM table.

2,3 2 2 2,3 2
2,3 2 2 2 2
3 2,3 2 2 2 2
3 2
3 2 2
3 3 2 1
3 2 2 1 1

Such table is not highly informative, the table does not answer the question, how
much the vectors of the neighboring cells are close in the n-dimensional space. Therefore
it is necessary to seek ways for improving the quality of visualization which facilitates
the interpretation of results. Several visualization techniques have been developed. The
most popular one is based on the so-called unified distance matrix (u-matrix) [14]. The
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u-matrix shows the relations between the neighboring neurons.

u-matrix =


u11 u11|22 u12 u12|13 · · · u1ky

u11|21 u11|22 · · · u1ky||2ky

...
...

...
...

. . .
...

ukx1 ukx1||kx2 ukx2 ukx2||kx3 · · · ukxky

 . (4)

The values of elements uij|i(j+1)uij|(i+1)j are the distances between the neighboring
neurons Mij and Mi(j+1) (Mij and M(i+1)j), respectively. The values of elements uij
can be the average of neighboring elements of the u-matrix, e.g., if uij has four neighbors,
then uij = (ui(j−1)|ij + uij|i(j+1) + u(i−1)j|ij + u(i+1)j|i(j+1))/4, if the number of the
neighbors is smaller, the average is computed with a smaller number of elements.

The SOM is colored by the values of u-matrix elements. If the grey scale is used, a
dark color between the neurons corresponds to a large distance. A light color between
the neurons signifies that the codebook vectors are close to each other in the input space.
Light areas can be thought as clusters and dark areas as cluster separators. Not only
the grey scale is used. In many systems, other color scales are applied. The SOM,
represented by the u-matrix, is presented in Fig. 2. The color scale is displayed near
the SOM. The number denotes the values of u-matrix elements and that of the distances
between neighboring neurons.

Fig. 2. U-matrix representation in SOM.

3 Possibilities of SOM visualization

Currently, various systems of self-organizing maps have been designed. Each of them has
its own specific visualization techniques [15]. A comparative analysis of the graphical
result presentation in the SOM software is presented in [16]. In this article, other possi-
bilities are focused. In [16], SOM-Toolbox and Viscovery SOMine were analyzed, too.
However, these systems are upgraded so far, some features have been added which are
analyzed in this article. Here we analyze the possibilities of SOM visualization in four
systems: NeNet, SOM-Toolbox, Databionic ESOM and Viscovery SOMine and a new
system is introduced.
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3.1 Data sets analyzed

In order to demonstrate the possibilities for SOM visualization in various systems, two
data sets (Fisher’s iris data and economic indices of the European Union countries) are
used. The iris data set consists of the values of some features of three species of flowers:
Iris Setosa, Iris Versicolor and Iris Virginica [17]. Four features are measured: x1 is sepal
length, x2 is sepal width, x3 is petal length, and x4 is petal width. Four-dimensional
vectors X1, X2, . . . , X150 are formed, where Xi = (xi1, xi2, xi3, xi4), i = 1, . . . , 150.
The vectors X1, X2, . . . , X50 represent class I (Iris Setosa), vectors X51, X52, . . . , X100

represent class II (Iris Versicolor) and vectors X101, X102, . . . , X150 represent class III
(Iris Virginica).

The economic data set consists of the values of some features of the European Union
(EU) countries and countries, that strive to become EU members. We have chosen eco-
nomic indices of the EU countries in 2009 [18]: x1 is a compensation of employees,
x2 is the final consumption expenditure of households and non-profit institutions serving
the households, x3 is the final consumption expenditure of general government, x4 is
gross fixed capital formation (investments), x5 is goods and services, imports and exports,
x6 is labor productivity per person employed. Six-dimensional vectors X1, X2, . . . , X31

are formed, where Xi = (xi1, xi2, xi3, xi4, xi5, xi6), i = 1, . . . , 31. The vectors
X1, X2, . . . , X6 represent the countries, that established the European Union (Belgium,
German, France, Italy, Luxemburg and the Netherland) (class I), vectorsX7, X8, . . . , X15

represent the countries, that joined EU in 1957–1995 (Denmark, Ireland, Greece, Spain,
Austria, Portugal, Finland, Sweden, United Kingdom) (class II), vectors X16, X17, . . . ,
X27 represent the countries, that joined EU in 2004–2007 (Czech Republic, Estonia,
Cyprus, Latvia, Lithuania, Hungary, Malta, Poland, Slovenia, Slovakia, Bulgaria, Ro-
mania) (class III), X28, X29, . . . , X31 represent the countries, that are striving to be EU
members (Macedonia, Turkey, Iceland, Croatia) (class IV).

