
Nonlinear Analysis: Modelling and Control, 2012, Vol. 17, No. 1, 47–59 47

Unsteady three dimensional flow of couple stress fluid
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Abstract. The unsteady three-dimensional flow of couple stress fluid over a stretched surface is
investigated. Analysis has been performed in the presence of mass transfer and chemical reaction.
Nonlinear flow analysis is computed by a homotopic approach. Plots are presented and analyzed for
the various parameters of interest. A comparative study with existing solutions in a limiting sense
is made.
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1 Introduction

The fluid flows with chemical reaction have attracted the attention of engineers and sci-
entists in the recent times. Such flows have key importance in many processes includ-
ing drying evaporation at the surface of a water body, energy transfer in a wet cooling
tower, flow in a desert cooler, generating electric power, food processing, groves of fruit
trees, crops damage because of freezing etc. There is always a molecular diffusion of
species in the presence of a chemical reaction within or at the boundary during several
practical diffusive operations. There are two types of reactions namely homogeneous and
heterogenous. A homogeneous reaction takes place uniformly in the entire given phase
whereas a heterogeneous reaction exists in a restricted region or within the boundary
of a phase. The smog formation is an important example representing a first-order ho-
mogeneous chemical reaction. Several researchers in view of such facts are engaged for
the discussion of flows with chemical reactions. For-instance Kandasamy et al. presented
group analysis for Soret and Dufour effects on free convective heat and mass transfer with
thermophoresis and chemical reaction over a porous stretching surface in the presence of
heat source/sink. Pal and Talukdar [1] presented the combined effects of Joule heating
and chemical reaction on unsteady magnetohydrodynamic mixed convection with viscous
dissipation over a vertical plate in the presence of porous media and thermal radiation.
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Effects of chemical reaction and thermal radiation on heat and mass transfer flow of MHD
micropolar fluid in a rotating frame of reference are analyzed by Das [2]. Joneidi et al. [3]
presented analytical treatment of MHD free convection flow over a stretching sheet with
chemical reaction. Recently Hayat and Nawaz [4] discussed unsteady stagnation point
flow of viscous fluid due to rotating disk in presence of chemical reaction.

Understanding and modelling the flows of non-Newtonian fluids are of both fun-
damental and practical significance in the industrial and engineering applications. The
rheological characteristics of such fluids are important in the flows of nuclear fuel slurries,
lubrication with heavy oils and greases, paper coating, plasma and mercury, fossil fuels,
polymers etc. Further, these fluids have a nonlinear relationship between the shear stress
and shear rate. The associated equations of non-Newtonian fluids are very complex and
higher order than the governing equations in viscous fluid. However during the past
few decades there has been ample literature on various aspects of non-Newtonian fluids
which is documented in the books [5–7]. At present many recent researchers are also
engaged in the analysis of rheological characteristics of non-Newtonian fluids (see some
studies [8–17]).

The boundary layer flow over a stretched surface has an increasing interest of the
researchers due to its applications viz in the polymer processing of a chemical engineer-
ing plants, continuous casting, cable coating, glass blowing and spinning of synthetic
fibers. Crane [18] initiated the study of two-dimensional boundary layer flow induced by
the stretching of a flat elastic sheet. Later, extensive research works on various aspects
of stretched flows have been presented. Some recent contributions on the topic can be
seen through the investigations [19–24]. In view of flow diversity in nature, all the non-
Newtonian fluids cannot be described by a single constitutive relationship between shear
stress and shear rate. Among these the stress tensor for couple stress fluid is not symmetric
and hence the flow behavior cannot be predicted by the Naviers-stokes theory. The fluid
consisting of rigid randomly oriented particles suspended in a viscous medium such as
blood, lubricants containing small amount of polymer additive, electro rheological fluids
and synthetic fluids are examples of couple stress fluids. Devakar et al. [25] examined
the Stokes’ problems for an incompressible couple stress fluid. Srivastava [26] discussed
flow of a couple stress fluid representing blood through stenotic vessels with a peripheral
layer. Flow and heat transfer of couple stress fluid in a porous channel with expanding
and contracting walls has been observed by Srinivasacharya et al. [27]. Squeeze film
characteristics of finite journal bearings: couple stress fluid model has been examined by
Lin [28]. Lin and Hung [29] also studied the combined effects of couple stresses and fluid
inertia on the squeeze film characteristics between a long cylinder and an infinite plate.
Jian et al. [30] examined nonlinear dynamic analysis of a hybrid squeeze-film damper-
mounted rigid rotor lubricated with couple stress fluid and active control. Alyaquot and
Elsharkawy [31] investigated the optimal film shape for two-dimensional slider bearings
lubricated with couple stress fluids.