The first data set (iris) is commonly used for testing various data mining methods, as
well as visualization methods, because the structure of the data is known. Usually, the
vectors of class I form a cluster, and the vectors of classes II and III form another cluster.
The background of the other data set is economic. We want to see how the SOM clusters
these data, how the clusters differentiate in the map.

3.2 Visualization in NeNet

In the system NeNet, SOM visualization is based on the u-matrix [19]. Here shades
represent the u-matrix values. A light shade of cells and borders of the map cells denotes
that the codebook neighboring vectors are near to each other in the input space, while the
dark shades shows that they are far away. After the SOM has been trained using the iris
data set, the vectors of class I split off from that of classes II and III (Fig. 3). We can see
dark shades between the two clusters. There are no significant differences between the
vectors of classes II and III. If the vectors from two different classes fall in to the same
cell, it means that their features are similar.

If the economic data set is presented in the SOM, we can see a lot of vectors of
classes II, III and IV in one map side. They are separated from the vectors of class I by
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dark shades. In Fig. 4, we see the abbreviations of the names of countries. The numbers
near the abbreviations correspond to the numbers of the classes.

Two other views of u-matrix representation are possible in system NeNet (Fig. 4).
In the left map, we can see the class numbers not inside of the cells, but on the nodes.
The image in the right map looks like that, presented in Fig. 3, only there are no colored
borders and other shades are applied. We can see the same clusters of the data mapped.

Fig. 3. Iris data set (in the left) and economic data set (in the right) in 7 × 7 SOM,
created by system NeNet.

Fig. 4. Iris data set in 7× 7 SOM (optional visualization), created by system NeNet.

3.3 Visualization in SOM-Toolbox

Some representations of the u-matrix are possible in SOM-Toolbox, too [20]. SOM-
Toolbox is an additional toolbox of Matlab and it includes many functions for training
various topologies of SOM with various learning parameters, computing various errors of
qualities, visualizing SOM using u-matrices, component planes, computing correlation,
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clustering, etc. SOM-Toolbox also has some features of other data analysis methods re-
lated to vector quantization (k-means, learning vector quantization), dimension reduction
(principal component analysis, Sammon’s projection), etc.

As distinct from the system NeNet, the cells of the map, obtained using SOM-Toolbox,
are separated not by borders, but by the cells of the same size. So if we choose to train the
map of size 7× 7, we get the map of size 13× 13 as a result. The various u-matrix shades
can be used. The values of the u-matrix are represented in the scale near the map (Fig. 5).
We can see that the vectors in class I are distinguished from the vectors from classes II
and III by light shades (red, yellow and green), which means that they are far away from
one another. The dark shades (blue) show that the vectors are near. When the economic
data are mapped, a majority of the vectors from classes I and II falls on in the right corner
of the map, the vectors from classes III and IV falls on the other side.

Fig. 5. Iris data set (in the left) and economic data set (in the right) in 7 × 7 SOM,
created by SOM-Toolbox.

In Fig. 6, another view of the u-matrix is presented. We do not see the cells, but only
the nodes, like in the system NeNet. The clusters are divided by green, red and yellow
zones.

Fig. 6. Iris data set in 7×7 SOM (another view of u-matrix), created by SOM-Toolbox.

In this system, we can see component planes. The u-matrix, obtained according to the
features of data (a component of the vector), is represented in each component plane. The
component planes of the iris data set are presented in Fig. 7. The first map represents
the sepal length, the second one represents the sepal width, the third one represents the
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petal length and the fourth one represents the petal width. Component planes show which
feature has a more significant influence on the results of clustering.

Fig. 7. Iris data set in 7× 7 component planes, created by SOM-Toolbox.

3.4 Visualization in Databionic ESOM

The topology preservation of the SOM projection is of little use when using small maps.
Emergent phenomena involve by definition a large number of individuals, where large
means at least a few thousand. This is why Databionic use large SOM and this system is
called Databionic Emergent Self-Organizing Maps (ESOM) [21]. System is created for
large data sets, but also can be trained and using small data sets. The map results can
be visualized in various ways: p-matrix, u-matrix, Components planes, TwoMatch, Gap,
Opinion, Random and The Smoothed Data Histograms.

When the iris data set is mapped using Databionic ESOM (Fig. 8), we see clusters
similar to that, obtained by NeNet and SOM-Toolbox. The vectors in class I are separated
from that of classes II and III. As distinct from NeNet and SOM-Toolbox, there are no
borders of cells, and we cannot see the cells, because they are small enough, as a large
map (50 × 50). In this map, clusters are divided with different landscapes. For example,
brown areas shows different clusters are separated by the “mountains”. Blue areas show
“water”, which means that the vectors are near to each other. The distance scale which
represents all colors we can find in system options.