It is noted that unsteady three dimensional boundary layer flow of a couple stress
fluid has not been reported so far. Thus the purpose of current investigation is to examine
the mass transfer effect on unsteady three dimensional flow of couple stress fluid over
a stretching surface with chemical reaction. Mathematical formulation has been presented
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in Section 2. Section 3 contains the solution of problem by employing homotopy analysis
method HAM [32–35]. Sections 4 and 5 present the convergence and discussion of the
solutions. Sections 6 contains the final conclusions

2 Mathematical formulation

Consider the three-dimensional unsteady flow of an incompressible couple stress fluid
over a surface at z = 0. The motion in fluid is created by a stretching surface. In usual
notations, the continuity, momentum and concentration equations for the boundary layer
flow can be expressed as

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (1)
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subject to the boundary conditions

u =
ax

1− ct
, v =

by

1− ct
, w = 0, C = Cw at z = 0,

u→ 0, v → 0,
∂u

∂z
→ 0,

∂v

∂z
→ 0, C → C∞ as z →∞.

(5)

Here u, v and w are the velocities in the x, y and z directions, respectively, ν =
µ/ρ the kinematic viscosity, ν′ = n/ρ the couple stress viscosity, ρ the density, C the
concentration of species, D the coefficients of diffusing species, K(t) = K1/(1− ct) the
reaction rate, Cw the concentration at the surface, C∞ the concentration far away from
the sheet, Tw the surface temperature and T∞ the temperature far away from the surface.

The following transformations

η =

√
a

ν(1− ct)
z, u =

ax

1− ct
f ′(η),

v =
ay

1− ct
g′(η), w = −

√
aν

1− ct
{
f(η) + g(η)

}
, (6)

φ(η) =
C − C∞
Cw − C∞

, Cw − C∞ =
ex

1− ct
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identically satisfy the continuity equation. However Eqs. (2)–(6) take the following forms:

f ′′′ − f ′′ + (f + g)f ′′ −A
(
f ′ +

η

2
f ′′
)
−Kfv = 0, (7)

g′′′ − g′2 + (f + g)g′′ −A
(
g′ +

η

2
g′′
)
−Kgv = 0, (8)

φ′′ + Sc(f + g)φ′ − ScA

(
φ+

η

2
φ′
)
− Sc γφ− Sc φf ′ = 0, (9)

f(0) = 0, g(0) = 0, f ′(0) = 1, g′(0) = c, φ(0) = 1,

f ′(∞) = 0, g′(∞) = 0, f ′′(∞) = 0, g′′(∞) = 0, φ(∞)→ 0,
(10)

in whichA = c/a is the time dependent parameter, K = ν′a/ν2(1−ct) the couple stress
parameter, prime for the differentiation with respect to η and the constants a > 0 and
b > 0. The stretching ratio c, Schmidt number Sc, chemical reaction parameter γ are as
follows:

c =
b

a
, Sc =

ν

D
, γ =

K1

a
. (11)

We point out that the two-dimensional (g = 0) case has been recovered for c = 0. For
c = 1, we obtain axisymmetric case, i.e., (f = g) and for (A = 0) the system of
Eqs. (7)–(9) reduce to the steady situation.

3 Series solutions

3.1 0th-order deformation problems

For the development of the homotopy solutions, the functions f(η), g(η) and φ(η) in the
set of base functions {

ηk exp(−nη)
∣∣ k ≥ 0, n ≥ 0

}
(12)

can be introduced as follows:

f(η) = a00,0 +

∞∑
n=0
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k=0

akm,nη
k exp(−nη), (13)

g(η) = A0
0,0 +
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n=0
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k=0

Akm,nη
k exp(−nη), (14)

φ(η) =

∞∑
n=0

∞∑
k=0

ckm,nη
k exp(−nη), (15)

with the following initial guesses and auxiliary linear operators

f0(η) = 1− exp(−η), g0(η) = c
(
1− exp(−η)

)
, φ0(η) = exp(−η), (16)

Lf =
d3f

dη3
− df

dη
, Lg =

d3g

dη3
− dg

dη
, Lφ =

d2φ

dη2
− φ. (17)
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Obviously the linear operators have the following properties

Lf
[
C1 + C2 exp(η) + C3 exp(−η)

]
= 0, (18)

Lg
[
C4 + C5 exp(η) + C6 exp(−η)

]
= 0, (19)

Lφ
[
C7 exp(η) + C8 exp(−η)

]
= 0, (20)

where C1 − C8 are the constants and akm,n, A
k
m,n and ckm,n are the coefficients. The

problems at the 0th order can be expressed as
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ḡ(η, p)− g0(η)

]
= p~gNg

[
f̄(η, p), ḡ(η, p)
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]
=
∂3f̄

∂η3
−
(
∂f̄

∂η

)2

+
{
f̄(η, p) + ḡ(η, p)
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(
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)∂φ̄(η; p)

∂η
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(
φ̄(η; p) +

η

2
φ̄′(η; p)

)
− Scγφ̄(η; p)− Scφ̄(η; p)f̄ ′(η, p), (27)

where ~f , ~g , ~φ the auxiliary non-zero parameters and p ∈ [0, 1] is an embedding
parameter. When p = 0 and p = 1, we obtain

f̄(η, 0) = f0(η), f̄(η, 1) = f(η), (28)
ḡ(η, 0) = g0(η), ḡ(η, 1) = g(η), (29)
φ̄(η; 0) = φ0(η), φ̄(η; 1) = φ(η). (30)
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Through Taylor series expansion one obtains

f̄(η, p) = f0(η) +

∞∑
m=1

fm(η)pm, (31)

ḡ(η, p) = g0(η) +

∞∑
m=1

gm(η)pm, (32)

φ̄(η; p) = φ0(η) +

∞∑
m=1

φm(η)pm, (33)

with

fm(η) =
1

m!

∂mf̄(η, p)

∂pm
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p=0

, (34)

gm(η) =
1

m!

∂mḡ(η, p)

∂pm

∣∣∣∣
p=0

, (35)

φm(η) =
1

m!

∂mφ̄(η; p)

∂pm
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p=0

. (36)

The convergence of series (31)− (33) depends upon the auxiliary parameters ~f , ~g and
~φ. The values of ~f , ~g and ~φ have been selected in the manner that the series (31)–(33)
converge at p = 1. Hence

f(η) = f0(η) +

∞∑
m=1

fm(η), (37)

g(η) = g0(η) +

∞∑
m=1

gm(η), (38)

φ(η) = φ0(η) +

∞∑
m=1

φm(η). (39)

3.2 mth order deformation problems

Here the problems are given by

Lf
[
fm(η)− χmfm−1(η)

]
= ~fRf,m(η), (40)

Lg
[
gm(η)− χmgm−1(η)

]
= ~gRg,m(η), (41)

Lφ
[
φm(η

)
− χmφm−1(η)

]
= ~φRφm(η), (42)

fm(0) = f ′m(0) = f ′m(∞) = f ′′m(∞) = gm(0)