Fig. 8. Iris data set (in the left) and economic data set (in the right) in 50 × 50 SOM,
created by system Databionic ESOM.

In this system, the class labels must to be written in numerical values, so in order to
map the economic data set, only the class numbers without abbreviations are presented
in Fig. 8. The brown arcs separate the vectors of classes I and II from that of classes
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III and IV, like “mountains”. The vectors in classes III and IV are placed in the same
blue area, which looks like “water”. Such a cluster extraction method is unusual. The
similarities and differences between the data are expressed distinctly. Some other visual
representations of SOM are presented in Fig. 9.

Fig. 9. Iris data set in 50× 50 SOM (left – p-matrix, centre – components planes, right
– opinion), created by system Databionic ESOM.

3.5 Visualization in Viscovery SOMine

The system Viscovery SOMine is a commercial program [22]. The system is updated
constantly. In this system, a user can find a lot of various possibilities. Due to capacity of
the system, its usage is much more complex than that of the system, investigated before.
After the SOM training, it is possible to see the u-matrix of each parameter (component
planes), but the user can configure the views how he (she) wants. When the iris data set is
analyzed, the system sets three clusters automatically (Fig. 10), but the user can select the
number of the clusters manually. In Fig. 10, we see only the vectors from class I in the
red cluster, only the vectors of classes III in the yellow cluster, and the vectors of classes
II and III in the light blue cluster.

When the economic data set is mapped, the system sets seven clusters automatically. If
we set four clusters as we have four classes, the result obtained is presented in Fig. 10. The

Fig. 10. Iris data set (in the left) and economic data set (in the right) in SOM, created
by system Viscovery SOMine.

Nonlinear Anal. Model. Control, 2011, Vol. 16, No. 4, 488–504



498 P. Stefanovič, O. Kurasova

majority of vectors from classes III, IV is assigned to the light blue cluster. The vectors
from classes I, II are assigned to the red and yellow clusters, and a vector from class I
(Germany) is assigned to the green cluster. There is no distance scale between vectors,
but the system allows us a clear view of clusters. Viscovery SOMine has some optional
visualization views: shaded clusters, flat clusters, global shading and u-matrix (Fig. 11).

Fig. 11. Iris data set in SOM (left – flat clusters, middle – global shading, right –
u-matrix), created by system Viscovery SOMine.

4 A new system of SOM

The analysis of SOM systems has showed that the systems have many possibilities to
visualize SOM’s. However systems have a common disadvantage. If the classes, to which
the data belong to, are known, and the labels of the classes are displayed in the map, it is
difficult to understand how much the vectors from one or other class correspond to a cell
(neuron), because usually only different (but not the same) labels are shown. Especially
it is important, whether the vectors from different classes fall into a cell. We do not
know how many vectors are from of the same class or of different class, and what their
proportions are.

In order to solve the problems, some ways are developed in the systems. For example,
a histogram map is implemented in the system NeNet (Fig. 12). The histogram shows
how many vectors fall into a cell, but it is not obvious how many vectors are from one or
another class. It is possible to create a map, where all the labels (not only different) are
shown, in SOM-Toolbox (Fig. 13). The view of such a map is very complicate, because
the labels are overlapping, it is not clear which label corresponds to which cell. The
systems Databionic ESOM and Viscovery SOMine do not even have such abilities.

We have developed a new SOM system, which allows us to see how many vectors
and which classes they belong to fall into the same cell of a map. Besides a new way for
visualizing SOM, a neighborhood function, different than in other systems is implemented
in the new system. Usually, Gaussian and bubble neighborhood functions are used.
However other neighborhood function (5) is implemented in the new system [23].

hcij =
α

αηcij + 1
, where α = max

(
e+ 1− ê

e
, 0.01

)
. (5)
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Fig. 12. Histogram map, obtained by the
system NeNet.

Fig. 13. SOM, obtained by SOM-Toolbox,
where all labels are shown.

Here e is the number of epochs, set before training, ê is the number of the current epoch,
ηcij is the neighboring rank between Mc and Mij . The neurons Mij are recalculated in
each epoch, if inequality (6) is valid:

ηcij ≤
[
αmax(kx, ky; 1)

]
. (6)

The system is implemented in Matlab. The graphical user interface of the system is
presented in Fig. 14. Before training, the map size (the numbers of rows and columns) has

Fig. 14. Iris data set in 10× 10 SOM, created by the new system.
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to be chosen. We also have to choose the number of epochs, i.e., how many times vectors
will be presented to the network and load a data set. The data set have to be written in txt
file. Data must be written in rows, the last column is for labels of data classes.