= g′m(0) = g′m(∞) = g′′m(∞) = 0,

φm(0) = 0, φm(∞) = 0,

(43)
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Rfm(η) = f ′′′m−1 −A
(
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2
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)
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+
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k=0

[
(fm−1−k + gm−1−k)f ′′k − f ′m−1−kf ′k

]
, (44)
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)
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+
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]
, (45)

Rφm(η) = φ′′m−1 − Sc γφm−1 − ScA

(
φm−1 +

η

2
φ′m−1

)
+ Sc

m−1∑
k=0

[
(fm−1−k + gm−1−k)φ′k − φm−1−kf ′k

]
, (46)

χm =

{
0, m ≤ 1,

1, m > 1.
(47)

The equations (40)–(42) have been solved one after the other in the order m = 1, 2, 3, . . .
by employing Mathematica.

4 Convergence of the series solutions

Here our desire is to ensure the convergence of the obtained series solutions. Thus Figs. 1
and 2 have been plotted for the admissible values of ~f , ~g and ~φ regarding convergence
of the solutions (37)–(39). Ultimate the admissible values have been noticed in the ranges
−1.25 ≤ ~f , ~g ≤ −0.25 and −1 ≤ ~φ ≤ −0.5. Further ~f = −0.7 = ~g = ~φ one has
the better solution.

Fig. 1. ~-curves of f and g. Fig. 2. ~-curve of φ.

Table 1 is presented to find that how much order of approximations are necessary
for a convergent solution. It is noticed that 15th order approximations are sufficient for
the velocity fields whereas 25th order of approximation are required for the concentration
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field. Table 2 provides a comparative study for viscous flow. It is found that HAM solution
in a limiting case of present study has a good agreement with the exact and HPM solutions
provided in [27].

Table 1. Convergence of the HAM solutions for different order of approximations when
c = 0.5, A = 0.6, K = 0.5, Sc = γ = 1.

Order of −f ′′(0) −g′′(0) −φ′(0)
approximation

1 1.21933333 0.55133333 1.5658333
2 1.26218363 0.56192793 1.6216753
5 1.27716191 0.56371964 1.6491773

10 1.27749261 0.56359020 1.6496750
15 1.27749261 0.56358705 1.6496764
20 1.27749258 0.56358694 1.6496764
25 1.27749257 0.56358692 1.6496764
30 1.27749257 0.56358692 1.6496764
40 1.27749257 0.56358692 1.6496764
50 1.27749257 0.56358692 1.6496764

Table 2. Illustrating the variation of −f ′′(0) and −g′′(0) with c when A = 0 = K
using HAM, HPM [27] and exact solution [27].

c −f ′′(0) −g′′(0)
HAM HPM [27] Exact [27] HAM HPM [27] Exact [27]

0.0 1 1 1 0 0 0
0.1 1.020259 1.017027 1.020259 0.066847 0.073099 0.066847
0.2 1.039495 1.034587 1.039495 0.148736 0.158231 0.148736
0.3 1.057954 1.052470 1.057954 0.243359 0.254347 0.243359
0.4 1.075788 1.070529 1.075788 0.349208 0.360599 0.349208
0.5 1.093095 1.088662 1.093095 0.465204 0.476290 0.465204
0.6 1.109946 1.106797 1.109946 0.590528 0.600833 0.590528
0.7 1.126397 1.124882 1.126397 0.724531 0.733730 0.724531
0.8 1.142488 1.142879 1.142488 0.866682 0.874551 0.866682
0.9 1.158253 1.160762 1.158253 1.016538 1.022922 1.016538
1.0 1.173720 1.178511 1.173720 1.173720 1.178511 1.173720

5 Results and discussion

Computations for the effects of different parameters on velocity and concentration fields
have been carried out and Figs. 3–11 have been displayed. The variations of K on f ′ and
g′ are presented in the Figs. 3 and 4. It is observed the f ′ and g′ are decreasing functions
of the couple stress parameter K. It is noted that couple stress parameter is dependent
upon the couple stress viscosity n and this couple stress viscosity acts as a retarding
agent which makes the fluid more denser resulting into a decrease in the velocity of the
fluid. The variations of A on f ′ and g′ are presented in the Figs. 5 and 6. These figures
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elucidate that both the velocity components decrease with an increase in A. It is due to
the fact that A is inversely proportional to the stretching coefficient a. Thus an increase in
A decreases the stretching ratio. As a consequence the velocity decreases. Hence larger
values of A accompany with positive value of couple stress parameter K will retards the
flow. From physical point of view we can conclude that flow over the stretched surface
can be controlled very accurately by an increase (or decrease) in the velocity of stretching.

Fig. 3. Influence of K on f ′. Fig. 4. Influence of K on f ′.

Fig. 5. Influence of A on f ′. Fig. 6. Influence of A on g′.

The variations of A, K, γ and Sc on the concentration field φ are portrayed in the
Figs. 7–11. Fig. 7 plots the influence of A on concentration field φ. It is observed that
concentration field φ is an increasing function of A, Since stretching velocity can control
the fluid motion making the system more susceptible to the concentration of species. The
effect of K on φ has been shown in Fig. 8 which shows that φ is an increasing function of
K. The concentration boundary layer also increases with an increase inK. Fig. 9 explains
the variation of generative (γ < 0) chemical reaction on the concentration field φ. It is
noted that generative (γ < 0) chemical reaction causes an increase in the concentration.
Fig. 10 predicts the effects of destructive (γ > 0) chemical reactions on φ. It is noticed
that φ decreases in case of destructive (γ > 0) chemical reaction. It is also noted that the
magnitude of φ is larger in case of generative chemical reaction (γ < 0) in comparison to
the case of destructive chemical reaction (γ > 0). Physically for generative case, chemical
reaction γ takes place without creating much disturbance whereas disorder in the case of
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destructive chemical reaction is much larger. Due to this fact molecular motion in the
case of (γ > 0) is quite larger which finally results into an increase in the mass transport
phenomenon. Finally Fig. 11 plots the effects of Schmidt number Sc on the concentration
field. This figure elucidates that concentration field φ decreases with an increase in Sc.
From the definition of Schmidt number given in Eq. (11), it is clearly observed that Sc
is inversely proportional to the diffusion coefficient D. Therefore larger values of Sc
correspond to a decrease in the concentration field.

Fig. 7. Influence of A on φ. Fig. 8. Influence of K on φ.

Fig. 9. Influence of γ < 0 on φ. Fig. 10. Influence of (γ > 0) on φ.

Fig. 11. Influence of Sc on φ.
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6 Concluding remarks

Effects of mass transfer on the unsteady three-dimensional flow of couple stress fluid over
a stretching sheet is investigated in the presence of chemical reaction. The main observa-
tions have been listed below.

• Velocity field f ′ and boundary layer thickness are decreasing functions ofA andK.

• Variations of A and K on f ′ for two-dimensional, three dimensional and axisym-
metric flow are qualitatively similar.

• The effects of A and K on f ′ and g′ are similar.

• Influence of A and K on velocity and concentration fields are opposite.

• Concentration field φ is a decreasing function of Schmidt number Sc.

• The concentration field φ has opposite results for destructive (γ > 0) and generative
(γ < 0) chemical reactions.

Acknowledgement

First author as a visiting Professor thanks the support of Global Research Network for
Computational Mathematics and King Saud University for this work.

References

1. D. Pal, B. Talukdar, Combined effects of Joule heating and chemical reaction on unsteady
magnetohydrodynamic mixed convection of a viscous dissipating fluid over a vertical plate in
porous media with thermal radiation, Math. Comput. Modelling, 54, pp. 3016–3036, 2011.