After the iris data has been analyzed, a map, obtained by the new system, is presented
in Fig. 14. Little pie charts are shown in the cells of SOM. The pie shows a proportion
between the vectors that belong to the different classes and fall into a cell. The blue pie
and a slice of pie correspond to the vectors of class I. The light blue pie and a slice of
pie correspond to the vectors of class II. The green pie and a slice of pie correspond to
the vectors from class III. The vectors from class I fall into cells in the right corner at the
bottom of the map. The vectors of classes II and III are distributed in the other part of
the map. There are some empty cells between the cluster of class I and the vectors from
classes II and III. It means that these clusters are far away from one another. There is no
distance scale in this system, so we cannot say how far neuron-winners are. Some pies
are formed from two slices of different colors. If one vector from class II and two vectors
from class III fall into a cell, the light blue slice takes 1/3 of the pie, and the green slice
takes 2/3 of the pie.

After the economic data set has been analyzed, the map obtained is presented in Fig. 15.
Only the vectors of class I are mostly distributed on the right side of the map. The vectors
of class II are distributed in the center. The vectors of classes III and IV are mostly
distributed on the left corner at the top. Some vectors from different classes also fall into
the same cell, so some pies are formed from the slices of different colors.

Fig. 15. Economic data set in 10× 10 SOM, created by new system.

Visualization by proportions also has its own drawbacks – what if there is a much
larger number of classes and a much larger number of instances, especially if the numbers
of different instances, which belong to different classes, vary a lot (e.g., from 1 to 100) –
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the visualization can become very complex and confusing. So, the new system introduced
can be used when the data with some classes (not more five) are analyzed. When the
data with more than five are analyzed, the most of clustering methods confronts with
difficulties. In the other hand, usually the number of classes of the data from the practical
problems is not exceeding five. Thus, the new system can be applied successfully in a lot
of applications.

The proposed system distinguishes by possibility to show the proportion of neurons,
corresponding to the data items, belonging to the different classes, and fallen in the same
SOM cell. The simple way for SOM visualization, implemented in the system, solves the
problem that occurred in the other SOM systems analyzed.

5 Comparison of systems

All self-organizing map systems have the advantages and disadvantages. In order to
compare all systems seven criteria were selected. The results are presented in Table 2:
the plus sign means that system has this possibility and the minus sign means that the
possibility is missing.

As we can see in the Table 2, the system NeNet has the most limited usages, so it
is useful only for beginners. The system Databionic ESOM and Viscovery SOMine have
some disadvantages which are not so important for data analysis. The most universal
systems are SOM-Toolbox and the new proposed SOM system. Both them can be the
perfect choice for deep analysis of any data set.

Table 2. System comparison by the criteria selected.
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NeNet − − − + + − −
SOM-Toolbox + + − + + + +
Databionic ESOM + − − − + − −
Viscovery SOMine + − − + + − −
New system of SOM + + + + − + +
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6 Conclusions

The self-organizing maps have possibilities not only to cluster, but also to visualize mul-
tidimensional data. However the simple SOM table is not enough in order to reveal the
characteristics of the data analyzed. It is necessary to supplement the table with extra
information, i.e., to visualize the table additionally.

In this article, some ways for visualization of self-organizing maps have been investi-
gated. Various ways are implemented in the popular systems. Four systems (NeNet, SOM-
Toolbox, Databionic ESOM and Viscovery SOMine) have been analyzed here. All of
them have the possibility to visualize SOM by the u-matrix, but they use different shades.
Other visualization ways (e.g., p-matrix, component planes, etc.) are implemented in
some of the systems. In order to demonstrate the abilities of the systems, the iris and
economic data sets are mapped in SOM. The experiments have showed that all the systems
cluster and visualize both data sets rather similarly. The clusters are expressed in some
systems quite differently than in the other ones. We recommend using several systems to
obtain some various maps. They help to draw conclusions on the data sets analyzed. The
systems are compared by some criteria. The conclusions are done that the system NeNet
is useful only for beginners and for educational purposes, the most universal systems are
SOM-Toolbox and the new proposed system.

The new system for SOM visualization has been introduced and investigated here.
The new way of visualization of data with the known classes are implemented in this
system. The system differs from the others in the fact that the map shows the propor-
tions between the data belong to the different classes and fall into a cell. This feature is
missing in the other systems. The new system allows us to investigate properties of SOM.
Different learning rates, neighboring functions and learning steps (epochs and iteration)
are implemented in the system. Such extensions help to analyze the data sets in different
ways.
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