2. K. Das, Effect of chemical reaction and thermal radiation on heat and mass transfer flow of
MHD micropolar fluid in a rotating frame of reference, Int. J. Heat Mass Transfer, 5, pp. 3505–
3513, 2011.

3. A.A. Joneidi, G. Domairry, M. Babaelahi, Analytical treatment of MHD free convective flow
and mass transfer over a stretching sheet with chemical reaction, J. Taiwan Inst. Chem. Eng.,
41, pp. 35–43, 2010.

4. T. Hayat, M. Nawaz, Unsteady stagnation point flow of viscous fluid caused by an impulsively
rotating disk, J. Taiwan Inst. Chem. Eng., 42, pp. 41–49, 2011.

5. R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of polymeric liquids, Fluid Mechanics,
Vol. 1, 2nd edition, John Wiley, New York, 1987.

6. R.I. Tanner, Engineering Rheology, Oxford Univ. Press, New York, 1988.

7. A.H.D. Skelland, Non-Newtonian Flow and Heat Transfer, John Wiley, New York 1967.

8. C. Fetecau, J. Zierep, R. Bohning, C. Fetecau, On the energetic balance for the flow of an
Oldroyd-B fluid due to a flat plate subject to a time-dependent shear stress, Comput. Math.
Appl., 60, pp. 74–82, 2010.

Nonlinear Anal. Model. Control, 2012, Vol. 17, No. 1, 47–59



58 T. Hayat et al.

9. C. Fetecau, T. Hayat, M. Khan, C. Fetecau, A note on longitudinal oscillations of a generalized
Burgers fluid in cylindrical domains, J. Non-Newton. Fluid Mech., 165, pp. 350–361, 2010.

10. C. Fetecau, W. Akhtar, M. A. Imran, D. Vieru, On the oscillating motion of an Oldroyd-B fluid
between two infinite circular cylinders, Comput. Math. Appl., 59, pp. 2836–2845, 2010.

11. W.C. Tan, T. Masuoka, Stokes’ first problem for a second grade fluid in a porous half-space
with heated boundary, Int. J. Non-Linear Mech., 40, pp. 515–522, 2005.

12. S. Wang, W.C. Tan, Stability analysis of Soret-driven double-diffusive convection of Maxwell
fluid in a porous medium, Int. J. Heat Fluid Flow, 32, pp. 88–94, 2011.

13. M. Kothandapani and S. Srinivas, Peristaltic transport of a Jeffrey fluid under the effect of
magnetic field in an asymmetric channel, Int. J. Non-Linear Mech., 43, pp. 915–924, 2008.

14. T. Hayat, M. Awais, M. Sajid, Similar solutions of stretching flow with mass transfer, Int. J.
Numer. Methods Fluids, 64, pp. 908–921, 2010.

15. T. Hayat, M. Awais, M. Qasim, A.A. Hendi, Effects of mass transfer on the stagnation point
flow of an upper-convected Maxwell (UCM) fluid, Int. J. Heat Mass Transfer, 54, pp. 3777–
3782, 2011.

16. J. Niu, C. Fu and W. C. Tan, Thermal convection of a viscoelastic fluid in an open-top porous
layer heated from below, J. Non-Newton. Fluid Mech., 165, pp. 203–211, 2010.

17. J.R. Lin, L.J. Liang, R.D. Chien, Magnetohydrodynamic flow of a second order fluid over
a stretching sheet with suction, J. Chin. Inst. Eng., 30, pp. 183–188 2007.

18. L.J. Crane, Flow past a stretching plate, Z. Angew. Math. Phys., 21, pp. 645–647, 1970.

19. S. Liao, An analytic solution of unsteady boundary-layer flows caused by an impulsively
stretching plate, Commun. Nonlinear Sci. Numer. Simul., 11, pp. 326–339, 2006.

20. T. Hayat, M. Mustafa, S. Obaidat, Soret and Dufour effects on the stagnation-point flow of
a micropolar fluid toward a stretching sheet, J. Fluids Eng., 133(2), pp. 021202-1–9, 2011.

21. R.A.V. Gorder, K. Vajravelu, Hydromagnetic stagnation point flow of a second grade fluid over
a stretching sheet, Mech. Res. Commun., 37, pp. 113–118, 2010.

22. T. Hayat, M. Awais, Simultaneous effects of heat and mass transfer on time-dependent flow
over a stretching surface, Int. J. Numer. Methods Fluids, 67(11), pp. 1341–1357, 2011.

23. A. Ahmad, S. Asghar, Flow of a second grade fluid over a sheet stretching with arbitrary
velocities subject to a transverse magnetic field, Appl. Math. Lett., 24, pp. 1905–1909, 2011.

24. R. Cortell, Heat and fluid flow due to non-linearly stretching surfaces, Appl. Math. Comput.,
217, pp. 7564–7572, 2011.

25. M. Devakar, T.K.V. Iyengar, Stokes’ problems for an incompressible couple stress fluid,
Nonlinear Anal. Model. Control, 1(2), pp. 181–190, 2008.

26. L.M. Srivastava, Flow oL. M. Srivastava, Flow of couple stress fluid through stenotic blood
vessels, J. Biomech., 18, pp. 479–485, 1985.

www.mii.lt/NA



Unsteady three dimensional flow of couple stress fluid 59

27. D. Srinivasacharya, N. Srinivasacharyulu, O. Odelu, Flow and heat transfer of couple stress
fluid in a porous channel with expanding and contracting walls, Int. Commun. Heat Mass, 36,
pp. 180–185, 2009.

28. J.R. Lin, Squeeze film characteristics of finite journal bearings: Couple stress fluid model,
Tribol. Int., 31, pp. 201–207, 1998.

29. J.R. Lin, C.R. Hung, Combined effects of non-Newtonian couple stresses and fluid inertia on
the squeeze film characteristics between a long cylinder and an infinite plate, Fluid Dyn. Res.,
39, pp. 616–631, 2007.

30. C.W.C. Jian, H.T. Yau, J.L. Chen, Nonlinear dynamic analysis of a hybrid squeeze-film
damper-mounted rigid rotor lubricated with couple stress fluid and active control, Appl. Math.
Modelling, 34, pp. 2493–2507, 2010.

31. S.F. Alyaqout, A.A. Elsharkawy, Optimal film shape for two-dimensional slider bearings
lubricated with couple stress fluids, Tribol. Int., 44 pp. 336–342, 2011.

32. S.J. Liao, Notes on the homotopy analysis method: Some definitions and theorems, Commun.
Nonlinear Sci. Numer. Simul., 14, pp. 983–997, 2009.

33. S. Abbasbandy, E. Shivanian, Prediction of multiplicity of solutions of nonlinear boundary
value problems: Novel application of homotopy analysis method, Commun. Nonlinear Sci.
Numer. Simul., 15, pp. 3830–3846, 2010.

34. M.M. Rashidi, G. Domairry, S. Dinarvand, Approximate solutions for the Burger and
regularized long wave equations by means of the homotopy analysis method, Commun.
Nonlinear Sci. Numer. Simul., 14, pp. 708–717, 2009.

35. T. Hayat, M. Awais, S. Asghar, A.A. Hendi, Analytic solution for the magnetohydrodynamic
rotating flow of jeffrey fluid in a channel, J. Fluids Eng., 133(6), pp. 061201-1–7, 2011.

36. R. Kandasamy, T. Hayat, S. Obaidat, Group theory transformation for Soret and Dufour effects
on free convective heat and mass transfer with thermophoresis and chemical reaction over
a porous stretching surface in the presence of heat source/sink, Nucl. Eng. Des., 241, pp. 2155–
2161, 2011.

Nonlinear Anal. Model. Control, 2012, Vol. 17, No. 1, 47–59


